
TECHICAL DOCUMENTATION
Version 0.1

How To Train Your Nao
CDIO HT 2015

Institute of Technology, Linköping University, ISY

Customer: Michael Felsberg, LiU (ISY)
Project supervisor: Fahad Khan, LiU (ISY)

Examiner: Michael Felsberg, LiU (ISY)

Participants of the group
Name Responsibility E-mail
Madeleine Stein Project Leader madst314@student.liu.se
Susanna Gladh Quality Assurance susgl621@student.liu.se

Anton Ågren Testing antag110@student.liu.se
Fredrik Kvillborn Design frekv134@student.liu.se
Elin Andersson Scrum Master elian253@student.liu.se
Richard Bondemark Documentation ricbo818@student.liu.se
Fredrik Löfgren Nao Expert frelo223@student.liu.se

Contents

1 Introduction 1

1.1 About this document . 1

1.2 Background . 1

1.3 System application . 1

1.4 Brief system description . 1

2 Hardware components 3

3 Software design 4

3.1 Software system overview . 4

3.2 Descriptors . 4

3.2.1 HOG and Color Names descriptor . 5

3.2.2 SURF descriptors . 5

3.2.3 Human descriptor . 5

3.3 Object learning . 5

3.3.1 Train HOG and Color Names models . 6

3.3.2 Train SURF-models . 6

3.4 Object detection . 7

3.5 Multiple object classification . 7

3.6 Follow mode . 7

3.7 Search mode . 8

4 Testing 9

5 Result 10

5.1 Detection of basic object . 10

5.2 Detection of normal object . 11

5.3 Detection of humans . 12

5.4 Multiple object classification . 12

5.5 Result overview . 13

6 Discussion 14

6.1 Basic descriptor . 14

6.2 SURF-descriptor . 15

6.3 Human detector and descriptor . 15

6.4 Following objects . 16

6.5 Searching for objects . 16

6.6 Kalman filter . 16

6.7 Multiple object classification . 16

6.8 Discarded software implementations . 16

Technical Documentation How To Train Your Nao 2015-12-21

Summary

This is the technical documentation document for the project How to Train Your Nao, carried out
during the course TSBB11 2015 at Linköping University. The objective was to implement an object
recognition algorithm to be used together with a Nao robot. The system applications include: object
detection and localization in a scene, the Nao robot being able to search for and follow a known
object, and the Nao robot being able to distinguish between multiple object. Two types of descriptors
are used to create the object models: HOG-features in combination with Color Names and SURF.
Both type of descriptors are trained using an SVM. In addition, OpenCV’s built-in pre-trained
people detector using HOG-descriptors are used to describe human objects. Two objects of different
complexity were used to evaluate the former two descriptors. The detector uses a sliding window to
detect the two objects and their location. The detection results were successful for both methods
as long as a small enough step size for the sliding window was used. The HOG and Color Names
descriptor had more successful results regarding detection of the object, but also had a larger number
of false detections compared to the SURF descriptor. The task to be able to follow and search for
an object was also successfully achieved.

LiTH
TSBB11

Page i
CVL

Technical Documentation How To Train Your Nao 2015-12-21

1 Introduction

This document is a technical documentation for the project How To Train Your Nao, which is a
part of the CDIO project course in Images and Graphics (TSBB11) at Linköping University during
the fall semester 2015. The objective was to implement an object recognition system used together
with a Nao robot.

1.1 About this document

The purpose of this document is to show which methods were used during implementation and why
certain decisions were made during the project. Results and possible improvements of the system
are also discussed for the event of future development.

1.2 Background

In a world where technology is constantly and rapidly evolving, robots are becoming an increasing
part of our everyday life. Humanoid robots are a hot subject and can provide assistance in many
areas, as well as companionship. Today’s computer vision algorithms are able to identify and localise
a variety objects. By integrating machine learning and object recognition with robots, a big step
towards the interaction between humans and robots can be taken.

1.3 System application

The implemented software has several applications when used together with the Nao robot, seen in
figure 1. With a pre-trained model the Nao robot is able to detect and identify objects in a scene.
The system can also use multiple class models to distinguish different objects from each other. Other
applications are searching for objects, following objects, and a combination of the two. In order for
the robot to give feedback to the user the robot speaks when an object is found or lost.

