Analysis Module for Surveillance Cameras
User Manual

Klara Hellgren, klahe156@student.liu.se
Helena Kihlstrom, helki570@student.liu.se
Axel Nystrom, axeny846@student.liu.se
Denise Harnstrom, denha296@student.liu.se
Hanna Hamrell, hanha664@student.liu.se

October 2018

1 Introduction

This is the user manual for the Analysis module for surveillance cameras.

Section 2 gives an overview of the system and its modules. Section 3 describes the
system requirements and section 4 gives a step-by-step explanation on how to use the
system.

2 System overview

The Analysis module for surveillance cameras can, given a folder with video files, detect
and track persons in all videos. It can also segment the person objects into parts such
as coat, head, hair, left hand and pants etcetera. The results are saved as JSON objects.
There is also an option of re-identifying a specific person seen in a video frame, both
using the feature vectors from the tracking algorithm as well as an algorithm called
AlignedRelD. Finally, it is possible to visualize the detection, tracking, re-identification
and segmentation results.

2.1 The Main Module

The main module is from where detection, tracking and segmentation are run. From
here, it is also possible to visualize the detection. Flags determine which parts to run, as
well as from where to load and save data.

2.2 The Multivideo Module

The multivideo module is used to compare objects tracked in different cameras. It gen-
erates bounding box images for each tracked person and these images are then used to
compare people. The user specifies an original id and which camera this person was found
in, the multivideo module then compares this person to people in other videos.

2.2.1 Multivideo matching using deep-sort feature vectors

This is an alternative to the main multivideo module, that performs the multivideo
matching by re-using the feature vectors from the tracking with deep-sort. This module
runs much faster than the main one, but might be less accurate.

2.3 The Visualization Module

The visualization module visualize the tracking result. When running the visualization
module a video file will be saved in a folder specified by the user. The length of the
sequence can be change by adding a minimum and maximum frame number. If specific
ID:s are chosen the module will visualize the tracking result only for these ID:s. If no
ID:s are chosen the module will show the tracking result for all objects.

3 System Requirements

All necessary files are downloaded through the gitlab repository, except for one folder
used for the segmentation, and all packages necessary are found in the tsbb11l Anaconda
environment. Everything is explained in more detail in section 4 How to Use It. It is not
necessary to have CUDA, but recommended since it will make the system a great deal
faster. The code tested on Windows and Linux.

4 How to Use It

Below are step-by-step instructions you need to follow to get your system up and running.

4.1 Setting up the environment

1. In directory of your choice, clone gitlab repository by typing "git clone repository-
name".

2. Install the Anaconda prompt.

3. Use the environment.yml file in in the git repository to recreate our tsbb11 environ-
ment as described here: https://conda.io/docs/user-guide/tasks/manage-environments.html.
This will create an environment with all libraries and packages necessary to run the
code.

4. Activate your environment by writing "activate tsbb11" in the anaconda terminal
prompt.

5. To enable use of the segmentation, do the following: In the README.md under
the headline Pre-trained models, download the pre-trained PGN model from drive
here: https://github.com/Engineering-Course/ CIHP PGN. Create a folder called
"checkpoint’ in \external\cihp_pgn and put the model folder there.

6. Put your video files in a folder of your choice, preferably outside of the repository.

7. Run your system using some of the arguments listed below.

4.2 Running the main module

Below, all possible input arguments for the main module are explained and examples of
how to run it are shown. All arguments are optional except for the video dir argument.

video dir Path to directory of videos to be processed.

--detection output dir Path to directory of detection output, default is ’../ detec-
tion output’.

--detection output suffix Suffix of detection output, default is "txt’.
--min_frame Frame number to start at, default is 0.

--max_frame Frame number to end at, default is -1.

https://conda.io/docs/user-guide/tasks/manage-environments.html
https://github.com/Engineering-Course/CIHP_PGN

-c OR --classes Classes to detect, default is "person’.
-v Enables visualization of detections, default is False.

--cfg _file Yolov3 config file to use, default is ’external/pytorch_yolo3/cfg/yolov3.

9

cfg’.

--weight file Yolov3 network weights to use, default is 'external/pytorch_yolo3/
yolov3’.weights’.

--names_file List of classes that can be detected, default is 'external/pytorch_
yolo3/data/coco.names’

--tracking output dir Path to tracking output directory, default is ’../tracking_
output’.

-pgn To use segmentation using PGN, default is False.
--save pgn_res Save images resulting from PGN segmentation, default is False.

--pgn_output dir Path to PGN segmentation output directory, default is . . /segmentation_
output’.

