Information Coding / Computer Graphics, ISY, LiTH

Hardware for Machine Learning:

Computations on graphics
processors

Ingemar Ragnemalm
Information Coding, ISY

1(108)

Information Coding / Computer Graphics, ISY, LiTH

This lecture:

GPU evolution and GPU architecture
How to write simple CUDA programs
How to port from the CPU
How to optimize

Alternatives: OpenCL, GLSL, Compute shaders

2(108)

Information Coding / Computer Graphics, ISY, LiTH

Lecture questions:

1. Why did the GPU evolve into a general
purpose parallel processor?

2. What operations do tensor cores accelerate?

3. How can you limit global memory access in
CUDA?

3(108)

r- COMNG |
(S

.JJ i \o
B

Information Coding / Computer Graphics, ISY, LiTH

The GFLOPS race

Peak Memory Bandwidth (GB/s) Peak Double Precision (GFLOPs)

1600 - Gpy 16000
1400 as CPU 14000
1200 12000
1000 10000
800 8000
600 6000
400 4000
200 2000

2 —__/ 0

2006 2008 2010 2012 2014 2016 2018 2020 2022 2006 2008 2010 2012 2014 2016 2018 2020 2022

4(108)

g Information Coding / Computer Graphics, ISY, LiTH
=

GFLOPS in numbers:

GPU CPU
1995: 0.001 0.09 * Theoretical, 16 cores
2005: 40 5.6 ** Claimed by NVidia, Titan V
201 1 . 2488 91 *** Theoretical peak performance

2015: 7000 176
201 6: 1 6380 400'700* Gets complicated here:
2017: 110000** 4000** _ — CUDAvstensor cores

(Various sources)

5(108)

“
"%\t.

Information Coding / Computer Graphics, ISY, LiTH

How about economy: dollar per GFLOPS?

1961:
1984.:
1997:
2000:
2007:

2012:
2013:
2015:

8.3 trillion

42 million

42000 (CPU cluster)
836-1300

52

0.73 (AMD 7970)

0.22 (PS4)

0.08 (Radeon R9 295)

(Wikipedia)

6(108)

L
=
—
VI7
2
S!
O
O
Q.
O
—
O
| -
)
+J
D)
o
&
@)
O
N
o)
=
S
O
O
C
O
+J
(qV]
&
—
@)
y—
RS

How is this possible?
Area use

CPU

But in particular: SIMD architecture

7(108)

..........

“"d’&: Information Coding / Computer Graphics, ISY, LiTH
e

SIMD

Single instruction, multiple data
Simplifies instruction handling. All cores get the same
Instruction.
Excellent for operations where one operation must be made on
many data elements.

Is that so common? Yes!
Data best in stored arrays.

8(108)

Jj Information Coding / Computer Graphics, ISY, LiTH
e

“
%
Mg o W2

SIMT - Single Instruction, Multiple Thread
A variant of SIMD.
Parallelism expressed as threads.
A programming model, but also demands that the hardware can
handle threads very fast.
Threads dependent - executed in a SIMD processor!

So, why does SIMT fit a graphics processor so well?

9(108)

Information Coding / Computer Graphics, ISY, LiTH

Data Oriented Programming

DOP optimizes for performance.
Data structures selected to fit the computations,
instead of the programmer!

Optimize for the end user instead for the programmer!

Popular in the game industry - why not elsewhere?

10(108)

d Information Coding / Computer Graphics, ISY, LiTH
4

I‘|
4
e o

Major past and current success stories:
Crypto currency
Bitcoins, Litecoins and others.
Deep learning

Learning systems based on very large neural
networks.

11(108)

1?} Information Coding / Computer Graphics, ISY, LiTH

Why did GPUs get so much performance?

Early problem with large amounts of data. (Complex geometry,
millions of output pixels.)

Graphics pipeline designed for parallelism!
Hiding memory latency by parallelism

Volume. 3D graphics boards central component in game
industry. Everybody wants one!

New games need new impressive features. Many important
advancements started as game features.

12(108)

Information Coding / Computer Graphics, ISY, LiTH

Must process many pixels fast! C \ <

Early GPUs could draw textured, shaded triangles much faster

than the CPU. j

13(108)

‘-d&: Information Coding / Computer Graphics, ISY, LiTH
e

Must process many pixels fast! ﬂ

Early GPUs could draw textured, shaded triangles much faster
than the CPU.

Must do matrix multiplication and divisions fast. Q

Next generation could transform vertices and normalize
vectors.

14(108)

g Information Coding / Computer Graphics, ISY, LiTH
e

Must process many pixels fast! ﬂ

Early GPUs could draw textured, shaded triangles much faster
than the CPU.

Must do matrix multiplication and divisions fast. Q

Next generation could transform vertices and normalize
vectors.

Must have programmable parts.

This was added to make Phong shading and bump mapping.

15(108)

g : Information Coding / Computer Graphics, ISY, LiTH
P/

Must process many pixels fast! Qx

Early GPUs could draw textured, shaded triangles much faster
than the CPU.

Must do matrix multiplication and divisions fast. Q

Next generation could transform vertices and normalize
vectors.

Must have programmable parts.
This was added to make Phong shading and bump mapping.
Must work in floating-point!

This was for light effects, HDR.