Figure 1: System application overview.

1.4 Brief system description

The system consists of one Nao robot, one computer and a wireless network connecting the two.
The robot streams a video feed collected from its cameras to the computer, where image processing
and decisions are computed. If the decision is interaction based, this decision is sent to the robot
and acted upon.

The system can train object models using different descriptors. Both single and multiple class models
can be trained by the system. When a trained model is obtained an object can be detected using the

LiTH
TSBB11

Page 1
CVL

Technical Documentation How To Train Your Nao 2015-12-21

detection mode. The detection mode can be used for detection of a single object class or multiple
object classes at the same time. When the follow mode is applied the robot follows the object in the
trained model. Further, search mode allows the robot to look for an object that is not in the field
of view by turning its head. The search and follow mode can be combined. If the object is lost the
robot will start looking for it by turning its head and continue walking in the direction where the
object was last seen.

LiTH
TSBB11

Page 2
CVL

Technical Documentation How To Train Your Nao 2015-12-21

2 Hardware components

The core hardware component of the system is a Nao robot. The Nao robot is an autonomous,
programmable humanoid robot developed by Aldebaran Robotics. The robot version used during
the project was Nao V4 with body type H25. The robots sensors and actuators can be seen in table
1. The robot both collects images, detects sensory input and moves around in the environment. To
gain maximum computation speed, all the software runs on an external computer, as opposed to
running it directly on the robot.

Table 1: Nao Robot V4 H25 Hardware specification.

Cameras 2x
Ultrasonic sensors 2x
Inertial Unit 1x
Force sensitive resistors 4 on each foot
IR sensors 2x 940 nm
Microphone 4x
Speakers 2x
Wi-Fi 2.4GHz
Processor ATOM Z530 1.6GHz CPU
RAM 1GB
Servos 25x

LiTH
TSBB11

Page 3
CVL

Technical Documentation How To Train Your Nao 2015-12-21

3 Software design

This section will describe the implementation of the software in the system. First an overview of
the entire system and an explanation to different key concepts of the implementation will be given.
Then the implementation of each subsystem will be described in more detail.

3.1 Software system overview

The system is built out of five different main systems: model training, object recognition, follow
object, search for object and follow and search for object, each built out of different subsystems.
Figure 2 below shows a flowchart of the system.

The system is mainly implemented in C++ and uses two operating systems, ROS and NAOqi. ROS is
a robot operating system using packages built out of several nodes for different processes, and allows
message passing between them on so called topics. NAOqi is the software that runs and controls
the Nao robot, which provides a Nao specific API. For the image processing specific operations, the
OpenCV library is used.

Figure 2: Overview of the system. The circles represent nodes, processes running in parallel, and the
rectangles topics, which are channels for passing messages between nodes. The camera of the robot streams
images in YUV, which are converted to RGB and picked up by the detector. Detected objects are published
to the coordinate node, resulting in different actions depending on the chosen mode of the system.

3.2 Descriptors

The three different descriptors used are described below. For advanced object, humans, only the
human detector of OpenCV is used. For description of any other object both of the other two
descriptors are being used so that an evaluation of best fitted descriptor can be done.

LiTH
TSBB11

Page 4
CVL

Technical Documentation How To Train Your Nao 2015-12-21

3.2.1 HOG and Color Names descriptor

A combination of two types of features is used in the descriptor, Color Names and HOG (Histogram
of Oriented Gradients). This should help discriminate an object using both color and shape
information. Color Names is a color extractor which transforms an image from a three dimensional
color space (RGB) into an 11 dimensional image space. Each dimension represent one basic color
and the value of each pixel in each dimension describes the likelihood that the pixel is of the color
corresponding to that dimension. The 11 possible colors are black, blue, brown, grey, green, orange,
pink, purple, red, white and yellow. More about the Color Names descriptors can be found in a
paper by Schmid et al[1] and an example of Color Names channels extracted from an image of a
tomato can be seen in figure 3.

