
TSTE87 Laboratory Work � Lab 5

Oscar Gustafsson, Kenny Johansson, and Erik Bertilsson

• Student name: .

• Student personal id: .

• Passed: .

Goals

Generate the architecture and an HDL description. Investigate the e�ect of resource
limitation using automatic scheduling.

Preparations

1. Read Chapters 8, 9, and 11 in Wanhammar, DSP Integrated Circuits.

2. Read �Additional commands in the DSP toolbox� below.

Additional commands in the DSP toolbox

At the moment it is not possible to automatically generate a fully functional implemen-
tation, including processing elements. However, control and memory control units can be
generated. The general architecture is as depicted below. Hence, there is a central timing
unit which basically is a counter that keeps track of where in the scheduling period the
execution is currently. Each memory has a memory controller which generates addresses
and read/write signals based on the current time. Similarly, each memory has a corre-
sponding cache memory. Each processing element has a controller, which generates start
signals to the PE and optionally generates addresses to the coe�cient memories.

1

A number of commands are available to generate VHDL code for the controllers.
To generate the timing information, the following command can be used

generatetimingcontroller(scheduletime)

Note that the schedule time can be obtained from a schedule as

scheduletime = schedule(1,1)

The default component name is timingcontroller and the default �le name is
timingcontroller.vhdl. A di�erent component and �le name can be selected by a
second argument as

generatetimingcontroller(scheduletime, componentname)

The standard behavior is to generate a binary counter. However, note that there are
other counters that may be better from e.g. speed and power point of view. The output
is a vector, state, which contains the current state. Inputs to the timing controller is
a clock and a reset signal, clk and reset, respectively. For the memory controller, the
command generatememorycontroller is available which is used as

generatememorycontroller(cellassignment, number)

where cellassignment is a cell assignment and number is an identifying number. The
component will be named memorycontroller# where # is replaced by the identi�er.

Similarly, a PE controller can be generated as

generatepecontroller(peassignment, schedule, number, bits)

where peassignment is one PE assignment, i.e., not the list of all PE assignments (use
curly brackets to obtain one element from a list), and bits denotes the total number
of bits used to represent the coe�cients. If required, generatepecontroller will also
generate one or more coe�cient memories (for multipliers, adaptors etc). The component
will be named pecontroller#.

Automatic Scheduling

The command evaluation can be used to obtain a schedule, based on list-scheduling,
using a given number of processing elements as

schedule = evaluation(sfg, resources, multexecutiontime, onlyschedule}

where sfg is the signal �ow graph and resources is the available functional units on
the form [multipliers, adders, subtracters]. This algorithm assumes that latency
and execution time are the same. The execution time for addition and subtraction is
one time unit and the execution time for multiplication can be set by the input argu-
ment multexecutiontime. If only a schedule is to be generated, i.e., no information
about the overhead hardware requirements (registers and multiplexers) is desired, the
onlyschedule parameter should be set to one.

Tasks

1. The �rst task is to generate VHDL descriptions of the memory and PE controller
using information from Laboratory work 4, and simulate the behavior of these.

• Copy the �les interp.do and interpolator.vhdl from /courses/TSTE87/labs/lab5

to a working directory.

• Generate VHDL for the timing controller. Place the �le in the working directory.

• Generate VHDL for the memory controllers, number them 1 and 2. Place the
�les in the working directory.

• Generate VHDL for the PE controllers, number them 1, 2, 3, and 4. Note that
the number of bits should be one integer bit plus the number of fractional bits.
Place the �les in the working directory.

• Edit the beginning of the �le interpolator_tb.vhdl to set the correct constants
for your design (see source code).

• Compile and simulate the code. This is done with the terminal command vsim

-do interp.do & note that you must add the module mentor (module add

mentor).

• For one memory controller and one PE controller, check that the outputs cor-
responds to the expected.

• For one memory variable, explain in detail when the data is read and written
and what the values of the address, enable, and read/write signals are at those
time instances. Furthermore, identify from which PE the data was obtained and
which PE will consume it.

. .

• What are the coe�cient values used in the two PE operations associated to the
memory variable discussed above, according to the simulation?

. .

• To end up with a fully functional implementation we have to add processing
elements, memories and cache memories (with controller). However, this is not
included here.

2. In this task we will use the allpass �lter of the interpolator �lter from laboratory
work 2 (/courses/TSTE87/labs/lab2/interpolatorallpass.m)

• The latency and execution time are assumed to be equal in this task. Fur-
thermore, all basic operations (addition, subtraction, and multiplication) are
assumed to have an execution time of one time unit.

• Study the schedule obtained from getinitialschedule using an execution time
corresponding to the critical path of a twoport adaptor. See previous laboratory
works to �nd the number of basic operations in the critical path.

• Transform the twoport operations to lower level operations using the command
flattensfg. Study the schedule and compare with the previous schedule where
twoport operations was used. Which low level operations correspond to which
twoport operations? What is the required number of processing elements?

. .

. .

• Add the path to the evaluation command in MATLAB. This can be done by

addpath /courses/TSTE87/labs/evaluation/

• Study the schedule obtained by evaluation using �in�nite� resources. Compare
to the previous schedule. Comments?

. .

• Study the schedule obtained using resources corresponding to one twoport op-
eration. Comments?

. .

• What is the required overhead hardware, i.e., registers and multiplexers (just
count the total number of multiplexer inputs)? Note that information about
this is printed in the MATLAB command window.

. .

• Pipeline the allpass �lter so that the critical path only includes two twoport
operations.

• Compare the schedules obtained by getinitialschedule and evaluation (us-
ing resources corresponding to one twoport operation). Comments?

. .

• What is the required overhead hardware?

. .

• Study a schedule obtained using resources corresponding to two twoport opera-
tions. Comments?

. .

• What is the required overhead hardware?

. .

• In which of the three schedules for the pipelined �lters is the hardware used
most e�ciently? What is the utilization ratio for this case?

. .