16(108)

Information Coding / Computer Graphics, ISY, LiTH

A look at the GPU architecture

Over to the timeline, big changes:
Pre-G80: Separate vertex and fragment processors.
Hard-wired for graphics. Load balance problems.

G80: Unified architecture. More suited for GPGPU. Higher
performance due to better load balancing.

GT100: Much more double precision
TU102: Tensor & RT cores

(Similar track for AMD)

17(108)

Information Coding / Computer Graphics, ISY, LiTH

7800: High-end GPU before G80

Host / FW I VTF

;j ﬂ"j;g;ﬂ ﬂ‘J #J Vertex processors

Cull / Chp / Setup

Shader Instructwn Dispatch J
>
a8 BE
"g -s Fragment
Processors

Fragment Crossbar

EEEEEEEEEEE §3 | ‘operations
Memmmmmow

Partition Partition Partition

DRAM(s) DRAM(s) DRAM(s)

18(108)

Information Coding / Computer Graphics, ISY, LiTH

80

G

Setup / Rstr/ ZCull

Input Assembler

Hardware formerly
between vertex and
fragment processors

Pixel Thread Issue

o
=
@
@
©
o
e
P
=
E
[}
o
(&)

Vix Thread Issue

Unified
processors!

108$220.1d peasy)

E_H:H_D
| | -
ECICI0]

2000
&EDDD

|
BECIC10]

Framebuffer
operations

19(108)

Information Coding / Computer Graphics, ISY, LiTH

Vertex

e I

complex
geometry)

Fragment

problem (e.g.

advanced
rendering)

G80: A question of load balance!

Separate vertex and fragment Unified processors
processors
Vertex Shader Unified Shader

Frag_gment Shader

Vertex Shader

Fragment Shader

Unified Shader

20(108)

« COMNG
4
e
§ (2
~ -
. -
.
- .
“
N .

Information Coding / Computer Graphics, ISY, LiTH

G80 processor hierarchy

' Texture Processor Cluster

TEX [———

Streaming Multiprocessor

Instruction Fetch/Dispatch

Shared

SFU

[

SFU

8 top-level groups
of TPCs

SM = Streaming
Multiprocessor

SM is a group of 8
SIMD cores

21(108)

o b
- .
o ‘%
v -
. -
.
o -
‘%: .

Information Coding / Computer Graphics, ISY, LiTH

The vital part: The SM

SM: 8 cores

Streaming Multiprocessor

but also

Instruction Fetch/Dispatch

SFU: Special functions unit

Shared Memory

Shared memory

SFU Register memory in each core

Instruction handling/thread
management

= |

22(108)

Information Coding / Computer Graphics, ISY, LiTH

2010: Fermi (GT100)

ey

16 SMs

vvvvv

vvvvv
'''''

444444

......

oooooo
nnnnnn
aaaaaa
.....

44444

32 cores per SM

| Messatne B bt toos B Avassatone B Aonsct g N Pvasea ogee B} vasus tagae i Avmssasitn [SuvasusCane |

Important change:

Much area for L2
cache!

D I s D || I e S

Tex

Tex
= = | '8 C £ &l
PolyMorpd Engine
|Atirercte satep | | Serwam Ouepurt |

23(108)

o COMNG .,
5
S 4
~J N ’.‘
. -
. L
’l
|
4,

i T

Information Coding / Computer Graphics, ISY, LiTH

More on Fermi

4x performance for double (64-bit FP)
More silicon space for cache! More like a CPU.
CGPU = Computing Graphics Processing Unit

=> NVidia aims for GPGPU with Fermi!

24(108)

Information Coding / Computer Graphics, ISY, LiTH

2018: Turing

Big change towards specialized parts
- Tensor cores
* RT cores
* Focus on raytracing and learning

Still new - Is it a big step?

25(108)

R\
| % Information Coding / Computer Graphics, ISY, LiTH
Yy,

Turing vs G80

G80 = unification, only one kind
of cores = better use of hardware

Turing = separation, three kinds
of cores... meaning what?

Contradiction! Will this last?

~ RTCORE -

26(108)

Information Coding / Computer Graphics, ISY, LiTH

Warp Scheduler + Dispatch (32 thread/clk)

Register File (16,384 x 32-bit)

TENSOR

INT32 = FP32 e

Warp Scheduler + Dispatch (32 thread/clk)

Register File (16,384 x 32-bit)

TENSOR
CORES

INT32 FP32

Warp Scheduler + Dispatch (32 thread/clk)

Register File (16,384 x 32-bit)

TENSOR

INT32 ~ FP32 e

Warp Scheduler + Dispatch (32 thread/clk)

Register File (16,384 x 32-bit)

TENSOR

INT32 FP32 CORES

General purpose hardware

Special purpose hardware

Questionable usability for
general purpose computations

27(108)

1?} Information Coding / Computer Graphics, ISY, LiTH

GPU hardware now in three parts
- General purpose
* Real time ray-tracing
* Deep learning

General pupose first, then a look into the others

28(108)

d Information Coding / Computer Graphics, ISY, LiTH
4

"|
4,
g o

Turing GPUs

The latest and hottest - and the biggest change since
G80!

* RT cores
- Tensor cores
- Cooperative groups
- Modified thread model

29(108)

Memory Controller

8
3
1|
[
(8]
2
S
E
3
=

Memory Controller

Memory Controller

NVLink

Figure 4.

PCI Express 3.0 Host Interface

4 .