The second type of descriptor used for the descriptor is HOG features. As the name implies the HOG
descriptor extracts the shape of objects using histograms of oriented gradients. The features are
extracted by calculating the gradients pixel wise, dividing the image into smaller cells, and for each
cell gathering the gradients belonging to that cell into a histogram. The histograms are normalized
block wise. Each block is a grouping of a number of spatially connected cells and typically overlap,
meaning that each cell will contribute to the total descriptor several times [2].

Figure 3: Example of two of the Color Names channels extracted from an image of a tomato (left) is seen
in the two other images (middle and right).

3.2.2 SURF descriptors

SURF, Speeded Up Robust Features, finds interest points using the Hessian matrix and extracts
features around the points by calculating the Haar-wavelet responses in a specific area around the
interest points. The wavelet responses are summed up for each point and represent the features [3].

3.2.3 Human descriptor

To detect humans, OpenCV 2.4.11 built-in human detector is used, which is a pre-trained HOG
descriptor. More on this can be found in the official OpenCV documentation [4].

3.3 Object learning

The training of the object models are implemented slightly different for the different types of
descriptors. The features are extracted in different ways, but common for the HOG + Color Names
and SURF-descriptor is the usage of an SVM classifier to train the object models. As mentioned
previously, no training is needed for the human descriptor.

The same training data set was used for both the HOG + Color Names and SURF-descriptor. The
initial training data was obtained from the robot with true images of the object to be modelled and

LiTH
TSBB11

Page 5
CVL

Technical Documentation How To Train Your Nao 2015-12-21

false images of background and other objects. Figure 4 shows an example of the data collection setup
and resulting initial true training images. An example of false training data can be seen in figure 5.
All training images are 64x64 pixels, the same size as the sliding window used during detection.

Figure 4: Example of data collection setup (far left) and the resulting images obtained by the robot camera.

Figure 5: Examples of false training data used during object model training.

3.3.1 Train HOG and Color Names models

To train the HOG + Color Name descriptor around 200-300 true images, and more than 1000 false
images are used. The model is trained using the SVM library LibSVM. The HOG features are
extracted with OpenCV’s built in HOG function. The image is split into 16 cells, each with 9
histogram bins. The image is also divided into 4 block, meaning that each block covers 4 cells, and
the block stride is set to the same size as one cell.

Before extracting Color Names the images are down-sampled to 6x6 pixels using linear interpolation.
The two descriptors are then concatenated to a long vector and sent to the SVM. The SVM uses a
linear kernel. A cost parameter C is the only argument to the SVM. It is set by performing 5-fold
cross validation on the whole training set with C varying from 0.01 to 1000, incremented by a factor
10 in each step.

To improve the model description, iterative re-training of the model is performed by adding false
positive detections to the false training data, and false negatives to the true training data. When
the trained object description model provides satisfying results it is saved to file, to be used in the
detector mode.

3.3.2 Train SURF-models

For objects described by SURF-models interest points are extracted using OpenCV’s built-in key
point extractor. To calculate the features, OpenCV’s built-in detector which calculates a 128 long
descriptor for each key point is used.

LiTH
TSBB11

Page 6
CVL

Technical Documentation How To Train Your Nao 2015-12-21

The SURF descriptors are always the same size for each key point but the number of key point can
differ a lot between images. This results in a varying total number of descriptors for different images.
Since the number of key points depends on the image, training an SVM model on the descriptors
directly will not work. Instead it is necessary to make a new descriptor that describes clusters of
descriptors. To solve the problem OpenCV’s Bag Of Word (BOW) is used when calculating the
descriptors.

The BOW acts as a dictionary for the descriptors and assigns all the descriptors extracted from
a single image to the entry closest in the BOW dictionary. An SVM model is then trained by
first making a vocabulary for the BOW by clustering all descriptors extracted from the training
images. Then, for each training image, the descriptors are extracted using the vocabulary. From
the descriptors an SVM model can be trained by using OpenCV’s built in SVM with labels for each
different class and background images. The SVM and the BOW vocabulary are then saved to file,
to be loaded in the detector mode.

