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Neuromorphic Computing

— Term introduced by Prof. Carver Mead, Caltech, 1990

— Devices/algorithms that mimic biological neurons and
neural networks (cells, synapses, spike signaling...)

— Used to model processes in the brain

— Used in Machine Learning (“Spiking Networks”)
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The Human Brain

* The brain contains about 86 billion neurons and 100 trillion
synapses (approximately 1000 per neuron)

* The neocortex is a thin (2-4 mm) top layer. It contains 30 billion
neurons and is responsible for our “intelligence” (cognition,
sensory perception, language...)

* The operating frequency is 1 — 10 Hz and the power
consumption 10-20 W ( < 1 nW/neuron)

* Energy consumption per synaptic eventis 1 — 10 fJ.
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Looking inside — Neurons and connections

https://www.psypost.org/2017/11/newborn-neurons-find-proper-place-adult-brain-50061
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Neuron-to-neuron connection

* Neurons connect to other neurons via axons and dendrites

Dendrite
* The actual junction is called a synapse. It converts the electrical

signal from the axon to a change in chemical concentration (of
neuro-transmitters) in the receiving neuron.

Synapses

* A synapse can have an excitatory or inhibitory effect on its neuron.

: £ Computatlon
* When the summed concentration from all synapses exceeds a 37 & b %ﬁ;ﬁigjl f\ /\
certain threshold, the receiving (post-synaptic) neuron generates N oo Neuron 2

an output pulse on its axon.

Reprinted from Versace et al, A mind made from memristors. IEEE Spectrum 2010
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Signaling between neurons

U 10 ms
t i i
» Signaling between neurons is done by action potentials (spikes)
 Aspike is about 1 ms long. Repetition rate varies from < 0.01 Hz to

>200 Hz.
* Spike rate is a measure of the “strength” of the neural signal
* Example: neuron in the auditory track reacting to bursts of sound
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Signal representations

e Spike rate

* Time-to-first-spike

* Intra-spike distance ”J})
» Latency (related to other signals) / U 10 ms

t

* Rank-order coding (within a population of neurons)
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How does a network of neurons learn?

Synapses change their response (“weights”) when
spike rate is high (short term plasticity)

Synapses also adapt over a longer timeframe (long
term plasticity)

40% of synapses of a neuron are replaced with new
ones every day
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Short-term plasticity

-80
Facilitation Depression Stimulus Post-tetanic
ceases potentiation
(minutes later)

* Short-term plasticity is a temporary increase in
synaptic strength

e Appears when two or more action potentials on
its input appear close in time (rate dependent)

Membrane potential (mV)
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Long-term plasticity

Long-term plasticity refers to persistence changes in the synaptic
strength

Long-term plasticity is based on the time difference between the
pre-synaptic and post-synaptic response

Long-term plasticity is believed to be the main mechanism behind
learning and memory. Two main models: Hebbian vs STDP
learning.

Short absolute time difference leads to increased strength
(Hebbian learning)

Short positive time difference leads to increased strength
(potentiation), short negative time difference leads to decreased
strength (depression) (Spike Timing Dependent Plasticity, STDP
learning)
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Electronic synapse models

Spike representations
* Voltage/current pulses (analog models)
» Digital values, event times (digital models)

* Stochastic representations

Implementations
» Resistors (MOSFET channel, ionic conductance...)
* Digital implementations

* Hybrid analog/digital
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C. Mead (1994) — The floating gate transistor synapse
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lons is injected into the gate oxide after
which the gate is left floating => long-term
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L.O. Chua (1971) — The memristor

I
IEEE TRANSACTIONS ON CIRCUIT THEORY, VOL. CT-18, NO. 5, SEPTEMBER 1971 0 73 ] \
. . . dolmogcel | HP Labs
Memristor—The Missing Circuit Element oonil p:ov:g- (V) memistor 2008
front
LEON O. CHUA, SENIOR MEMBER, IEEE — Pusfuct 70

Abstract—A new two-terminal circuit element—called the memristor—
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and the fAlux-linkage ¢ft) = [ '-o vir] dr is introduced as the fourth basic i %_
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J. Gerasimov (2019) — Evolvable organic electrochemical transistor