4

NVLink NVLink NVLink

Volta GV100 Full GPU with 84 SM Units

™
NVLink

3
NVLink

Jajjo3u0) Liowapy J91103u0) Aioway J9jj08u0) Lowa

J9jj03u0) owaw

6 groups with
14 SMs in each
= 84 SMs

30(108)

Information Coding / Computer Graphics, ISY, LiTH

Multiple levels

Each SM = 4 different kind of computing cores

LO Instruction Cache
w-mzc'm;chlk) w-rpL::::::::zxdlclk) Warp Scheduler (32 thread/clk)

Dispatch Unit (32 thread/clk) Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit) DispatCh U nit (32 th readlc' k)

FP64 INT FP32 FP32 FP64 INT FP32 FP32

FP64 | INT FP32 FP32 FPG4 INT FP32 FP32 Register File (1 6,384 X 32'b|t)

FP64 INT FP32 FP32 FP64 INT FP32 FP32

FP64 INT FP32 FP32 FP64 INT FP32 FP32

TENSOR TENSOR TENSOR TENSOR p—
FP64 INT FRfES CORE CORE FP64 INT FRMfES CORE CORE FP64 INT INT FP32 FP32 6 4 - P 3 2 C O re S
FP64 INT FP32 FP32 FP64 FP32 FP32
FP64 FP32 FP32 FP64 FP32 FP32
FP64 INT INT FP32 FP32 64 INT32 cores
FP64 FP32 FP32 FP64 FP32 FP32
lél;/ Ls?rl pe LSI.?rI Iél:'/ LSDT/ I;l.)r/ SFU LD/ LD/ LD/ LD/ LD/ LD/

B e FP64 INT INT -
— — FP32 FP32 32 FP64 cores
P —— ——
Disp () () FP64 INT INT FP32 FP32 TENSOR TENSOR 8 Tensor Cores

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit) CORE CORE
FP64 INT FP32 FP32 FP64 INT INT FP32 FP32 F P64 I NT I NT FP32 FP32

FP64 INT FP32 FP32 FP64 INT FP32 FP32

FP64 INT FP32 FP32 FP64 INT FP32 FP32 FP64 |NT |NT FP32 FP32

.
=N FP3ZFP32 1ENSOR TENSOR e FP2FP32 1ENSOR TENSOR ” l I g rou pS

CORE CORE CORE CORE
FP64 INT INT FP32 FP32

FP64 INT FP32 FP32 FP64 INT FP32 FP32
FP64 INT FP32 FP32 FP64 INT FP32 FP32

FP64 INT FP32 FP32 FP64 INT FP32 FP32
FP64 INT FP32 FP32 FP64 INT FP32 FP32 F P64 INT INT FP32 FP32

LD/ LD/ LD/ L LD/ LD/ LD/ LD/ SFU LD/ LD/ LD/ LD/ LD/ LD/ LD/
ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST

LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/
S ST ST ST ST ST ST ST ST

Tex Tex

31(108)

Information

Coding / Computer Graphics, ISY, LiTH

Warp Scheduler + Dispatch (32 thread/clk) Warp Scheduler + Dispatch (32 thread/clk)

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

TENSOR
CORES

TENSOR

INT32 FP32 CORES

INT32 FP32

LD/ST LD/ST LD/ST LD/ST SFU LD/ST LDIST LD/IST LD/IST SFU

Warp Scheduler + Dispatch (32 thread/clk) Warp Scheduler + Dispatch (32 thread/clk)

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

TENSOR
CORES

TENSOR

INT32 FP32 CORES

INT32 FP32

LD/IST LDIST LD/ST LDIST SFU LD/ST LD/IST LDIST

96KB L1 Data Cache / Shared Memory

Same as above plus RT
core

Note that all new hardware is per SM!

32(108)

d Information Coding / Computer Graphics, ISY, LiTH
"l‘% \,/

RT cores = Raytracing cores
Tensor cores

Special-purpose hardware in Turing GPUs

33(108)

- Lomm -

Information Coding / Computer Graphics, ISY, LiTH

RT cores

Accelerates ray-box and ray-triangle caclulations

Turing SM Shaders RT Core Box
- Intersection
Evaluators
Fetch box
v Decode box
Intersection test
Sub-box or tris?
Triangle
Intersection
. E Evaluators
R Ray/triangle
| intersection test }
Return hit
- RTCORE -

34(108)

!!!!!!

Information Coding / Computer Graphics, ISY, LiTH

Tensor cores

Accelerates matrix multiply and accumulate

35(108)

Information Coding / Computer Graphics, ISY, LiTH

4x4 matrix multiplication

Matrix multiplication in low precision

D =

2 Cis }

FP16 or FP32 FP16 or FP32

Build bigger multiplications with 4x4 as
building block.

36(108)

“a,

. COM
A3
o
o t
g =
. -
.
o 4
“
N .

Information Coding / Computer Graphics, ISY, LiTH

Low precision for faster calculation

FP16
storage/input

FP16 in, FP32 out

Sum with
Full precision FP32 Convert to
product accumulator FP32 result
more products
| 4

’-

—@®
 E——

!
=3

37(108)

d Information Coding / Computer Graphics, ISY, LiTH
o, P

Using tensor cores
"Inside" CUDA; New subset of CUDA API.