3.4 Object detection

Detection is performed in the same manner for HOG and Color Names as for SURF-descriptors, but
only one type of descriptor can be used at a time in the detection mode. The type of descriptor to be
used is sent as an argument to the detector. For position estimation a sliding window with a step size
of 16 pixels is applied in multiscale to the full size image. Each small window is analyzed for a object
using either LibSVM (HOG + Color Names descriptors) or OpenCV’s SVM (SURF descriptors).
If an object is detected the position (center of the window) and size of the detection window is
published. The human descriptor uses OpenCV’s own SVM for easy multiple-scale detection and
extraction of position and window size.

3.5 Multiple object classification

In the multiple object classification an SVM model is trained with two classes of objects and
background images. The multiclass SVM uses the SURF descriptors described above with the
same scaled sliding window. The SVM model will predict either of the objects or the background.

3.6 Follow mode

The following routine is a class running under the coordinator node. The coordinator node accepts
asynchronous callbacks of detected objects and passes these on to the follower, which then tell the
motion handler to move the robot. The movement is simple and slow due to an in general low
update speed from the detector. Fast movement can easily make the robot lose the object from its
field of vision.

For increased stability while following advanced objects, a Kalman-filter is used for both position
and size of the object. The filter predicts the position and size if the object is not detected and
keeps predicting for a specified number of frames.

LiTH
TSBB11

Page 7
CVL

Technical Documentation How To Train Your Nao 2015-12-21

3.7 Search mode

The search mode is a very simple routine where the robot moves the body and head more or less
randomly while looking for objects. The search mode on its own is not very interesting, but in
combination with the following routine the actions of the robot is more intuitive (follow, lose track
then search for object). When an object is found or lost the robot speaks to inform the user how
the detection is going. This is performed by the Text-To-Speech engine of NAOqi. The speech-node
subscribes to messages from the coordinate node.

LiTH
TSBB11

Page 8
CVL

Technical Documentation How To Train Your Nao 2015-12-21

4 Testing

Two objects were chosen to be used to evaluate the descriptors, except the human descriptor. One
basic object with simple shape and color and one object with a more complex structure and surface
texture, denoted as a normal object. Both objects can be seen in figure 6. The evaluation of the
descriptors was performed on two different data sets, one with a basic white background and one
with a more advanced background and different lightning. Both environments were recorded from
the camera on the robot, and examples of the test data sets can be seen in figure 7.

Figure 6: Images of the two objects used during testing. A fabric tomato as a basic object and a paper cup
as a normal object.

Figure 7: Example frames from the two different test data sets. Left: Basic background. Right: more
advanced background

To receive the results, every frame treated by the detector (some frames were skipped because the
detector is not fast enough) was saved. Then, all true positives, false positives and false negatives
were counted. The performance was observed by calculating a hit- and error ratio. The hit ratio
was calculated as follows:

hit ratio =
number of hits

(hits + misses)
(1)

Where hits represent the number of true positive detections, and misses represent false negatives.

The error ratio was calculated in the following manner:

error ratio =
number of frames with false positives

total number of frames
(2)

A detection is considered a hit if part of the object lies within the detection box. The results can
be seen in chapter 5.

LiTH
TSBB11

Page 9
CVL

Technical Documentation How To Train Your Nao 2015-12-21

5 Result

This chapter will show the result of the evaluation of the descriptors in the different environments
tested according to chapter 4. The hit and error ratios were calculated according to formula 1 and
2 in chapter 4. Because many misses are correlated, which sometimes gives several false positives
in the same area, only the number of frames containing false positives are counted, not the total
number of false positives in each frame. The chapter is concluded with two graphs summarizing the
results for all test cases (figure 12 and figure 13).

5.1 Detection of basic object

The object trained for detection of basic objects was a fabric tomato. The model was trained using
HOG in combination with Color Names and with SURF-descriptors. The result of the detection in
the basic environment can be seen in table 2, and the result of the detection in the more advanced
environment can be seen in table 3. Figure 8 shows an example of the detection. It should be noted
that the high error rate in table 3 is in part because of one bad object that was in the background
during the test sequence.

Table 2: Result of the evaluation of the tomato model using HOG in combination with Color Names and the
SURF-descriptor. The evaluation was performed by sampling frames from a video in a basic environment
and compared to ground truth data.

Basic object
in basic environment

Hit ratio Error ratio Number of frames

HOG and Color Names 100% 0% 50
SURF-descriptor 80.4% 0% 142

Table 3: Result of the evaluation of the tomato model using HOG in combination with Color Names and
the SURF-descriptor. The evaluation was performed by sampling frames from a video in a more advanced
environment and compared to ground truth data.