Example of how to run detection, tracking and segmentation using a minimal number of
input arguments:

python main.py "C:\Users\name\path\to\folder\video_file_folder" -pgn

Example of how to run detection, tracking and segmentation in all videos from frame 0
to 42, visualizing detection and saving the tracking results in . ./tracking_output and
the segmentation results in . ./segmentation_output. It will work on Windows.

python main.py "C:\Users\name\project\video_file_folder" --min_frame=0
max_frame=42 -v --tracking_output_dir="..\tracking_ output" -pgn --save_pgn_res
--pgn_output_dir="..\segmentation_output"

Please note that all video file names must be unique!

4.3 Running the multivideo module

The multivideo module needs a pre-trained model for AlignedReID. This model can be
downloaded from here. Descriptions of the parameters and an example on how to run
the multivideo module can be seen below.

python -m multivideo -result_dir=’C:\Users\name\project\tracking_output\
data’ --origin_dir=HAB-P101 --id=166 --video_dir=’C:\Users\name\project\
videos’ --model_dir=’C:\Users\name\project\models\checkpoint_ep300.pth.
tar’ --rm_dir=False

This example call will work when Windows is used.

--result dir Directory where the results from the tracking is saved. This directory is
called data and is created when the main tracking is used.

4

https://github.com/michuanhaohao/AlignedReID

--origin _dir Name of the directory in which the original person you want to find in
other videos can be found. This directory should exist inside the directory called
‘data’.

--id Id of the person in origin dir which you want to find in other videos.
--video dir Directory where all the videos are stored.
--model dir Directory where the downloaded model is stored.

--rm__dir Removes the directories which are created by the multivideo matching if it
is set as True.

4.3.1 Multivideo matching using deep-sort feature vectors

Below, all input arguments are listed. Only the first three arguments are required. Note
that the default values of the three last optional arguments are fitted to the output of
the main module. If any changes have been made regarding the paths of these files, the
new paths will be required as input.

--id ID of desired person to search for in other sequences

--sequence Sequence where desired person appears

--num__candidates Number of candidates to search for in other sequences
--display Flag for whether or not to visualize the result

--output Path to desired output directory (where to save visualization video)
--parameter file Path to JSON-file with parameters used in tracking
--result file Path to JSON-file with paths to results from tracking

--tracking data dir Path to directory where tracking data is stored

An example of how to run the submodule on Windows using a minimal number of argu-
ments:

python multivideo\multivideo_deep_sort.py -id=70 -sequence=HAB-P202

An example of how to run the submodule on Windows using a maximal number of
arguments:

python multivideo\multivideo_deep_sort.py --id=70 -sequence=HAB-P202
--output=’.\multivideo_deep_sort_videos’ --num_candidates=5 --display=True
--parameter_file=’parameters.json’ --result_file=’results.json’
--tracking_data_dir=’..\tracking_output\data’

4.4 Running the visualization module

An description of the parameters used and an example of how to run the visualization
model is given below. In this example the tracks of objects 1,4 and 7 are shown in the
output video.

python -m visualization --video=’C:\Users\name\project\tracking_output\
data\video_name\video_name_cut.avi’ --file_path=’C:\Users\name\project\
tracking_output\data\video_name\video_name_track.txt’ --output_dir=’C:
\Users\name\project\tracking_output\data\video_name\’ --output_name=
'my_video’ --min_frames=10 - -max_frames=42 - -cut_video=’1’
--id=’1,4,7’ --show_track=’1’

--video Path to video.

--file_path Path tracking text file.

--output dir Direction where the output video will be saved.
--output name Output video name.

--min_frames Frame number to start at.

--max_frames Frame number to end at.

--cut_ video If visualizing the result using a cut video, default=False. If a cut video is
used the same min_frames and max_frames used for tracking must be added.

--id ID:s of desired objects.

--show track Visualizing the object track through the sequence.

When running the tracking module all tracking parameters will be saved in a JSON
file. This file can be used as an input to the visualization module. When using the
parameters file the user do not need to specify video, file path, min frames, max frames
and cut_video parameters.

python -m visualization --parameters_file=’C:\Users\name\project\tracking_

output\data\video_name\video_parameters. json’ --output_dir=’C:\Users\
name\project\tracking_output\data\video_name\’ --output_name=’my_video’
--id=’1,4,7’ --show_track=’1’

--parameters file Path to parameters file.

	Introduction
	System overview
	The Main Module
	The Multivideo Module
	Multivideo matching using deep-sort feature vectors

	The Visualization Module

	System Requirements
	How to Use It
	Setting up the environment
	Running the main module
	Running the multivideo module
	Multivideo matching using deep-sort feature vectors

	Running the visualization module