ETE-S (monomers in solution)

PETE-S (conducting polymer)

gold electrodes

ETE-S:
sodium 4-(2-(2,5-bis(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)
thiophen-3-yl)ethoxy)butane-1-sulfonate
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The evolvable OECT synapse

Gate QETE-S
Ve
* Long-term potentiation—channel growth
* Long-term depression—channel over-oxidation
e Short-term potentiation—channel doping
e Short-term depression—channel dedoping
Ve

Reprint from J. Gerasimov et al, An evolvable organic electrochemical
transistor for neuromorphic applications. Adv. Sci. 2019.
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Electronic models of synapses — other technologies

RRAM (ReRAM)
Electrochemical metallization
Magnetoresistive RAM (MRAM)
Phase change memory

Carbon nanotubes

Josephson junctions

Digital implementations

Issues to consider

- Non-volatility

- Large dynamic range

- Multi-level

- Sustainability

- Short term/long term plasticity
- Small size

- Low energy consumption
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Energy efficiency — per synaptic event

Biological synapses: 20000 ATPs => 0.01 p)J
Analog synapses: 9 pJ (CMOS), 7.5 pJ (OFET)

Digital synapses: 26 pJ (TrueNorth)
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Neuron models
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Leaky Integrate-and-Fire model (LIF)

According to this model, the neuron has two internal state variables:
u,(t): Synaptic response current (weighted sum of filtered synaptic inputs)

v(t): membrane potential (leaky integration of u(t) )

o(t) =2,.6(t—t,) Uir) = Z wij(ay * ;) (©) + b;
J#i
o, = exp. filter

v;(t) = _lvi(t) + u;(t) — 0;0:(¢)

v
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Simple neuron (+ synapses) model: linearly weighted inputs
followed by a nonlinear activation function (W. McCulloch, W.

Pitts, 1943)
Also known as the ”Perceptron”

— Weights
Constant 1 F. ROsenb|att 1958

/ rv \ \Weighted
\ *1 ) Sum

Inputs Y ”_1/}---'"" W, /\ Step Function
. W”” o o o
x/ The model differs from biological neurons:
- static representation of data (no spikes)
- memoryless

- lacks time-dependent plasticity

Robert Forchheimer, Feb. 2020
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Implementation of the Leaky Integrate-and-Fire (LIF)
neuron model (shown with 4 resistive synapse inputs)
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Implementing the LIF neuron with memristors (the "Neuristor”)

+Vd.c.
Chan 2
400
Output i 2004
Rout =
5
Jvlﬂ—' 5 200
@)
Cout loo- ® Switch M,
«®- Switch M,
Neuristor - Model
O_J T T T T T
0 0.5 1.0 1.5 2.0
Voltage (V)

Reprinted from Picket et al, A scalable neuristor built with Mott meristors. Nat.Material 2013, 12
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CMOQOS neuron implementation
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Indiveri et al, Neuromorphic Silicon Neuron Circuits. Frontiers in

neuroscience. 5. 73. 10.3389/fnins.2011.00073.
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Spiking networks

Architecture

* Fully or convolutionally connected
e Lateral inhibition

Learning

* Unsupervised learning through
synaptic plasticity

MNIST classification
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Reprinted from A. Tavanaei et al, Deep learning in spiking neural networks. arXiv 1804.08150v4. Jan. 2019
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MNIST results