Basic object in
advanced environment

Hit ratio Error ratio Number of frames

HOG and Color Names 100% 52.4% 82
SURF-descriptor 78.3% 34% 235

LiTH
TSBB11

Page 10
CVL

Technical Documentation How To Train Your Nao 2015-12-21

Figure 8: Examples of true positive detections of the basic object in a more advanced environment.

5.2 Detection of normal object

The object trained for normal objects was a paper cup. The model was trained using HOG in
combination with Color Names and with SURF-descriptors. The result of the detection in the basic
environment can be seen in table 4, and the result of the detection in the more advanced environment
can be seen in table 5. Figure 9 show an example of the detection.

Table 4: Result of the evaluation of the cup model using HOG in combination with Color Names and the
SURF-descriptor. The evaluation was performed by sampling frames from a video in a basic environment
and compared to ground truth data.

Normal object in
basic environment

Hit ratio Error ratio Number of frames

HOG and Color Names 88.0% 0% 161
SURF-descriptor 96.1% 0% 91

Table 5: Result of the evaluation of the cup model using HOG in combination with Color Names and the
SURF-descriptor. The evaluation was performed by sampling frames from a video in a more advanced
environment and compared to ground truth data.

Normal object in
new environment

Hit ratio Error ratio Number of frames

HOG and Color Names 91.2% 47.3% 207
SURF-descriptor 69.1% 31.5% 111

LiTH
TSBB11

Page 11
CVL

Technical Documentation How To Train Your Nao 2015-12-21

Figure 9: Example of two true positive detections (left and middle), and one example of a true and a false
detection (right) of the normal object in an advanced environment.

5.3 Detection of humans

The results from running the pre-trained human HOG descriptor on the robot are presented below.
The robot was in the mode ”search and follow” during the test, which means it is walking towards
the detected object, so some motion blur and tilted images is expected.

Table 6: Result of evaluation of OpenCV’s pre-trained human object model using HOG. The evaluation was
performed on 212 frames in a more advanced environment and compared to ground truth data.

Human object in
advanced environment

Hit ratio Error ratio Number of frames

OpenCV pre-trained HOG 70.9% 11.3% 212

Figure 10: Example of two true positives of the human detection (left and middle), and one false positive
and one miss (right).

5.4 Multiple object classification

The object chosen for the multiclass SVM model were the cup and the tomato. The model was
trained using SURF-descriptors and tested on images containing the NIST arena building blocks as
background. The result of the detection of the multiclass model can be seen in table 7. Figure 11
show an example of the detection.

LiTH
TSBB11

Page 12
CVL

Technical Documentation How To Train Your Nao 2015-12-21

Table 7: Result of detection test for a trained multiclass model using SURF-descriptors. The evaluation was
performed by sampling frames from a video containing NIST arena building blocks and compared to ground
truth data.

Tomato Hit ratio Error ratio Number of frames

SURF-descriptor 83.9% 16.1 % 317

Cup Hit ratio Error ratio Number of frames

SURF-descriptor 93.9 % 9.5 % 317

Figure 11: Examples of true positives for both tomato and cup, and one example of a false positive tomato
detection (left), true positives for tomato and cup (center), and a true positive for only tomato (right).

5.5 Result overview

Figure 12 shows the hit rate for all the objects in all the environments where tests were performed.
In figure 13 the error rate is shown for all these cases.

Figure 12: Hit rate according to equation 1 for each test set. Data is missing for SURF on human detection
and HOG on multidetection.

LiTH
TSBB11

Page 13
CVL

Technical Documentation How To Train Your Nao 2015-12-21

Figure 13: Error rate according to equation 2 for each test set. Data is missing for SURF on human detection
and HOG on multidetection.

6 Discussion

This section will cover a discussion about the presented results and the system performance.

6.1 Basic descriptor

The most important part of the basic descriptor seems to be the HOG features, since the Color
Names features apparently does not discriminate nearly as well as initially anticipated. It could be
that it is required for the object to fill a larger area of each image for the Color Names to be effective.
However, that would require smaller image patched to examined at a time, which in turn requires
many more steps in our sliding window implementation and thus slows the system down. The HOG
features on the other hand seems to work pretty well, even on objects with little structure, blurry
objects and images of low resolution.

