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1 Introduction

This project is about delivering a program which utilizes the Fotonic G-series depth
camera to produce a 3D model of an indoor environment.

1.1 Problem description

When capturing point clouds, every single scan will produce a point cloud which will have
its own coordinate system, this system will differ from the global (reference) coordinate
system, based on the location and direction of the camera. The problem of finding a
transformation matrix which will transform all the point-clouds to the common global
coordinate system is called Point Cloud Registration, which is the problem that will be
dealt with in this work.

1.2 Project Overview

The goal of this project is to develop a program that can produce a 3D model of a
room from a sequence of Time-of-Flight data. The data should be collected using a
Fotonic G-series camera which produces depth images. The project is divided into three
main parts; point-cloud logging from sensor, registration and outlier filtering of the point
clouds. On top of this, a mesh of the resulting model should be used to visualize the
results. An overview of the system is described in further detail in subsection 4.4.

1.3 Client

The client for this project is Per-Erik Forssén, associate professor at the Computer
Vision Laboratory at the Department of Electrical Engineering at Linköping University,
in association with the company Fotonic.

2 Related Work

The depth map registration problem has been handled by several previous works. One
recent work is the Fast Global Registration [1] (FGR), that aims at creating a fast and
robust solution to the registration problem. This is done by estimating a rigid transfor-
mation from one point cloud to the other. Firstly by using two verification steps to find
the best correspondences in the data set and secondly by finding the transformation that
aligns these point clouds. Also a frequently used method is the Generalized Iterative
Closest Point [2], GICP, which aims to minimize the difference between two point clouds
by finding the closest matching points and estimating the transformation from them
and iterating until the solution has converged. Another work that has been taken into
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account is the Probabilistic Framework for Color-Based Point Set Registration [3], that
includes color features and Gaussian mixture models to solve the registration problem
globally.

3 Theoretical background

In the following section, a short introduction to the theoretical background of the meth-
ods used in the project will be presented.

3.1 Fast Point Feature Histograms

The Fast Point Feature Histogram, FPFH, is an optimized version of the Point Feature
Histogram, PFH, using a revised theoretical formulation to reduce computational times.
Here the FPFH will be presented, for further reading on the PFH see [4].

The Fast Point Feature Histogram at point p is calculated using an estimated surface
normal at the point and a set of neighboring k points. The advantage of the FPFH in
3D registration is its invariance to rigid transformations while being insensitive to point
cloud density and small amounts of noise [5]. The computation of FPFH is performed
as follows:

1. For every pair of points pi and pj in the set of neighbors Pk and the corresponding
normals ni and nj, compute the angular variations of the normals using

α = v · nj,

φ = (u · (pj − pi))/‖‖pj − pi‖‖,
θ = arctan(w · nj, u · nj).

(1)

Where u = ni, v = (pj − pi)× u and w = u× v.

2. For all sets of α, φ and θ a histogram called Simplified Point Feature Histogram,
SPFH, is created. By also taking all the neighbors’ SPFH values into account the
FPFH is calculated as:

FPFH(pi) = SPFH(pi) +
1

k

k∑
i=1

1

ωk
· SPFH(pk). (2)

Where the weight wk is chosen as the distance between the point pi and the point
pk. [5]
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3.2 Fast Global Registration

The implementation made by [1] uses the pairwise registration of Fast Global Regis-
tration that performs registration by sequentially adding several pairwise aligned point
clouds.