Also used by several libraries.

template<typename Use, int m, int n, int k, typename T, typename Layout=void> class fragment;

void load_matrix_sync(fragment<...> &a, const T* mptr, unsigned Idm);

void load_matrix_sync(fragment<...> &a, const T* mptr, unsigned Idm, layout_t layout);
void store_matrix_sync(T* mptr, const fragment<...> &a, unsigned ldm, layout_t layout);
void fill_fragment(fragment<...> &a, const T& v);

void mma_sync(fragment<...> &d, const fragment<...> &a, const fragment<...> &b, const
fragment<...> &c, bool satf=false);

38(108)

Information Coding / Computer Graphics, ISY, LiTH

Cooperative groups

Cooperative groups allow synchronization over parts
of a block/SM instead of the whole block.

Gives more flexible synchronization, allows more
threads to keep working while others wait for a
synchronization.

39(108)

1?} Information Coding / Computer Graphics, ISY, LiTH

“
40”“. "~

Modified thread model

Thread model: Warps are controlled by an active
mask to map out threads depending on branching
("if" statements)

Turing modifies this by interleaving branch
execution.

40(108)

Information Coding / Computer Graphics, ISY, LiTH

Old model: One branch is executed at a time

if (threadIdx.x < 4) {

A; v
B; §

} else { c
X; O
(- —

}

Z;

Time

New model: Branch execution is interleaved

X; Y; Z;

if (threadidx.x < 4) {
Aj
B

} else {
X; -
Y;

} B; Z;

Z;

» Time

41(108)

12} Information Coding / Computer Graphics, ISY, LiTH

Conclusions on Turing:

- Extremely high parallelism: 84 SMs with multiple
warp capability and numerous cores in each

» Tensor cores for accelerating matrix mult +
accumulate for deep learning

 RT cores

- Additional new flexibility

42(108)

. COMNG _
< “4,

s 0 *..
. o -
. -

‘|" vj

" o

Information Coding / Computer Graphics, ISY, LiTH

Related parallelization efforts
IBM Cell (next generation canceled!)
Intel Larabee (”put on ice” - dead)

GPUs are the clear winners so far!

43(108)

Information Coding / Computer Graphics, ISY, LiTH

But never count out Intel...

how about the more recent Xeon Phi?
(Follow-up on Larabee)

44(108)

Information Coding / Computer Graphics, ISY, LiTH

How does it compare?

Xeon E5-2670 Xeon Phi 5110P Tesla K20X
Cores 8 60 14 SMX
Logical Cores 16 (HT) 240 (HT) 2,688 CUDA cores
Frequency 2.60GHz 1.053GHz 735MHz
GFLOPs (double) 333 1,010 1,317
SIMD width 256 Bits 512 Bits N/A
Memory ~16-128GB 8GB 6GB
Memory B/W 51.2GB/s 320GB/s 250GB/s

Threading software software hardware

45(108)

Information Coding / Computer Graphics, ISY, LiTH

Test: Does it compete?

Paths Sequential Sandy-Bridge cpul:? Xeon Phil:? Tesla GPU?

128K 13,062ms 694ms 603ms 146ms
256K 26,106ms 1,399ms 795ms 280ms
512K 52,223ms 2,771ms 1,200ms 543ms

1 The Sandy-Bridge and Phi implementations make use of SIMD vector intrinsics. -— @

2 The MRG32K3a random generator from the cuRAND library (GPU) and MKL library (Sandy- important
Bridge/Phi) were used.

The GPU still wins! (Even over other SIMDI)

46(108)

d Information Coding / Computer Graphics, ISY, LiTH
c,%’r vdj

Conclusion comparison
SB - Xeon Phi - GPU

Even the CPU performed pretty well.
All use SIMD (at least partially) for best performance!

All require you to code in parallel!

47(108)

g Information Coding / Computer Graphics, ISY, LiTH
=

Dedicated hardware for deep learning

There is work on ASICs for deep learning. Most
notable: Tensor processing unit (TPU)?
Proprietary, in-house chips. Inflexible.

For flexible, programmable, general-pupose
applications, the GPU holds the lead.

48(108)

Information Coding / Computer Graphics, ISY, LiTH

And this brought us to:
GPGPU/GPU Computing
General Purpose computation on Graphics Processing Units
Mark Harris, 2002
Perform demanding calculations on the GPU instead of the CPU!
At first, appeared to be a wild idea, but is now a very serious

technology! Results were highly varied in the early years, but the
GPU advantage has grown bigger and bigger.

49(108)

Information Coding / Computer Graphics, ISY, LiTH

GPGPU approaches
- Using fixed pipeline graphics
- Shader programs
- CUDA
- OpenCL

- Compute shaders

50(108)

~—d"‘; Information Coding / Computer Graphics, ISY, LiTH
P/

Fixed pipeline GPGPU

Reformulate a problem to something that can be done by
standard graphics operations.

Limited success 1999/2000. Not of any practical interest!

Example: Jorgen Ahlberg, face tracking

51(108)

g : Information Coding / Computer Graphics, ISY, LiTH
4

Fragment (pixel) shader based GPGPU

Portable! All GPUs can use shaders, no need for extra software,
run using standard software/drivers.

All modern shader languages (GLSL, Cg, HLSL) are similar and
easy to program in.

Requires a re-mapping of data to textures.

Very good results already in 2005: 8x speedups overall reported!