Model

| Architecture |

Learning method

| Dataset | Acc

Feedforward, fully connected, multi-layer SNNs

S

piking CNNs

O’Connor (2016) [137] Deep SNN  |Stochastic gradient descent MNIST 96.40| |Lee (2016) [57] Spiking CNN |Backpropagation MNIST 99.31
O’Connor (2016) [137] Deep SNN  |Fractional stochastic gradient descent |[MNIST 97.93 Lee (2016) [57] Spiking CNN |Backpropagation N-MNIST |98.30
Lee (2016) [57] Deep SNN Backpropagation MNIST 08.88 Panda (2016) [173] Spiking CNN |Convolutional autoencoder MNIST 99.05
Lee (2016) [57] Deep SNN Backpropagation N-MNIST [98.74 Panda (2016) [173] Spiking CNN |Convolutional autoencoder CIFAR-10 |75.42
Neftci (2017) [138] Deep SNN Event-driven random backpropagation |MNIST 97.98 Tavanaei (2017) [171], [172] Spiking CNN |Layer wise sparse coding and STDP  |MNIST 98.36
Liu (20]7) [108] SNN Temporal backpropagation (3—layer) MNIST 99.10 Tavanaei. (2018) M] Sp?k?ng CNN Layer-w'%se and end-to-end STDP rules| MNIST 98.60
Dichl (2015) [130] SNN STDP (2-layer) MNIST 95.00 Zhao (2015) [169] Sp¥kfng CNN Tempotron . ' MNIST 91.29
Tavanaei (2017) [118] SNN STDP-based backpropagation (3-layer) [MNIST 97.20] |C20 (2015 L183] Spiking CNN | Offline learning, Conversion CIFAR-10_|77.43

- Neil (2016) [179] Spiking CNN |Offline learning, Conversion N-MNIST (95.72
Mostafa (2017) [109] SNN Temporal backpropagation (3-layer) |MNIST _ |97.14) 172 456735y 0] Spiking CNN |Offline learning, Conversion MNIST  |99.10
Querlioz (2013) [139] SNN STDP, Hardware implementation MNIST _ 193.50] 1R\ cckauer (2017) [142] Spiking CNN [Offline learning, Conversion MNIST  [99.44
Brader (2007)[128] SNN Spike-driven synaptic plasticity MNIST _ 96.50]  'Rueckauer (2017) [142] Spiking CNN |Offline learning, Conversion CIFAR-10 [90.85
Diehl (2015) [140] Deep SNN | Offline learning, Conversion MNIST  [98.60|  Hunsberger (2015) [177] Spiking CNN |Offline learning, Conversion CIFAR-10 [82.95
Neil (2016) [144] Deep SNN  |Offline learning, Conversion MNIST  [98.00| [Garbin (2014) [181] Spiking CNN [Offline learning, Hardware MNIST  |94.00
Hunsberger (2015) [177], [178]|Deep SNN | Offline learning, Conversion MNIST ~ [98.37| [Esser (2016) [182] Spiking CNN [Offline learning, Hardware CIFAR-10 [87.50
Esser (2015) [141] Deep SNN | Offline learning, Conversion MNIST 99.42|  [Esser (2016) [182] Spiking CNN [Offline learning, Hardware CIFAR-100(63.05

Reprinted from A. Tavanaei et al, Deep learning in spiking neural networks. arXiv 1804.08150v4. Jan. 2019
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Large-scale neuromorphic designs

Univ. of Manchester: SpiNNaker (research)
IBM: TrueNorth (research)
Intel: Loihi (commercial)

Brainchip: Akida (commercial)
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Univ. of Manchester - SpiNNaker (2010)

* Univ. of Manchester: SpiNNaker (Spiking Neural
Network Architecture, 2010-2018)

* Uses 57 600 VLSI chips (18-core ARM9)
e Each VLSI chip emulates 18000 neurons

e A “full brain” simulator contains 1 billion
neurons and runs in “real-time”.

e Power consumption: 100 kW (100 mW/neuron)

* Funding of 8 MEuro received 2019 to build
second generation. Expected to reach 10 billion
neurons.
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SpiNNaker — System architecture

N
|

»

®
Rl
',ﬁ“ ’
Y/

@
D
/N KX
AN
o
y

7/ el

@

e RN
]

<

ENRE N
»
2

IR S S
b o A
R " \ \ \
@
&
°
-7

. ’ f .. \. “":v“‘

~ -~ _®  Asynchronous
Interconnect

A

@
*
o\
L 2

A
@

LRY

N

The VLSI chips are connected in a toroidal network

R ————

Ethernet Link

@

IR IAN

® SpiNNaker CMP

Host System

Robert Forchheimer, Feb. 2020

LINKOPING
II." UNIVERSITY



IBM — TrueNorth (2014)

IBM: TrueNorth (2014)

