## Publications from the Department of Electrical Engineering

Automatic ControlCommunication Systems

Computer Engineering

Computer Vision

Information Coding

Integrated Circuits and Systems

Vehicular Systems

## Latest PhD theses

Using images to reconstruct the world in three dimensions is a classical computer vision task. Some examples of applications where this is useful are autonomous mapping and navigation, urban planning, and special effects in movies. One common approach to 3D reconstruction is ”structure from motion” where a scene is imaged multiple times from different positions, e.g. by moving the camera. However, in a twist of irony, many structure from motion methods work best when the camera is stationary while the image is captured. This is because the motion of the camera can cause distortions in the image that lead to worse image measurements, and thus a worse reconstruction. One such distortion common to all cameras is motion blur, while another is connected to the use of an electronic rolling shutter. Instead of capturing all pixels of the image at once, a camera with a rolling shutter captures the image row by row. If the camera is moving while the image is captured the rolling shutter causes non-rigid distortions in the image that, unless handled, can severely impact the reconstruction quality.

This thesis studies methods to robustly perform 3D reconstruction in the case of a moving camera. To do so, the proposed methods make use of an inertial measurement unit (IMU). The IMU measures the angular velocities and linear accelerations of the camera, and these can be used to estimate the trajectory of the camera over time. Knowledge of the camera motion can then be used to correct for the distortions caused by the rolling shutter. Another benefit of an IMU is that it can provide measurements also in situations when a camera can not, e.g. because of excessive motion blur, or absence of scene structure.

To use a camera together with an IMU, the camera-IMU system must be jointly calibrated. The relationship between their respective coordinate frames need to be established, and their timings need to be synchronized. This thesis shows how to automatically perform this calibration and synchronization, without requiring e.g. calibration objects or special motion patterns.

In standard structure from motion, the camera trajectory is modeled as discrete poses, with one pose per image. Switching instead to a formulation with a continuous-time camera trajectory provides a natural way to handle rolling shutter distortions, and also to incorporate inertial measurements. To model the continuous-time trajectory, many authors have used splines. The ability for a spline-based trajectory to model the real motion depends on the density of its spline knots. Choosing a too smooth spline results in approximation errors. This thesis proposes a method to estimate the spline approximation error, and use it to better balance camera and IMU measurements, when used in a sensor fusion framework. Also proposed is a way to automatically decide how dense the spline needs to be to achieve a good reconstruction.

Another approach to reconstruct a 3D scene is to use a camera that directly measures depth. Some depth cameras, like the well-known Microsoft Kinect, are susceptible to the same rolling shutter effects as normal cameras. This thesis quantifies the effect of the rolling shutter distortion on 3D reconstruction, depending on the amount of motion. It is also shown that a better 3D model is obtained if the depth images are corrected using inertial measurements.

```
@phdthesis{diva2:1220622,
author = {Ovr\'{e}n, Hannes},
title = {{Continuous Models for Cameras and Inertial Sensors}},
school = {Linköping University},
type = {{Linköping Studies in Science and Technology. Dissertations No. 1951}},
year = {2018},
address = {Sweden},
}
```

Visual tracking is one of the fundamental problems in computer vision. Its numerous applications include robotics, autonomous driving, augmented reality and 3D reconstruction. In essence, visual tracking can be described as the problem of estimating the trajectory of a target in a sequence of images. The target can be any image region or object of interest. While humans excel at this task, requiring little effort to perform accurate and robust visual tracking, it has proven difficult to automate. It has therefore remained one of the most active research topics in computer vision.

In its most general form, no prior knowledge about the object of interest or environment is given, except for the initial target location. This general form of tracking is known as generic visual tracking. The unconstrained nature of this problem makes it particularly difficult, yet applicable to a wider range of scenarios. As no prior knowledge is given, the tracker must learn an appearance model of the target on-the-fly. Cast as a machine learning problem, it imposes several major challenges which are addressed in this thesis.