The algorithm takes the calculated FPFH features and point clouds corresponding to
each depth image, called P and Q, as input and estimates the transformation that
aligns Q to P. By performing two types of tests on the sets of correspondences between
the two clouds, some points are disregarded. This leads to increased inlier ratio and
reduced computational times. The first test is the reciprocity test that only chooses a
correspondence pair (p,q) if and only if FPFH(p) is the nearest neighbor to FPFH(q)
of the entire set of FPFH(P) and if FPFH(q) is the nearest neighbor to FPFH(p)
of the set of FPFH(Q). The second test is called the tuple test and is performed
by randomly picking three correspondence pairs (p1,q1),(p2,q2) and (p3,q3) and if
they fulfill the constraint in equation 3 they are said to be compatible and will be
used in the registration. For these points, the aligning transformation is optimized over
several iterations by minimizing the sum of the distances between the points p and the
transformed points Tq where T is the estimated rigid transformation. [1]

τ <
||pi − pj||
||qi − qj||

< 1/τ, ∀i 6= j. (3)

3.3 Iterative Closest Point Registration

To refine the transformation solution from the Fast Global Registration a few iterations
of Iterative Closest Point Registration, ICP, is used. In the project a version of ICP
called Generalized ICP, GICP, as described in [2] is used. A common way to describe
the ICP algorithm is:

1. Find the closest match in the target point cloud for every point in the source cloud

2. Estimate a transformation by using a point to point root mean square approach

3. Transform points

4. If not converged return to step 1 and iterate again

In the standard ICP-algorithm, the minimization step (estimating the transformation)
is done as

T ← argmin
T
{
∑
i

wi||T · bi − ai||2}

where T is the proposed transform, bi a point in the source cloud that correspond to the
point ai in the target cloud. In the Generalized ICP, a probabilistic model is attached
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to the minimization step yielding a new minimization modeled as

T ← argmin
T

∑
i

dT
′

i (CB
i + TCA

i T
′)−1dTi

where T is again the proposed transform, dT
′

i = bi−Tai and CX
i are covariance matrices

associated with the measured points. This is under the assumption that we have removed
all the correspondences with a distance which is larger than a threshold dmax. From the
above the standard ICP algorithm can be extracted by setting CB

i = I and CA
i = 0.

3.4 Multipath Interference

The camera used in the project is a Time of Flight (ToF) camera that measures an
infrared light pulse that travels to an object and then is reflected back to the camera.
Using this method for measuring distance opens up for a specific type of measuring
error known as multipath interference. The problem of multipath interference arises
when measuring concavities, for example when the camera is directed against a corner
between two walls as depicted in Figure 1. The camera is based on measuring the
reflection of an infrared pulse and since most surfaces are not perfect reflectors, some
light is partially scattered. Any scattered light that reflects back into the sensor will add
to measurement and thus depict the distance to a point as further away then it actually
is. This typically gives sharp corners a smoother more blob-like appearance as can be
seen in Figure 1.

Figure 1: Multipath interference occurs when indirectly reflected light is measured

3.5 Radial Distortion

Radial distortion is a type of optic distortion that originates from the use of a lens. It
introduces curvature where there should be none. This is clearly highlighted in Figure
2, which shows a set of orthogonal equispacial lines subject to barrel distortion.
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Figure 2: A radially distorted orthogonal grid

3.6 Reflectivity Characteristics

When capturing images there are mainly three factors that affect the amount of light
an object reflects that will be registered by the camera. Those factors are reflectivity
coefficients, angles of incidence and diffuse or direct reflections.

The reflectivity coefficient is a measurement of how much light an object reflects. The
reflectivity coefficient varies between different materials but is also different for different
wavelengths of light. Objects which appears light or dark to the human eye can behave
differently when observed in for example near infrared light which the Fotonic G-series
camera uses (around 850 nm).

Light scatters from a surface in different ways depending on the material. Materials
with a diffuse reflection are easier to capture with a time-of-flight camera than materials
with a direct reflection, for example a mirror. Also the angle of incident the light hits a
surface will matter when capturing images [6].

With this in mind, some scenes will be more difficult than others to reconstruct. For
example, in the furniture scene (Figure 6b) described later in this report, there is a green
wall which is not at all visible in the depth images.

