USER MANUAL

Version 1.0

How To Train Your Nao
CDIO HT 2015
Institute of Technology, Linképing University, ISY

User Manual How To Train Your Nao 2015-12-12

Product functionality

The system has four main applications:

Object model training

Object detection

Follow an object

Searching for an object
e Searching in combination with following

First of all an object model must be trained. When trained models are obtained the robot is able
to detect the objects in its field of view. In the follow mode the robot are able to follow detected
objects. Finally, if the object is not visible in the field of view of the robot, the robot is able to
search for it in its near environment.

Required Hardware and Software

To run the system the following software is required:

e NAOqi 2.1

OpenCV 2.4.11
ROS Indigo

libsvm 3.20

e liuh driver
o git
To run the system the following hardware is required:
e Nao Robot compatible with NAOqi 2.1
e External computer with required software

e Router where Nao and computer connects

Installation of Software and System

This CDIO project was mainly developed under Linux Mint 17.2 Rafaela.

Installing ROS

Install ROS Indigo by following their instructions on http://wiki.ros.org/indigo/Installation
It is probably easiest to install it under distributions based on Ubuntu since it is officially supported
by ROS.

ROS is already installed in the humanoids Laboratory of AIICS of IDA. It may be installed in the
rest of the computer labs.

LiTH Page 1
TSBB11 CVL

http://wiki.ros.org/indigo/Installation

User Manual How To Train Your Nao 2015-12-12

Install NAQOqi

To interface with the robot the NAOqi API is required on the computer. Download it from the home-
page of the manufacturer of Nao, Aldebaran: https://community.aldebaran.com/en/resources/
software/

Both the C+4 NAOqi and Python NAOQqi is required, version 2.1.4 was used in this project. It is
not possible to download anything without an account on the website. The files are also available
in the humanoids lab, under /sw/aldebaran/

Cmake (used by ROS) uses * DIR environment variable to look for external libraries. In this CDIO
project the CMakeLists files will look for NAOqi in the AL_ DIR variable, in the humanoid lab
this is already set. Otherwise AL_DIR should be set to the path where the C++ SDK is located,
and the PYTHONPATH to where the Python SDK is unpacked. Keep in mind to not overwrite
the PYTHONPATH, best is to concatenate it with the old value. For a private computer add the
following two lines to your bashre, zshrc or equivalent:

$ export AL_DIR=$HOME/path/to/naoqi-sdk

$ export PYTHONPATH=$PYTHONPATH:/path/to/pynaoqi

This is required so catkin (ROS build tool) can find the C++ API and link toward it, and so that
Python code can import the NAOqi API.

Install OpenCV

At the university the users don’t have access to install libraries to /usr/local/share and other
system paths. Instead it is needed to install it to the home folder, therefore start with making a
folder in your home called OpenCV. It is not necessary to create this folder when building on a
private computer.

Since the cv__bridge package in ROS Indigo didn’t work with OpenCV 3.0.0 it is preferable to use
OpenCV 2.4.11. Download OpenCV from http://opencv.org/downloads.html

Unpack the downloaded file, for example to /tmp since it is often faster to compile libraries in the
/tmp folder and if you are working at the university the home folder don’t have enough space to
build the OpenCV project.

$ mv Downloads/opencv-2.4.11.zip /tmp
$ cd /tmp

$ unzip opencv-2.4.11.zip

Make a build folder inside the OpenCV folder you just unpacked and move to that new folder.

$ cd opencv-2.4.11
$ mkdir build
$ cd build

Generate make files, make it and install it to the home folder:

$ cmake -D CMAKE_BUILD_TYPE=RELEASE -D WITH_OPENCL=0FF
-D CMAKE_INSTALL_PREFIX=/path/to/your/home-folder/opencv ..

$ make -3j8
$ make install

OpenCV is now installed to the home folder but ROS can’t find it without telling it where to look.
Just as with NAOqi above add the following row to the bashrc, zshrc file or equivalent. This is not
required if OpenCV was installed to /usr/local/share or similar.

export OpenCV_DIR=$HOME/opencv/share/OpenCV

LiTH Page 2
TSBB11 CVL

https://community.aldebaran.com/en/resources/software/
https://community.aldebaran.com/en/resources/software/
http://opencv.org/downloads.html

User Manual How To Train Your Nao 2015-12-12

Setup the catkin workspace

Create a folder for the ROS workspace and initilize the catkin workspace. Read more at http:
//wiki.ros.org/catkin/Tutorials/create_a_workspace.