The main purpose of this thesis is the study and advancement of the, so called, Discriminative Correlation Filter (DCF) framework, as it has shown to be particularly suitable for the tracking application. By utilizing properties of the Fourier transform, a correlation filter is discriminatively learned by efficiently minimizing a least-squares objective. The resulting filter is then applied to a new image in order to estimate the target location.

This thesis contributes to the advancement of the DCF methodology in several aspects. The main contribution regards the learning of the appearance model: First, the problem of updating the appearance model with new training samples is covered. Efficient update rules and numerical solvers are investigated for this task. Second, the periodic assumption induced by the circular convolution in DCF is countered by proposing a spatial regularization component. Third, an adaptive model of the training set is proposed to alleviate the impact of corrupted or mislabeled training samples. Fourth, a continuous-space formulation of the DCF is introduced, enabling the fusion of multiresolution features and sub-pixel accurate predictions. Finally, the problems of computational complexity and overfitting are addressed by investigating dimensionality reduction techniques.

As a second contribution, different feature representations for tracking are investigated. A particular focus is put on the analysis of color features, which had been largely overlooked in prior tracking research. This thesis also studies the use of deep features in DCF-based tracking. While many vision problems have greatly benefited from the advent of deep learning, it has proven difficult to harvest the power of such representations for tracking. In this thesis it is shown that both shallow and deep layers contribute positively. Furthermore, the problem of fusing their complementary properties is investigated.

The final major contribution of this thesis regards the prediction of the target scale. In many applications, it is essential to track the scale, or size, of the target since it is strongly related to the relative distance. A thorough analysis of how to integrate scale estimation into the DCF framework is performed. A one-dimensional scale filter is proposed, enabling efficient and accurate scale estimation.

```
@phdthesis{diva2:1201230,
author = {Danelljan, Martin},
title = {{Learning Convolution Operators for Visual Tracking}},
school = {Linköping University},
type = {{Linköping Studies in Science and Technology. Dissertations No. 1926}},
year = {2018},
address = {Sweden},
}
```

The past decades have seen a rapid growth of mobile data traffic,both in terms of connected devices and data rate. To satisfy the evergrowing data traffic demand in wireless communication systems, thecurrent cellular systems have to be redesigned to increase both spectralefficiency and energy efficiency. Massive MIMO(Multiple-Input-Multiple-Output) is one solution that satisfy bothrequirements. In massive MIMO systems, hundreds of antennas areemployed at the base station to provide service to many users at thesame time and frequency. This enables the system to serve the userswith uniformly good quality of service simultaneously, with low-costhardware and without using extra bandwidth and energy. To achievethis, proper resource allocation is needed. Among the availableresources, transmit power beamforming are the most important degrees offreedom to control the spectral efficiency and energy efficiency. Dueto the use of excessive number of antennas and low-end hardware at thebase station, new aspects of power allocation and beamforming compared to currentsystems arises.

In the first part of the thesis, new uplink power allocation schemes that based on long term channel statistics isproposed. Since quality of the channel estimates is crucial in massive MIMO, in addition to data power allocation, joint power allocationthat includes the pilot power as additional variable should be considered. Therefore a new framework for power allocation thatmatches practical systems is developed, as the methods developed in the literature cannot be applied directly to massive MIMO systems. Simulation results confirm the advantages brought by the the proposed new framework.

In the second part, we introduces a new approach to solve the joint precoding and power allocation for different objective in downlink scenarios by a combination of random matrix theory and optimization theory. The new approach results in a simplified problem that, though non-convex, obeys a simple separable structure. Simulation results showed that the proposed scheme provides large gains over heuristic solutions when the number of users in the cell is large, which is suitable for applying in massive MIMO systems.

In the third part we investigate the effects of using low-end amplifiers at the basestations. The non-linear behavior of power consumption in these amplifiers changes the power consumption model at the basestation, thereby changes the power allocation and beamforming design. Different scenarios are investigated and resultsshow that a certain number of antennas can be turned off in some scenarios.