The speed of the system is another problem. An attempt to exchange LibSVM for LIBLINEAR was
made, but that attempt ran into problems that could not be solved within the time frame of the
project, and other tasks were prioritized. The hope is, however, that LIBLINEAR would speed up
the system so that it can run in real time. LIBLINEAR could also run its operation on the GPU,
which should greatly improve its performance. Not much work has been done experimenting on
window sizes and their effect on the system speed. The step length of the windows greatly affect
the speed however. The problem is that a bigger step size causes more misses since it increases the
risk of jumping over a good detection.

A final big problem with the basic descriptor is that it has been a problem training the model to get
rid of some false positive detections. This makes it hard to make the robot work well in a general
environment. As mentioned above, if a smaller window size is used the Color Name descriptor might
become better at filtering away these cases, at least if the object has a color that stands out and is
rarely found in the background.

LiTH
TSBB11

Page 14
CVL

Technical Documentation How To Train Your Nao 2015-12-21

6.2 SURF-descriptor

Since the SURF interest points extractor uses the Hessian matrix, interest points are found where the
gradient in the images is large. This greatly favours objects with a lot of patterns and those with color
inhomogeneous surfaces. This is clearly noticeable when training with basic objects, which often are
both patternless and color homogeneous. When training on these images the Hessian threshold is
set to a low value, in order to increase the probability that interest points can be found on the objects.

Lowering the threshold have two major drawbacks. It will greatly increase the overall number of
found interest points for all images. For each interest point its descriptor is calculated, which itself is
computationally heavy. More descriptors per image also slows down the prediction when using the
SVM. The second drawback is that the repeatability is decreased even further. The interest point
extractor of the SURF descriptor always has problem with repeatability, even with the same image
interest points, and may result in a great difference between extractions.

A low number of interest points, on the other hand, increases the sensitivity of the models. Predicting
if an object is in the picture based on only one interest point will lead to many wrong classifications.
This is especially true when the training data does not cover a particular case. Therefore a limit is
set to only do predictions if the number of interest points in an image reaches a certain threshold.
Keeping this threshold high, greatly removes false positives but also lowers the false negatives,
especially in images where only a few interest points are found.

This makes the SURF model especially bad at detecting objects at a long distance. A very easy
solution to handle this problem would be to increase the resolution. As higher resolutions greatly
enhance the interest point extractions and will make SURF possible at much greater distances. This
would of course also increase the computational complexity a lot, and would not be able to run in
anything close to real time on the current set up.

With a reasonably high interest point threshold, as mentioned above, the SURF model will be
restrictive. Combined with an object from which many interest points may be extracted, the SURF
model will increase the accuracy compared to an object with less structure. To increase the accuracy
even more the C-parameter in the model could also be fine-tuned for each data set to maximise the
accuracy. In addition to this both a linear and radial based function for the SVM classifier, from
which the radial based function was used in the end, based on the slightly higher accuracy and the
speed was not noticeable affected.

6.3 Human detector and descriptor

The detection of persons is filtered so that only the largest object, hopefully a person, will be
classified as detected. Therefore tracking of multiple objects is possible but not implemented.

The descriptor for detecting people is rather complex, since the body and limbs can look very different
depending on positioning. The descriptor can therefore detect other objects that not even closely
resembles a person. Since the advanced descriptor is pre-defined in OpenCV 2.4.11, the ability to
train the descriptor for these false positives is very hard, but doable. One possible improvement
could be not to use OpenCV’s DefaultPeopleDetector but instead use PeopleDetector48x96 or
PeopleDetector64x128, depending on the approximated size of the person in the image. In general
the human detector works rather well, but the low hit ratio (as seen in table 6) is one of the things

LiTH
TSBB11

Page 15
CVL

Technical Documentation How To Train Your Nao 2015-12-21

which would be preferable to increase through training.