$ mkdir -p ~/cdio_project/src

$ cd ~/cdio_project/src
$ catkin_init_workspace

Download Nao drivers from LiU Humanoids

Download the liuh_ driver created by LiU humanoids soccer team from https://gitlab.ida.liu.
se/liu-humanoids/liuh_driver|and it in the src folder. The AL_DIR path set above is used by
the liuh_ driver/liuh_ driver_module/cmake/FindNAOgi.cmake

Remove the liuh_ driver game and liuh_ driver network packages since we don’t need them and
these depends on other repos.

$ cd ~/cdio_project/src/liuh_driver

$ rm -rf liuh_driver_game, liuh_driver_network

Download our software

Finally it is time to download the code developed during the CDIO project. Since the project are
versioned under git it is easiest to download the project with git:

$ cd ~/cdio_project/src/

$ git clone git@gitlab.ida.liu.se:ricbo818/how-to-train-your-nao.git

Note that inside the git repo we have embedded the libsvm 3.20 library, so there is no need for
installing this library separately.

Build the project

It is possible to verify everything by compiling the project. It may need several tries before it
compiles without any errors, this is because of malformatted CMakeLists files that doesn’t specify
the dependencies between the different packages. An error about HeadMotion or similar will most
probably be solved if you compile once again.

Use catkin__make To build a ROS project. A devel and build folder will be created when making
the project. In the devel folder setup.bashrc, setup.zshrc and similar files will be created that
should be sourced to make the ROS tools find the packages. Remember to source the setup-file that
corresponds to the active shell, i.e. setup.zshrc if z shell is used and setup.bashrc if bash is used.

$ cd ~/cdio_project
$ catkin_make
$ source devel/setup.bashrc

Each time a C++ file is changed the project should be rebuilt with catkin. It is not necessary to
rebuild the project when a python file, launch-file or other xml-file is changed.

Running the system
To be able to run the system the above mentioned hardware and software is required. The software

system runs with ROS on an external computer which connects to the robot. Below is a guide on
how to start the core system and how to run the robot’s four main applications. Nothing is actually

LiTH Page 3
TSBB11 CVL

http://wiki.ros.org/catkin/Tutorials/create_a_workspace
http://wiki.ros.org/catkin/Tutorials/create_a_workspace
https://gitlab.ida.liu.se/liu-humanoids/liuh_driver
https://gitlab.ida.liu.se/liu-humanoids/liuh_driver

User Manual How To Train Your Nao 2015-12-12

started on the robot’s hardware, the program and ROS framework is executed on the computer and
connects to the robot though proxies. The robot itself runs NAOgqi and receives commands from the
computer. It is possible to run ROS on the robot and get faster image streams, but the processing
power will decrease significantly.

There is two ways to start ROS nodes, either you start up each node separately with rosrun or you
launch a bunch of them with roslaunch and a pre-made launch-file. In this project it is easiest to
start everything up with launch-files. When using roslaunch the roscore will start automatically,
but when using rosrun you’ll first need to start the roscore.

Training Object models

An object model must be trained to be able to run the detection, following and searching procedure.
In order to train an object model, object data sets with positive and false images must be obtained.
To train a good object model it is needed several hundreds of images where the object is visible, but
also images without the object. Create a folder for all test images, and sub-folders for each object.
When training for a specific object, all other sub-folders will be used as false images. This means
that the folder structure will be something like this:

test_images

| -—tomato

| -—cup

| --background
| -—empty
+--human

When training the tomato model, the images in the cup and background folders will be used as
negative images. It is also a good idea to have an empty folder that never is used for training, but
the folder will provide more negative images without any objects at all.

The learn node will always be run separately. The learn node doesn’t subscribe to anything and
doesn’t publish anything. The node will read images from the hard drive, from paths specified from
the launch-file. The node can be started with rosrun and parameters telling it where to find the
images, but it is easier to repeat training using a launch-file. The launch-file is located in the learn
package.