In the last part we consider the use of non-orthogonal-multiple-access (NOMA) inside massive MIMO systems in practical scenarios where channel state information (CSI) is acquired through pilot signaling. Achievable rate analysis is carried out for different pilot signaling schemes including both uplink and downlink pilots. Numerical results show that when downlink CSI is available at the users, our proposed NOMA scheme outperforms orthogonal schemes. However with more groups of users present in the cell, it is preferable to use multi-user beamforming in stead of NOMA.

```
@phdthesis{diva2:1190488,
author = {Cheng, Hei Victor},
title = {{Optimizing Massive MIMO:
Precoder Design and Power Allocation}},
school = {Linköping University},
type = {{Linköping Studies in Science and Technology. Dissertations No. 1929}},
year = {2018},
address = {Sweden},
}
```

The international marine shipping industry is responsible for the transport of around 90% of the total world trade. Low-speed two-stroke diesel engines usually propel the largest trading ships. This engine type choice is mainly motivated by its high fuel efficiency and the capacity to burn cheap low-quality fuels. To reduce the marine freight impact on the environment, the International Maritime Organization (IMO) has introduced stricter limits on the engine pollutant emissions. One of these new restrictions, named Tier III, sets the maximum NOx emissions permitted. New emission reduction technologies have to be developed to fulfill the Tier III limits on two-stroke engines since adjusting the engine combustion alone is not sufficient. There are several promising technologies to achieve the required NOx reductions, Exhaust Gas Recirculation (EGR) is one of them. For automotive applications, EGR is a mature technology, and many of the research findings can be used directly in marine applications. However, there are some differences in marine two-stroke engines, which require further development to apply and control EGR.

The number of available engines for testing EGR controllers on ships and test beds is low due to the recent introduction of EGR. Hence, engine simulation models are a good alternative for developing controllers, and many different engine loading scenarios can be simulated without the high costs of running real engine tests. The primary focus of this thesis is the development and validation of models for two-stroke marine engines with EGR. The modeling follows a Mean Value Engine Model (MVEM) approach, which has a low computational complexity and permits faster than real-time simulations suitable for controller testing. A parameterization process that deals with the low measurement data availability, compared to the available data on automotive engines, is also investigated and described. As a result, the proposed model is parameterized to two different two-stroke engines showing a good agreement with the measurements in both stationary and dynamic conditions.

Several engine components have been developed. One of these is a new analytic in-cylinder pressure model that captures the influence of the injection and exhaust valve timings without increasing the simulation time. A new compressor model that can extrapolate to low speeds and pressure ratios in a physically sound way is also described. This compressor model is a requirement to be able to simulate low engine loads. Moreover, a novel parameterization algorithm is shown to handle well the model nonlinearities and to obtain a good model agreement with a large number of tested compressor maps. Furthermore, the engine model is complemented with dynamic models for ship and propeller to be able to simulate transient sailing scenarios, where good EGR controller performance is crucial. The model is used to identify the low load area as the most challenging for the controller performance, due to the slower engine air path dynamics. Further low load simulations indicate that sensor bias can be problematic and lead to an undesired black smoke formation, while errors in the parameters of the controller flow estimators are not as critical. This result is valuable because for a newly built engine a proper sensor setup is more straightforward to verify than to get the right parameters for the flow estimators.

```
@phdthesis{diva2:1178537,
author = {Llamas, Xavier},
title = {{Modeling and Control of EGR on Marine Two-Stroke Diesel Engines}},
school = {Linköping University},
type = {{Linköping Studies in Science and Technology. Dissertations No. 1904}},
year = {2018},
address = {Sweden},
}
```