6.4 Following objects

Following identified objects is not very simple on the Nao platform. When the robot is walking
the body and head sway, causing the object to be more difficult to recognize. To increase the
performance of tracking, a head rotation is used. However, the delay of the response in the system
makes this hard to implement without blocking all actions until it is certain that the head has been
moved and the new images has been received. This head movement could also be a problem for the
Kalman filter.

6.5 Searching for objects

During the searching for objects the system currently has no idea how much the head has rotated
when an object has been found. If the robot is set to ”search and follow” the head will slowly
reposition itself to looking forward, hoping that the follower will detect that the object is moving to
the edge of the image and rotate the body accordingly. If the rotation angle of the head were to be
known, the system could easily be less prone to lose track of the object by simply rotate its body
and un-rotate the head until the body and head is facing the object.

6.6 Kalman filter

The Kalman-filter does a good job preventing the robot from losing track of objects. If multiple
coordinates are sent in one frame, the Kalman-filter will track all coordinates with one filter.
Therefore the filter only gives decent results if no objects are found or if the coordinates of the
correct object is the ones being sent. All other cases can cause the prediction to jump back and
forth and simply not track the right object. Another problem is that sometimes the detector tracks
a false object for only one frame, which triggers the filter, and track nothing for a while. One
improvement would be to implement one Kalman-filter for each object detected but that would
likely make the movement confusing for the observers.

6.7 Multiple object classification

Multiple classification introduces some more difficulties compared to single classification. In this
case any combination of objects is possible but the Hessian threshold and the amount of interest
points needs to be the same. This will make it more difficult to get a higher overall accuracy and
will make fine tuning more difficult. The same thing goes for the C-parameter for the SVM model
which, can not be tuned for only one individual object.

6.8 Discarded software implementations

BRIEF is short for Binary Robust Independent Elementary Features, which is a binary descriptor
containing binary strings. The strings are calculated by comparing the difference in intensity of
pairs of points in the image. [5]

Object recognition can be successful using Scale Invariant Feature Transform (SIFT). The transform
provides a description of the image in feature vectors, which are invariant of scaling, translation and
rotation. This property is exploited when comparing features in two separate images to find matches

LiTH
TSBB11

Page 16
CVL

Technical Documentation How To Train Your Nao 2015-12-21

to find the same object in the two images. The feature vectors are obtained by passing the image
through different filters, which extract interest points in the image. [6]

Both of these methods, together with SURF (see information about SURF under section 3.2.2)
were investigated in the early stages of the project. SIFT was considerable slower then both SURF
and BRIEF when calculating descriptors and comparing them, so SIFT was discarded in the early
stages. SURF was ultimately chosen over BRIEF because some results in early tests pointed in
favour of SURF. When the official testing started, much effort had already been put into a SURF
implementation, so it was used and no final comparison with BRIEF was ever made.

LiTH
TSBB11

Page 17
CVL

Technical Documentation How To Train Your Nao 2015-12-21

References

[1] Schmid .C Verbeek .J Weijer, .J. Learning Color Names from Real-World Images. INRIA, LEAR,
2007.

[2] B. Dalal. N., Triggs. Histogram of oriented gradients for human detection.
2005 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, San Diego, USA, 2005. Cited 2015-12-14, available at:
<http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1467360>.

[3] Van Gool L. Bay H., Tuytelaars T. Surf: Speeded up robust features.
Katholieke Universiteit Leuven, ETH Zurich 2011. Cited 2015-11-19, available at:
<http://www.vision.ee.ethz.ch/~surf/eccv06.pdf>.

[4] Opencv 2.4.12 documentation. Cited 2015-12-24, available at:
<http://docs.opencv.org/2.4/modules/gpu/doc/object_detection.html>.

[5] Strecha C. Fua P. Calonder M., Lepetit V. Binary robust independent elementary
features. CVLab, EPFL, Lausanne, Switzerland 2011. Cited 2015-11-19, available at:
<https://www.robots.ox.ac.uk/~vgg/rg/papers/CalonderLSF10.pdf>.

[6] D. G. Lowe. Object recognition from local scale-invariant features. Computer Science
Department, University of British Columbia, Vancouver, Canada, 1999. Cited 2015-11-19,
available at: <http://www.cs.ubc.ca/~lowe/papers/iccv99.pdf>.

LiTH
TSBB11

Page 18
CVL