4 Method

In this section, the pipeline in its entirety will be presented. It will contain all the before
mentioned methods in Section 3 as well as some other design choices made to solve the
registration problem.
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4.1 Voxel Grid Filtering

Downsampling of point clouds is performed using a voxel (volumetric pixel) grid filter.
The size of the voxels in the grid specifies the rate of downsampling, where a large voxel
is equivalent to a large downsampling and vice versa. The voxels are positioned side-by-
side in the point cloud and all points contained in the voxel are used to calculate the
centroid value, which is then used as the new estimated data point while all other points
are removed [7].

4.2 Removal of Image Noise

When capturing images there is always some sort of noise in the image. A specific kind
of noise, which appears in depth images captured with time-of-flight technology, is the
so called ’flying pixels’ at depth edges. These appear when a sensor captures reflecting
signals from edges of a target object in the scene. The reflected light in the sensor is
registered both from the edge of the object and from the background. These artifacts
result in errors created by interpolated values between the measured object and the
background. [8] Figure 3 shows an unfiltered image from one of the datasets used in this
project. The figure shows points of target objects and points which are noise.

Figure 3: Point cloud with targets and noise.

In this project points will be marked as outliers and removed using the PCL function
Statistical Outlier Removal in the following way:

1. The mean distance of the k closest neighbors to the query point is calculated.

2. Points with a distance larger than σ standard deviation of the mean distance to
the query point will be marked as outliers.
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4.3 Normal Estimation

Normal estimation for every point is performed using least-square plane fitting, where
the plane is represented by a point and a normal. To solve this the point x is calculated
as the centroid of the point set of k neighboring points as in equation (4), Pk, and the
normal ñ is estimated using Principal Component Analysis, by performing Eigenvalue
Decomposition on the point set covariance matrix in equation (5).

x =
1

k

k∑
i=1

pi (4)

C =
1

k

k∑
i=1

wk · (pi − x) · (pi − x)T (5)

If the eigenvalues λj fulfill the requirement of 0 ≤ λ0 ≤ λ1 ≤ λ2 the eigenvector cor-
responding to the smallest eigenvalue λ0 is an approximation of the normal ~n with
ambiguous orientation. The ambiguity can be solved by knowing the viewpoint of the
data set vp and to change the sign of all normals that do not fulfill equation (6). [9]

~ni · (vp − pi) > 0 (6)

4.4 System Design Overview

Figure 4 is an overview of the system design illustrated in a flowchart.

The data is generated using the Fotonic G-series camera and extracted using the Fo-
tonic API. Using the API the images are converted to point clouds and passed on to
the pre-processing block. To increase computation speeds of several methods the first
pre-processing action is the voxel grid filtering (Section 4.1) to reduce the number of
data points followed by the statistical outlier removal (Section 4.2) to remove redundant
points and further increase inlier rate. The final step of the pre-processing is normal
estimation using the method from Section 4.3 which then is used to generate the Fast
Point Feature Histograms mentioned in section 3.1.

The down-sampled points and corresponding point features for all pairs of point clouds
are passed on to the Fast Global Registration algorithm’(Section3.2) which gives a good
initial solution to the aligning transformation. By running the Generalized Iterative
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Read Data Preprocessing

Feature Detector Registration

Alignment Visualization

Figure 4: Overview of the system that shows how data is passed between modules.

Closest Point algorithm (Section 3.3) with the previous output translation as an initial
guess the solution is refined even further. All point clouds are aligned to the same
coordinate system using the estimated transformations. To finalize the process a second
down-sampling using the voxel grid filter is performed since there will be multiples of the
same points in some places when the point clouds are combined. To visualize the final
set of points a new set of corresponding surface normals are computed on the combined
point cloud. Based on these normals the mesh grid surfaces are estimated and rendered
together with the points.
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5 Results

In this section the results of the project will be presented. The results presented consist
of both quantitative and qualitative results in the form of tables and figures. Six different
scenes have been tested and the results of the tests are presented in Table 2. The images
in Figure 6 show the different scenes together with the name of which it will be referred
to in this text. In Table 2, the mean number of matching correspondences in FGR for
all image pairs are presented, meaning how many matches are found in each registration
of an image pair. The maximum number of allowed correspondences is set to 3000
to avoid a large decrease in registration speed. This means that a mean number of
correspondences close to 3000 is a good result. The second metric is the Root Mean
Square (RMS) error of the distances between corresponding points from all image pairs,
given in millimeters (mm). Here an RMS of 0 is the best possible result.