Massive MIMO (multiple-input–multiple-output) is a multi-antenna technology for cellular wireless communication, where the base station uses a large number of individually controllable antennas to multiplex users spatially. This technology can provide a high spectral efficiency. One of its main challenges is the immense hardware complexity and cost of all the radio chains in the base station. To make massive MIMO commercially viable, inexpensive, low-complexity hardware with low linearity has to be used, which inherently leads to more signal distortion. This thesis investigates how the degenerated linearity of some of the main components—power amplifiers, analog-to-digital converters (ADCs) and low-noise amplifiers—affects the performance of the system, with respect to data rate, power consumption and out-of-band radiation. The main results are: Spatial processing can reduce PAR (peak-to-average ratio) of the transmit signals in the downlink to as low as 0B; this, however, does not necessarily reduce power consumption. In environments with isotropic fading, one-bit ADCs lead to a reduction in effective signal-to-interference-and-noise ratio (SINR) of 4dB in the uplink and four-bit ADCs give a performance close to that of an unquantized system. An analytical expression for the radiation pattern of the distortion from nonlinear power amplifiers is derived. It shows how the distortion is beamformed to some extent, that its gain never is greater than that of the desired signal, and that the gain of the distortion is reduced with a higher number of served users and a higher number of channel taps. Nonlinear low-noise amplifiers give rise to distortion that partly combines coherently and limits the possible SINR. It is concluded that spatial processing with a large number of antennas reduces the impact of hardware distortion in most cases. As long as proper attention is paid to the few sources of coherent distortion, the hardware complexity can be reduced in massive MIMO base stations to overcome the hardware challenge and make massive MIMO commercial reality.

```
@phdthesis{diva2:1163832,
author = {Moll\'{e}n, Christopher},
title = {{High-End Performance with Low-End Hardware:
Analysis of Massive MIMO Base Station Transceivers}},
school = {Linköping University},
type = {{Linköping Studies in Science and Technology. Dissertations No. 1896}},
year = {2017},
address = {Sweden},
}
```

In this thesis we study device-independent quantum key distribution based on energy-time entanglement. This is a method for cryptography that promises not only perfect secrecy, but also to be a practical method for quantum key distribution thanks to the reduced complexity when compared to other quantum key distribution protocols. However, there still exist a number of loopholes that must be understood and eliminated in order to rule out eavesdroppers. We study several relevant loopholes and show how they can be used to break the security of energy-time entangled systems. Attack strategies are reviewed as well as their countermeasures, and we show how full security can be re-established.

Quantum key distribution is in part based on the profound no-cloning theorem, which prevents physical states to be copied at a microscopic level. This important property of quantum mechanics can be seen as Nature's own copy-protection, and can also be used to create a currency based on quantummechanics, i.e., quantum money. Here, the traditional copy-protection mechanisms of traditional coins and banknotes can be abandoned in favor of the laws of quantum physics. Previously, quantum money assumes a traditional hierarchy where a central, trusted bank controls the economy. We show how quantum money together with a blockchain allows for Quantum Bitcoin, a novel hybrid currency that promises fast transactions, extensive scalability, and full anonymity.

```
@phdthesis{diva2:1150887,
author = {Jogenfors, Jonathan},
title = {{Breaking the Unbreakable:
Exploiting Loopholes in Bell's Theorem to Hack Quantum Cryptography}},
school = {Linköping University},
type = {{Linköping Studies in Science and Technology. Dissertations No. 1875}},
year = {2017},
address = {Sweden},
}
```

Flight control design for modern fighter aircraft is a challenging task. Aircraft are dynamical systems, which naturally contain a variety of constraints and nonlinearities such as, e.g., maximum permissible load factor, angle of attack and control surface deflections. Taking these limitations into account in the design of control systems is becoming increasingly important as the performance and complexity of the aircraft is constantly increasing.

The aeronautical industry has traditionally applied feedforward, anti-windup or similar techniques and different ad hoc engineering solutions to handle constraints on the aircraft. However these approaches often rely on engineering experience and insight rather than a theoretical foundation, and can often require a tremendous amount of time to tune.

In this thesis we investigate model predictive control as an alternative design tool to handle the constraints that arises in the flight control design.

We derive a simple reference tracking MPC algorithm for linear systems that build on the dual mode formulation with guaranteed stability and low complexity suitable for implementation in real time safety critical systems.