52(108)

Information Coding / Computer Graphics, ISY, LiTH

CUDA-based GPGPU

Only works on NVidia hardware.
Requires extra software - which isn’t very elegant.
Nice integration of CPU and GPU code in the same program.

Excellent results! 100x speedups are common - before
optimizing! Even low-end GPUs give significant boosts.

53(108)

Information Coding / Computer Graphics, ISY, LiTH

OpenCL-based GPGPU

Works on various hardware - not only GPUs.
Developed by Khronos Group, pushed by Apple.

Harder to get started, software looks pretty much like
programming shaders.

54(108)

Information Coding / Computer Graphics, ISY, LiTH

OpenGL Compute shaders
Built into OpenGL
Similar to OpenCL

Good portability

Direct Compute Compute shaders
Built into DirectX

Similar to OpenCL
MS only

55(108)

g Information Coding / Computer Graphics, ISY, LiTH
4

Vulkan Metal
The "new OpenGL", arrived 2016. Apples "Vulkan".
"Bleeding edge". Apple has deprecated everything

else -including OpenCL
Future main generic GPU platform for
both graphics and computing? "Metal Performance Shaders".

Same compute shaders as OpenGL. Apple only.

56(108)

..........

"d’*‘: Information Coding / Computer Graphics, ISY, LiTH

Use the source, Luke!
Four trivial examples:
Hello World! for CUDA

Hello World! for OpenCL
Hello World for GLSL

Hello World for Compute Shaders

57(108)

lllllllllll

Information Coding / Computer Graphics, ISY, LiTH

Introduction to CUDA

58(108)

. COMNG
‘_.‘ '.4'
$ w’
v -
. - -
. -
‘|.' v‘}
oy

Information Coding / Computer Graphics, ISY, LiTH

CUDA = Compute Unified
Device Architecture

Developed by NVidia

Only available on NVidia boards, G80 or
better GPU architecture

Designed to hide the graphics heritage
and add control and flexibility

59(108)

Information Coding / Computer Graphics, ISY, LiTH

Computing model:
1. Upload data to GPU
2. Execute kernel
3. Download result

Similar to shader-based solutions and
OpenCL

60(108)

Information Coding / Computer Graphics, ISY, LiTH

Integrated source

Source of host and kernel code in the same
source file!

Major difference to shaders and OpenCL.

Kernel code identified by special modifiers.

61(108)

- OIMNg, .,
\

3 4

s -

- -
. -
. -

’l

|
«

Information Coding / Computer Graphics, ISY, LiTH

About CUDA

Architecture and C extension

Spawn a large number of threads, to be ran virtually in
parallel

Just like in graphics! Fragments/computations not
quite executed In parallel.

A bunch at a time - a warp.

Looks much more like an ordinary C program! No more
“data stored as pixels” - just arrays!

62(108)

Information Coding / Computer Graphics, ISY, LiTH

Simple CUDA example

A working, compilable example

#include <stdio.h>

const int N = 16;
const int blocksize = 16;

__global__
void simple(float *c)
{
c[threadldx.x] = threadldx.x;

}

int main()

{

int 1i;

float *c = new float[N];

float *cd;

const int size = N*sizeof(float);

cudaMalloc((void**)&cd, size);
dim3 dimBlock(blocksize, 1);
dim3 dimGrid(1, 1);
simple<<<dimGrid, dimBlock>>>(cd);

cudaMemcpy(¢, cd, size, cudaMemcpyDeviceToHost);

cudaFree(cd);

for (1 =0; 1 < N; 1++)
printf("%f ", c[1]);
printf("\n");

delete[] c;
printf("done\n");
return EXIT_SUCCESS;

63(108)

Information Coding / Computer Graphics, ISY, LiTH

Simple CUDA example

A working, compilable example

#include <stdio.h>

const int N = 16;
const int blocksize = 16;

__g'l_obq'l___ Kernel
volid simple(float *c)
{
c[threadldx.x] = threadIdx.x;
} thread identifier
int main(Q)
{
int 1;
float *c = new float[N];
float *cd;

const int size = N*sizeof(float);

Allocate GPU memory
cudaMalloc((void**)&cd, size);
dim3 dimBlock(blocksize, 1);
dim3 dimGridC 1, 1); 1 block, 16 threads
simple<<<dimGrid, dimBlock>>>(cd); Call kernel
cudaMemcpy(¢, cd, size, cudaMemcpyDeviceToHost);

cudaFree(cd); Read back data

for (1 = 0; 1 < N; 1++)
printf("%f ", c[1]);
printf("\n");

delete[] c;
printf("done\n");
return EXIT_SUCCESS;

64(108)

Information Coding / Computer Graphics, ISY, LiTH

Modifiers for code

Three modifiers are provided to specify how code
should be used:

__global__ executes on the GPU, invoked from the
CPU. This is the entry point of the kernel.

__device is local to the GPU

__host__is CPU code (superfluous).

CPU GPU
__device__ myDeviceFunc(()
__host__ myHostFunc() /
\
— » __global__ myGlobalFunc(()

65(108)

Information Coding / Computer Graphics, ISY, LiTH

Memory management

cudaMalloc(ptr, datasize)
cudaFree(ptr)

Similar to CPU memory management, but done by the
CPU to allocate on the GPU

cudaMemCpy(dest, src, datasize, arg)

arg = cudaMemcpyDeviceToHost
or cudaMemcpyHostToDevice

66(108)

Information Coding / Computer Graphics, ISY, LiTH

Kernel execution

simple<<<griddim, blockdim>>>(...)

grid = blocks, block = threads
Built-in variables for kernel:

threadldx and blockldx
blockDim and gridDim

(Note that no prefix is used, like GLSL does.)