Data was gathered by taking a series of images of either 6 or 8 images with high overlap
at different indoor locations using the Fotonic G-series camera. For every data set two
tests were performed, firstly by using all available images and secondly by using every
second image in the sequence. In Table 1 all available parameters and chosen values
during testing are showed.

Table 1: Parameter table

Parameter Value

Outlier filtering: k 50

Outlier filtering: σ 1

Normal estimation: Radius 300

FPFH estimation: k 50

FGR: Max corr. 3000

Figure 5: An example of a registration from a sequence of 6 images. This example is
referred to as Kitchen 2 scene
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Table 2: Results of running the algorithm on all the data sets. Shows number of images
used, number of matches and Root mean square distance in milimetres.

Dataset No. images Matches RMS

Corridor 8 1243.28 429.79

Corridor 4 108 802.43

Furniture 6 393 632.21

Furniture 3 13.5 681.66

Kitchen 1 6 1998 346.22

Kitchen 1 3 474 625.91

Kitchen 2 6 2884.2 130.96

Kitchen 2 3 2347.5 184.63

Printer 6 2374.8 200.46

Printer 3 123 529.28

Door 6 714.6 303.15

Door 3 28.5 639.31
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(a) The corridor scene (b) The furniture scene

(c) The first kitchen scene (d) The second kitchen scene

(e) The printer scene (f) The door scene

Figure 6: Images from the different scenes which have been tested. The name of each
scene is written below each image.
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5.1 Mesh

From the final set of points, where all images are aligned, new surface normals are
estimated and used to generate a grid mesh of the scene to connect neighboring surfaces
instead of visualizing points. The mesh was generated through a greedy triangulation
algorithm. A resulting point cloud and corresponding grid mesh are shown in figure 7
and figure 8 respectively.

Figure 7: All point clouds in the same image after alignment of the Kitchen 2 scene

Figure 8: Generated mesh grid from the aligned point clouds of the Kitchen 2 scene
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6 Discussion

This section contains a discussion of the results, focusing on challenges, what could be
done to overcome them and some interesting points for future work.

6.1 Multipath Interference

The dataset captured and used in the project is often subject to multipath interference,
a type of error in the captured images, which is described in Section 3.4. An example is
given in Figure 9, which comes from the dataset Printer.

Even though multipath interference is common in room mapping since a room more
or less consists of sharp corners and there are some suggestions for working around this
presented in [10], it was found to be beyond the scope of this project to tackle this prob-
lem. It should, however, be mentioned that this would be an interesting continuation of
the project.

Figure 9: Example of multipath interference

6.2 Radial Distortion

The camera used for capturing the datasets had no easily accessible on-camera rectifica-
tion processing thus leaving the captured images subject to radial distortion (explained
in Section 3.5). Any effect on the captured point clouds reasonably effects the registra-
tion process, and thus radial distortion could explain the curvature of the straight back
wall as seen in Figure 10.

There exist solutions for rectifying the images which would reduce the effect of ra-
dial distortion but it was found to be outside the scope of this project to implement it.
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Figure 10: Radial distortion

It should nevertheless be mentioned that this would be an interesting addition to the
project.

6.3 Removal of Flying Pixels

As explained in Section 4.2, noise from edge artifacts should be removed before any
calculations are made on the image. This should, in theory, make the registration better
since all the ’fake points’ will be removed from the images resulting in better and correct
correspondences. In practice, we have noticed that this is not the case. When removing
all (most) outlier in the image the registration did not result in an accurate 3D point
cloud.