To reduce the computational burden of nonlinear model predictive control we propose a method to handle the nonlinear constraints, using a set of dynamically generated local inner polytopic approximations. The main benefit of the proposed method is that while computationally cheap it still can guarantee recursive feasibility and convergence.

An alternative to deriving MPC algorithms with guaranteed stability properties is to analyze the closed loop stability, post design. Here we focus on deriving a tool based on Mixed Integer Linear Programming for analysis of the closed loop stability and robust stability of linear systems controlled with MPC controllers.

To test the performance of model predictive control for a real world example we design and implement a standard MPC controller in the development simulator for the JAS 39 Gripen aircraft at Saab Aeronautics. This part of the thesis focuses on practical and tuning aspects of designing MPC controllers for fighter aircraft. Finally we have compared the MPC design with an alternative approach to maneuver limiting using a command governor.

```
@phdthesis{diva2:1138357,
author = {Simon, Daniel},
title = {{Fighter Aircraft Maneuver Limiting Using MPC:
Theory and Application}},
school = {Linköping University},
type = {{Linköping Studies in Science and Technology. Dissertations No. 1881}},
year = {2017},
address = {Sweden},
}
```

Numerical algorithms for efficiently solving optimal control problems are important for commonly used advanced control strategies, such as model predictive control (MPC), but can also be useful for advanced estimation techniques, such as moving horizon estimation (MHE). In MPC, the control input is computed by solving a constrained finite-time optimal control (CFTOC) problem on-line, and in MHE the estimated states are obtained by solving an optimization problem that often can be formulated as a CFTOC problem. Common types of optimization methods for solving CFTOC problems are interior-point (IP) methods, sequential quadratic programming (SQP) methods and active-set (AS) methods. In these types of methods, the main computational effort is often the computation of the second-order search directions. This boils down to solving a sequence of systems of equations that correspond to unconstrained finite-time optimal control (UFTOC) problems. Hence, high-performing second-order methods for CFTOC problems rely on efficient numerical algorithms for solving UFTOC problems. Developing such algorithms is one of the main focuses in this thesis. When the solution to a CFTOC problem is computed using an AS type method, the aforementioned system of equations is only changed by a low-rank modification between two AS iterations. In this thesis, it is shown how to exploit these structured modifications while still exploiting structure in the UFTOC problem using the Riccati recursion. Furthermore, direct (non-iterative) parallel algorithms for computing the search directions in IP, SQP and AS methods are proposed in the thesis. These algorithms exploit, and retain, the sparse structure of the UFTOC problem such that no dense system of equations needs to be solved serially as in many other algorithms. The proposed algorithms can be applied recursively to obtain logarithmic computational complexity growth in the prediction horizon length. For the case with linear MPC problems, an alternative approach to solving the CFTOC problem on-line is to use multiparametric quadratic programming (mp-QP), where the corresponding CFTOC problem can be solved explicitly off-line. This is referred to as explicit MPC. One of the main limitations with mp-QP is the amount of memory that is required to store the parametric solution. In this thesis, an algorithm for decreasing the required amount of memory is proposed. The aim is to make mp-QP and explicit MPC more useful in practical applications, such as embedded systems with limited memory resources. The proposed algorithm exploits the structure from the QP problem in the parametric solution in order to reduce the memory footprint of general mp-QP solutions, and in particular, of explicit MPC solutions. The algorithm can be used directly in mp-QP solvers, or as a post-processing step to an existing solution.

```
@phdthesis{diva2:1089521,
author = {Nielsen, Isak},
title = {{Structure-Exploiting Numerical Algorithms for Optimal Control}},
school = {Linköping University},
type = {{Linköping Studies in Science and Technology. Dissertations No. 1848}},
year = {2017},
address = {Sweden},
}
```

Bayesian state estimation is a flexible framework to address relevant problems at the heart of existing and upcoming technologies. Application examples are obstacle tracking for driverless cars and indoor navigation using smartphone sensor data. Unfortunately, the mathematical solutions of the underlying theory cannot be translated to computer code in general. Therefore, this thesis discusses algorithms and approximations that are related to the Kalman filter (KF).