Each chip implements 1 million
neurons and 256 million

synapses

5.4 billion transistors
Power consumption: 73 mW
(73 nW/neuron)

Distributed architecture based
on an event-driven network
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TrueNorth — core element

e Core element 256 neurons, v Memory (256 x 410)
256*256 synapses ‘
* Size: 240um X 390um Synapses Parameters| V,;4 Route .‘._

* 4096 cores per die (= 400 mm?) Neuron Row
Controller
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Intel — Loihi (2017)

* Highly flexible
_ . Board with 64 Loihi chips containing 8 M neurons.
neuromorphic chip.
* 131 000 neurons
divided into 128 cores

* 130 M synapses

* 14 nm CMOS

 2.07 billion transistors
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Chip Architecture
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Brainchip — Akida (announced)

(¢ On-Chip Processor

% M-Class CPU with FPU & DSP
¥ System management
* Fabric loading/control

* 1.2 M neurons,

e 10 billion synapses

e <05W

Programmable
Pixel-Spike
Converter

e 28 nm CMOS

Generic Data-
Spike Converter

 Planned release: 2020

Flexible Neuron Fabric

o ¥% 1.2M Neurons, 10B Synapses

C N N Su p pO rt ¥ Convolutional, pooling,
dense layer support

¥ Digital logic with SRAM

aKl*d-O' Neuron Fabric =k

)
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Table 1. A comparison of state-of-the-art neuromorphic chips, along with some performance attributes.

Chip
SpiNNaker

TrueNorth

Loihi

BrainScaleS

Braindrop

DYNAP-SE

ODIN

Technology
ARM968, 130-nm CMOS

(next-generation prototypes:

ARM M4F, 28-nm CMOS)
Digital ASIC at 28-nm CMOS

Digital ASIC at 14-nm CMOS

Mixed-signal wafer-scale system,
180-nm CMOS (nextgeneration
prototype: 65-nm CMOS)

Mixed-signal 28-nm CMOS

Mixed-signal 180-nm CMOS

Digital ASIC at 28-nm CMOS

Integration Density
Up to 1,000 neurpns/core, 1 million cores

1 million neurons, 256 million synapses; 1-bit
synaptic stafe to represent a connection, with
four programmable 9-bit weights per neuron

130,000 neurons, 130 million synapses with
variable weight resolution (1-9 bits)

180,000 neurons, 40 million synapses per
wafer

4,096 neurons, 64,000 programmable

weights (with analog circuits that allow
realization of allo-all connectivity)

1,024 neurons, 64,000 synapses (12-bit
confentaddressable memory)

256 neurons, 64,000 synapses with 3-bit

weight and 1 bit to encode learning

Key Functionality/Performance Metrics

Programmable numerical simulations with 72-bit mes-
sages, for realtime simulation of spiking networks

SNN emulation without on<hip learning; 26 p) per
synaptic operation

Supports on-chip learning with plasticity rules, such
as Hebbian, pairwise, and triplet STDP, 23.6 pJ per
synaptic operation (at nominal operating conditions)

103-10%fold acceleration of spiking network emula-
tions, with hardware-supported synaptic plasticity;
nextgeneration prototype: programmable plasticity

0.38 p)J per synaptic update, implements the single
core of a planned million-neuron chip

Hybrid analog/digital circuits for emulating synapse
and neuron dynamics, 17 pJ per synaptic operation

12.7 pJ per synaptic operation, implements on-chip
spike-driven plasticity

IEEE SIGNAL PROCESSING MAGAZINE | November 2019 |

103
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Spiking neural networks vs Artificial neural networks

SNN ANN
Synapse short-term memory Vv —
Synapse long-term memory Vv Vv
Neuron memory \ —
Learning mode unsupervised supervised
Power consumption low high
Hardware efficiency - analog high high
Hardware efficiency - digital high low
Industrial maturity low high
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Home assignment

Describe two examples how the basic learning scheme (Hebbian/STDP)
can be augmented to make hardware implementation more efficient.

Your report should include a description of the obtained improvements in
terms of reduced hardware or faster computations or more efficient

learning.

(Hint: Select the examples from the list of Recent Publications)
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Questions?
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