67(108)

Information Coding / Computer Graphics, ISY, LiTH

Compiling Cuda
nvcce
nvcce is nvidia’s tool, /usr/local/cuda/bin/nvcc
Source files suffixed .cu
Command-line for the simple example:
nhvcc simple.cu -o simple

(Command-line options exist for libraries etc)

68(108)

Information Coding / Computer Graphics, ISY, LiTH

Compiling Cuda for larger applications
nvcc and gcc in co-operation
nvcc for .cu files
gcc for .c/.cpp etc
Mixing languages possible.
Final linking must include C++ runtime libs.

Example: One C file, one CU file

69(108)

Information Coding / Computer Graphics, ISY, LiTH

Example of multi-unit compilation
Source files: cudademokernel.cu and cudademo.c
nvcc cudademokernel.cu -o cudademokernel.o -c

gcc -c cudademo.c -o cudademo.o -I/usr/local/cuda/include

g++ cudademo.o cudademokernel.o -o cudademo -L/usr/local/
cuda/l11ib -lcuda -lcudart -1m

Link with g++ to include C++ runtime

70(108)

...........

"d'&: Information Coding / Computer Graphics, ISY, LiTH

CUDA compilation
C/CUDA program .
code .cu . behind the scene
nvce .| CPU binary
PTX code

. | Target binary
PTX to target code

71(108)

Information Coding / Computer Graphics, ISY, LiTH

Executing a Cuda program
Must set environment variable to find Cuda runtime.
export DYLD_LIBRARY_PATH=/usr/local/cuda/1ib:$DYLD_LIBRARY_PATH
Then run as usual:

Jsimple

A problem when executing without a shell!

Launch with execve()

72(108)

QQQQQQQ

Information Coding / Computer Graphics, ISY, LiTH

Computing with CUDA

Organization and access

Blocks, threads...

73(108)

\\\\\\\\\

Information Coding / Computer Graphics, ISY, LiTH

Warps

A warp is the minimum number of data items/threads
that will actually be processed in parallel by a CUDA
capable device.

We usually don’t care about warps but rather discuss
threads and blocks.

74(108)

d Information Coding / Computer Graphics, ISY, LiTH
44

Processing organization

1 warp = 32 threads
1 kernel - 1 grid

1 grid - many blocks
1 block - 1 SM

1 block - many threads
Use many threads and many blocks! > 200 blocks

recommended.

Thread # multiple of 32

75(108)

!!!!!!

Information Coding / Computer Graphics, ISY, LiTH

Distributing computing over threads
and blocks

Hierarcical model

Grid

noooooononliooooooonnl oooooooool looooooonnnl | [8ok

00000000001 {0000000000 000000000l (0000000000 | | Fresses freese o resssae]resas
nooooooooo! looooooonnl oooooooool looooooonanl | | [e e e
nao0oooo00l{ooooooonaa pooooooondl oonnnnndl | | e e e s

BlockDim.x * blockDim.y threads

76(108)

iiiiiiiiiii

]j: Information Coding / Computer Graphics, ISY, LiTH

Indexing data with thread/block IDs

Calculate index by blockldx, blockDim, threadldx

Another simple example, calculate square of every
element, device part:

// Kernel that executes on the CUDA device
__global__ void square_array(float *a, int N)

{
int 1dx = blockIdx.x * blockDim.x + threadIdx.x;

if (idx<N) a[idx] = a[idx] * a[idx];
}

77(108)

Information Coding / Computer Graphics, ISY, LiTH

Host part of square example

Set block size and grid size

// main routine that executes on the host
int main(int argc, char *argv[])
{
float *a_h, *a_d; // Pointer to host and device arrays
const int N = 10; // Number of elements in arrays
size_t size = N * sizeof(float);
a_h = (float *)malloc(size);
cudaMalloc((void **) &a_d, size); // Allocate array on device
// Initialize host array and copy it to CUDA device
for (int 1=0; 1<N; 1++) a_h[1] = (float)i;

cudaMemcpy(a_d, a_h, size, cudaMemcpyHostToDevice);
// Do calculation on device:
4;

int block_size =
int n_blocks = N/block_size + (N%block_size == 0 ? 0:1);
square_array <<< n_blocks, block_size >>> (a_d, N);
// Retrieve result from device and store it in host array
cudaMemcpy(a_h, a_d, sizeof(float)*N, cudaMemcpyDeviceToHost);
// Print results and cleanup
for (int 1=0; 1<N; 1++) printf("%d %f\n", 1, a_h[1]);
free(a_h); cudaFree(a_d);
by

78(108)

..........

j;) Information Coding / Computer Graphics, ISY, LiTH

Porting to CUDA:
Mandelbrot example

Porting a big computation to the GPU
 Bigger problem, addressing calculation must be 2D
- Simple OpenGL output

® 0 6 Mandelbrot explorer (GPU, CUDA)

Information Coding / Computer Graphics, ISY, LiTH

void computeFractal(unsigned char *ptr)

// map from x, y to pixel position
for (int x = 0; x < glmageWidth; x++)
for (int y = 0; y < glmageHeight; y++)
{

int offset = x + y * gimageWidth;