Four scientific articles and an introduction with the relevant background on Bayesian state estimation theory and algorithms are included. Two articles discuss nonlinear Kalman filters, which employ the KF measurement update in nonlinear models. The numerous variants are presented in a common framework and the employed moment approximations are analyzed. Furthermore, their application to target tracking problems is discussed. A third article analyzes the ensemble Kalman filter (EnKF), a Monte Carlo implementation of the KF that has been developed for high-dimensional geoscientific filtering problems. The EnKF is presented in a simple KF framework, including its challenges, important extensions, and relations to other filters. Whereas the aforementioned articles contribute to the understanding of existing algorithms, a fourth article devises novel filters and smoothers to address heavy-tailed noise. The development is based on Student’s *t *distribution and provides simple recursions in the spirit of the KF. The introduction and articles are accompanied by extensive simulation experiments.

```
@phdthesis{diva2:1077486,
author = {Roth, Michael},
title = {{Advanced Kalman Filtering Approaches to Bayesian State Estimation}},
school = {Linköping University},
type = {{Linköping Studies in Science and Technology. Dissertations No. 1832}},
year = {2017},
address = {Sweden},
}
```

System identification is used in engineering sciences to build mathematical models from data. A common issue in system identification problems is that the true inputs to the system are not fully known. In this thesis, existing approaches to unknown input problems are classified and some of their properties are analyzed.

A new indirect framework is proposed to treat system identification problems with unknown inputs. The effects of the unknown inputs are assumed to be measured through possibly unknown dynamics. Furthermore, the measurements may also be dependent on other known or measured inputs and can in these cases be called indirect input measurements. Typically, these indirect input measurements can arise when a subsystem of a larger system is of interest and only a limited set of sensors is available. Two examples are when it is desired to estimate parts of a mechanical system or parts of a dynamic network without full knowledge of the signals in the system. The input measurements can be used to eliminate the unknown inputs from a mathematical model of the system through algebraic manipulations. The resulting indirect model structure only depends on known and measured signals and can be used to estimate the desired dynamics or properties. The effects of using the input measurements are analyzed in terms of identifiability, consistency and variance properties. It is shown that cancelation of shared dynamics can occur and that the resulting estimation problem is similar to errors-in-variables and closed-loop estimation problems because of the noisy inputs used in the model. In fact, the indirect framework unifies a number of already existing system identification problems that are contained as special cases.

For completeness, an instrumental variable method is proposed as one possibility for estimating the indirect model. It is shown that multiple datasets can be used to overcome certain identifiability issues and two approaches, the multi-stage and the joint identification approach, are suggested to utilize multiple datasets for estimation of models. Furthermore, the benefits of using the indirect model in filtering and for control synthesis are briefly discussed.

To show the applicability, the framework is applied to the roll dynamics of a ship for tracking of the loading conditions. The roll dynamics is very sensitive to changes in these conditions and a worst-case scenario is that the ship will capsize. It is assumed that only motion measurements from an inertial measurement unit (IMU) together with measurements of the rudder angle are available. The true inputs are thus not available, but the measurements from the IMU can be used to form an indirect model from a well-established ship model. It is shown that only a subset of the unknown parameters can be estimated simultaneously. Data was collected in experiments with a scale ship model in a basin and the joint identification approach was selected for this application due to the properties of the model. The approach was applied to the collected data and gave promising results.

```
@phdthesis{diva2:1068051,
author = {Linder, Jonas},
title = {{Indirect System Identification for Unknown Input Problems:
With Applications to Ships}},
school = {Linköping University},
type = {{Linköping Studies in Science and Technology. Dissertations No. 1829}},
year = {2017},
address = {Sweden},
}
```

Last updated: 2015-05-25