The launch-file contains one node, and a parameter array. The array key is the name of the object
and its value is the path to the folder containing the images for this model. All sibling folders will
be used as negative images.

The parameter can look like this:

<node name="learn" type="learn_node" pkg="cdio_learn">
<param name="objects/tomato" value="/path/to/test_images/tomato"/>
<param name="objects/cup" value="/path/to/test_images/cup"/>
</node>

Note the prefix objects/ in the name of the parameter, this is the name of the array that is used
in the program to load the images. Don’t change this name, just change the keys and the paths.

A good way to specify the path to the test images is using the $(find ros_package) notation. The
code will be more portable without hard-coded paths. Create for example a ROS package outside
of the git repository (because git shouldn’t contain binary images) and write the parameter as:

<param name="objects/tomato" value="$(find datasets)/tomato"/>

LiTH Page 4
TSBB11 CVL

User Manual How To Train Your Nao 2015-12-12

The data sets package can be located on an external hard drive to save space in the home-folder,
but remember to also source the catkin workspace on the hard drive in the same terminal so ROS
can find the path to the package. Also note that the hard drive needs to be ext3 or ext4 to be able
to initiate a catkin workspace (because vfat and ntfs don’t support symlinks).

Start the learn node with:

$ roslaunch cdio_learn learn.launch

If object isn’t found or is badly detected there are most likely too few or bad training images, try
to add more. If the model detects a lot of false positives you can try to add the bad detections as
false images in a sibling folder.

Start object detection procedure

To be able to detect an object, a model of the object must first be obtained (see above). In order
for the robot to be detect an object it must be in the field of view of the robot.

The detection is started with the detect.launch file in the cdio_detector package. This launch-file
will start the camera_ driver, the yuv2rgb node and the detection node.

The detector node is similar to the learn node considering how to specify which objects should be
used in the detection algorithm. The file specifies the names of the objects (used for example by the
voice synthesiser) and the path to the model file. The node also take a method parameter which
decide which algorithm should be used on the image. Currently it can be "hog" or "surf", but this can
be increased in the future. Note that the SURF implementation in OpenCV is marked as nonfree
and can’t be used in commercial applications.

The SURF algorithm is using Bag of Words and needs a vocabulary file and a SVM model file. The
path for surf is only pointing to the filename without extension. The code will then try to load the
vocabulary from the filename.yml and the SVM model from filename.xml.

<node name='"detector" type="detector_node" pkg="cdio_detector">
<param name="method" value="surf" />
<param name="objects/tomato/hog" value="/path/to/hog_tomat" />
<param name="objects/tomato/surf" value="/path/to/surf_tomat" />
<param name="objects/cup/hog" value="/path/to/hog_cup" />
</node>

The detector node will only load the models for the method specified at the method parameter, i.e.
in the code below it will only load the surf_tomat.yml and surf_tomat.xml. If method would
have been hog it will load the hog_tomat and hog_cup file, note that these files have no extension.
If a object is missing a specified method, for example the cup is missing the surf above it wont be
detected when this method is used.

$ roslaunch cdio_detector general_detect.launch

For the human detector another node should be started. This node can be started with:

$ roslaunch cdio_detector human_detect.launch

Start search and follow procedure

The coordinate node coordinates the perception nodes and the actuator nodes, i.e. make the robot
react to his senses.

LiTH Page 5
TSBB11 CVL

User Manual How To Train Your Nao 2015-12-12

The coordinate node has three modes:
1. Follow - It can follow objects, always trying to keep the object in the middle of its sight.
2. Search - It can search for an object when it isn’t currently in the field of view

3. Follow and search - It will try to follow the object and if it lost the object it will start to search
for it.

In the launch-files you can specify the objects to look for by passing in correct models, just as above.
To start the coordinate node to follow an object you write:

$ roslaunch cdio_coordinator coordinate.launch mode:=follow
To start the searching behaviour:
And finally to start both searching and following:
$ roslaunch cdio_coordinator coordinate.launch mode:=followsearch

Note that you can’t start follow and search at the same time and get the same effect as followsearch
because all three modes are integrated in the same node.

Also note that the coordinate node will spin up the speak node so the robot will say whether it sees
an object or not.