We have come to the conclusion that this is due to the correspondences which are found
when performing FGR. Figures 11-14 show two images of the same scene, from two dif-
ferent angles. Figure 11 and 12 illustrate unfiltered point clouds with the corresponding
points marked with white dots. Figure 13 and 14 illustrate the same images but with
filtered point clouds. We see that many of the corresponding points in the unfiltered
case are points on the human standing in the image and at the edge artifacts. When
filtering the images, removing the edge artifacts, the FGR algorithm does not find as
many correspondences as before, which makes the registration inaccurate.

To improve the registration we increased the acceptance level of the inliers. Figure 15
and 16 shows two filtered images with different acceptance level of the inliers. Figure 15
show the image of what we used to get the results presented in Section 5 and Figure 16
is the ’optimal’ amount of filtering but resulted in worse registration.

6.4 Difficult Environments

Other than the multipath interference and radial distortion complicating the registration,
some environments proved harder to process than others. The multipath interference
produced errors in the Door scene (Figure 6f) and similar scenes where many edges
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Figure 11: Two images of the same scene where the white points are the correspondences
between the different images. In these images the noise is not removed.

Figure 12: The same point clouds as in Figure 11 from a different angle. Here it is clear
that any of the correspondences are in fact the points which we define as outliers.

were present. Color can also be noted as an important factor where the camera had
more trouble detecting points on darker surfaces as in the Furniture and Kitchen 1 scene
(Figure 6c), that even though very similar to Kitchen 2 (Figure 6d) resulted in a lower
amount of matches and higher RMS error as seen in Table 2.

Another important factor that can be assumed to have a large impact based on the
results is the presence of objects. The Corridor scene (Figure 6a) that fulfills the parts
of having bright surfaces and few corners and edges still gives low matches and higher
error. This could be due to it not having the same amount of geometrical objects as
other scenes. In the results of the Kitchen 2 scene, it can be noted that it has the highest
number of matches and the lowest RMS out of all scenes in Table 2. This scene contains
several objects, bright colors and few corners, that all are factors that are noted to affect
the results.

For future work, some parameters on the camera could be more thoroughly tested to
reduce some impact of these effects e.g. shutter time and light intensity.
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Figure 13: This is the same images as in Figure 11 but here the cloud has been filtered
and all the outliers have been removed.

Figure 14: The same point clouds as in Figure 13 from a different angle.

Figure 15: The amount of outliers removed to get the results presented in Section 5.
The white points are the inliers and the red points represent the outliers.
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Figure 16: The amount of outliers removed in the case of ’optimal’ outlier removal. This
has not been used to produce the results in this report.

6.5 Overlapping Images

The experiments of using every second image in the data sets showed the same results
for all scenes, that less overlap between images results in fewer correspondence matches
and higher error. Fewer correspondences reduce computational times drastically but in
the current state the qualitative results from using less overlap are not good enough.
With further work the quality of registration could be increased by solving the prob-
lems of radial distortion and multipath interference in combination with the testing of
parameters mentioned in 6.4. With this improved quality, less overlap can be used to
increase speed.

7 Conclusion

The goal of this project has been to develop a program that can produce a 3D model of a
room from a sequence of Time-of-Flight data. This goal has been achieved but the result
varies depending on what scene is captured. By support from the discussion in Section
6 we have come to the conclusion that the amount of overlap between each image pair
and the physical environment of the scene are two factors that affect the result of the
registration. Regarding the overlap between the images in the sequence the conclusion
is that the more overlap there is between each image pair, the better the registration.
The physical environment is a somewhat more difficult factor. This includes corners,
objects, materials, lighting and color variations between scenes. These physical factors
will produce the artifacts and problems described in the discussion.

Furthermore, the overall quality of the registration could be improved by adding more
pre-processing of the data acquired by the camera to reduce the impact of radial dis-
tortion and multipath interference. This leaves the field wide open for future work and
further investigation.
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