// now calculate the value at that position
int fractalValue = mandelbrot(x, y);

// Colorize it

int red = 255 * fractalValue/maxiter;

if (red > 255) red = 255 - red;

int green = 255 * fractalValue*4/maxiter;
if (green > 255) green = 255 - green;

int blue = 255 * fractalValue*20/maxiter;
if (blue > 255) blue = 255 - blue;

ptr[offset*4 + O] = red;
ptr[offset*4 + 1] = green;
ptr[offset*4 + 2] = blue;

ptr[offset*4 + 3] = 255;
}

CPU version, for loops

80(108)

Information Coding / Computer Graphics, ISY, LiTH

CPU version, multi-threaded?
- Maybe 8 or 16 threads

- Load balancing critical, the work must be distributed
among the threads. Non-trivial problem!

Speedup about 4 times.

81(108)

j: y Information Coding / Computer Graphics, ISY, LiTH

__global__ void computeFractal(unsigned char *ptr, float scale, float offsetx, float offsety, int imageWidth, int imageHeight, int maxiter)

// map from blockldx to pixel position

int x = blockldx.x * blockDim.x + threadldx.x;
int y = blockldx.y * blockDim.y + threadldx.y;
int offset = x + y * gridDim.x * blockDim.x;

// now calculate the value at that position

MYFLOAT jx = scale * (MYFLOAT)(imageWidth/2 - x + offsetx/scale)/(imageWidth/2);
MYFLOAT jy = scale * (MYFLOAT)(imageHeight/2 - y + offsety/scale)/(imageWidth/2);
int fractalValue = mandelbrot(jx, jy, maxiter);

// Colorize it

int red = 255 * fractalValue/maxiter;
if (red > 255) red = 255 - red; -
int green = 255 * fractalValue*4/maxiter; G P U

if (green > 255) green = 255 - green; ve rs I O n

int blue = 255 * fractalValue*20/maxiter;

if (blue > 255) blue = 255 - blue;

* Replace for loops by threads
ptr{offset*4 + 0] = red,;
ptr[offset*4 + 1] = green;
ptrloffset*4 + 2] = blue;

 One thread per pixel!
ptr[offset*4 + 3] = 255;

82(108)

o COMNG
s (3
- 4
< -
N L %
. -
. L
-
!
R

Information Coding / Computer Graphics, ISY, LiTH

Mandelbrot conclusions

Many blocks, many treads in each block. Make sure
everything is in use.

Index by thread and block.
Exceptional speedup - trivially parallellizable problem!

Load balancing? No problem. Why?

83(108)

Information Coding / Computer Graphics, ISY, LiTH

Conclusion about indexing

Every thread does its own calculation for indexing
memory!

blockldx, blockDim, threadldx
1, 2 or 3 dimensions

Usually 2 dimensions

84(108)

‘-d’&: Information Coding / Computer Graphics, ISY, LiTH
e

"I
4,
A"\t; « WP

Let us talk about optimizations...

For most problems, the threads are not independent
and need to access much data!

85(108)

........

Information Coding / Computer Graphics, ISY, LiTH

Memory access

Vital for performance!
Memory types
Coalescing

Example of using shared memory

86(108)

Information Coding / Computer Graphics, ISY, LiTH

Memory types
Global
Shared
Constant (read only)
Texture cache (read only)
Local
Registers

Care about these when optimizing - not to begin with

87(108)

Information Coding / Computer Graphics, ISY, LiTH

Global memory
400-600 cycles latency!

Shared memory fast temporary storage
Coalesce memory access!
Continuous
Alighed on power of 2 boundary

Addressing follows thread numbering

Use shared memory for reorganizing data for
coalescing!

88(108)

Information Coding / Computer Graphics, ISY, LiTH

Using shared memory to reduce
number of global memory accesses

Read blocks of data to shared memory
Process
Write back as needed
Shared memory as "manual cache”

Example: Matrix multiplication

89(108)

Information Coding / Computer Graphics, ISY, LiTH

Matrix multiplication

To multiply two N*N matrices, every item will have to be accessed N times!

Naive implementation: 2N3 global memory accesses!

90(108)

...........

Matrix multiplication on CPU

Simple triple ”for” loop

void MatrixMultCPU(float *a, float *b, float *c, int theSize)
{

int sum, 1, j, k;

// For every destination element
for(1 = 0; 1 < theSize; 1++)
for(j = 0; j < theSize; j++)
{
sum = 0;
// Sum along a row in a and a column in b
for(k = 0; k < theSize; k++)
sum = sum + (a[i1*theSize + k]*b[k*theSize + j]);
c[i*theSize + j] = sum;
ks
ks

91(108)

‘d Information Coding / Computer Graphics, ISY, LiTH
n, P

...........

‘d Information Coding / Computer Graphics, ISY, LiTH

Naive GPU version

Replace outer loops by thread indices

__global__ void MatrixMultNaive(float *a, float *b, float *c, 1int
theSize)
{

int sum, 1, j, k;

1 = blockIdx.x * blockDim.x + threadIdx.x;
j = blockIdx.y * blockDim.y + threadIdx.y;

// For every destination element
sum = @;
// Sum along a row in a and a column in b
for(k = 0; k < theSize; k++)
sum = sum + (a[1*theSize + k]*b[k*theSize + j]);
c[i1*theSize + j] = sum;
1

92(108)

Information Coding / Computer Graphics, ISY, LiTH

Naive GPU version inefficient

Every thread makes 2N global memory
accesses!

Can be significantly reduced using shared
memory

93(108)

1?} Information Coding / Computer Graphics, ISY, LiTH

“)
i |

Optimized GPU version
Data split into one output patch per block.

Every element takes part in all the blocks in the same
row for A, column for B

For every such block
Every thread reads one element to shared memory

Then loop over the appropriate row and column
for the block

94(108)

Information Coding / Computer Graphics, ISY, LiTH

Contributing areas for patch

Let each block handle a part of the output (green right).
Green areas middle and left contibute to output.

Load the contributing areas into shared memory.

95(108)

lllllllll

"d'ﬁ: Information Coding / Computer Graphics, ISY, LiTH
1,‘% | \,/

Example: 16 blocks

96(108)

VvIDEO

s, ISY, LiTH

FILM BY RIGHARD DONNER

BLOGKS

1650vo

97(108)

o COMNG

: Information Coding / Computer Graphics, ISY, LiTH

Destination C

element for
thread \ﬂ

Destination
patch for thread

Every patch
corresponds
to one block,
computing the
output for that
patch!

i R AN

All patches on the same
row in A are needed to
produce the destination
block

ool ol o|%

And all patches in
the same column
of C

For every patch, we loop
over the part of one row
and column to perform

that part of the computation

For every patch, the thread reads one
element matching the destination element

What one thread reads is used by
everybody in the same row (A) or
column (B)!

98(108)

..........

‘g Information Coding / Computer Graphics, ISY, LiTH
Ny v/

Piece by piece, patch by patch

—
-

99(108)

: Information Coding / Computer Graphics, ISY, LiTH

Optimized GPU .
version

Loop over patches (1D)

Allocate shared memory
Copy one element to
shared memory

Loop over row/column in
patch, compute, accumulate
result for one element

Write result to global memory

__global

{
int 1, j, k, b,

__ void MatrixMultOptimized(float* A, float* B, float* C,
11, JJ;

Global index for thread
blockIdx.x * blockDim.x + threadIdx.x;
blockIdx.y * blockDim.y + threadIldx.y;

float sum = 0.0;
// for all source patches

for (b = 0; b < gridDim.x; b++)

{

__shared__ float As[BLOCKSIZE*BLOCKSIZE];
__shared__ float Bs[BLOCKSIZE*BLOCKSIZE];

// Index locked to patch
i1 = b * blockDim.x + threadIdx.x;
jj = b * blockDim.y + threadIdx.y;

As[threadIdx.y*blockDim.x + threadIdx.x]
Bs[threadIdx.y*blockDim.x + threadIdx.x]

A[ii*theSize + j];
B[i*theSize + jjl;

__syncthreads(); // Synchronize to make sure all data is loaded

// Loop, perform computations in patch
for (k = 0; k < blockDim.x; ++k)
sum += As[threadIdx.y*blockDim.x + k]
* Bs[k*blockDim.x + threadIdx.x];

__syncthreads(); // Synch so nobody starts next pass prematurely
by

C[i*theSize + j] =
}

sum;

int theSize)

100(108)

d Information Coding / Computer Graphics, ISY, LiTH
P/

5-10 times faster? So what did | do?

- Decent number of threads and blocks
- Use shared memory for temporary storage
- All threads read ONE item per matrix, but use many!
- Synchronize

- Even more for CPU - compared to single-thread CPU :)

101(108)

Information Coding / Computer Graphics, ISY, LiTH

Modified computing model:
Upload data to global GPU memory
For a number of parts, do:
Upload partial data to shared memory
Process partial data
Write partial data to global memory

Download result to host

102(108)

12} Information Coding / Computer Graphics, ISY, LiTH

“
Yy W

Synchronization

As soon as you do something where one part of a
computation depends on a result from another thread,
you must synchronize!

__syncthreads()
Typical implementation:

* Read to shared memory
« __syncthreads()
* Process shared memory
- __synchthreads()
» Write result to global memory

103(108)

Information Coding / Computer Graphics, ISY, LiTH

Synchronization

Really wonderfully simple - everybody are doing
the same thing anyway!

Synchronization simply means "wait until
everybody are done with this part”

Deadlocks can still occur!

104(108)

Information Coding / Computer Graphics, ISY, LiTH

Limitation of synchronization

Synchronization can only be done within a block!
No synchronization between blocks!

Why is this a necessary limitation?

105(108)

Information Coding / Computer Graphics, ISY, LiTH

Limitation of synchronization

Synchronization can only be done within a block!
No synchronization between blocks!

Why is this a necessary limitation?

Because all blocks are not active at the same time!
Blocks are queued until an SM is free!

106(108)

Information Coding / Computer Graphics, ISY, LiTH

Limitation of synchronization

Synchronization can only be done within a block!
No synchronization between blocks!

Why is this a necessary limitation?

Because all blocks are not active at the same time!
Blocks are queued until an SM is free!

But | must synchronize globally!

Answer: Run multiple kernels! More on this later.

107(108)

Information Coding / Computer Graphics, ISY, LiTH

Summary:
- Make threads and blocks to make the hardware occupied
- Access data depending on thread/block number
- Memory accesses are expensive!
- Shared memory is fast
- Make threads within a block cooperate

- Synchronize

108(108)

