
3.5 We need to find a closed formulae for T(n), i.e., for the t ime
required to solve a large problem. We will do this by using the z -
transform. However, we first make the substitution.
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in order to obtain a linear difference equation
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where we for the sake of simplicity have selected MinSize = 1.
Further, we have assumed that the size of the subproblems is a
power of cm , i.e., the subproblems have sizes: n /c1, n /c2, n /c3, etc.
Applying the z-transform yields
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but the initial value, m  = 0, yields x(0) = x(–1) + d =  a  ⇒ 
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Thus
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but m = logc(n). Finally we get
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We have three interesting cases.

Case: b < c

We get: T(n) ∈  O[(a – d) blogc(n) + d n ∑
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Hence, T(n) ∈  O (n)   since, blogc(n) grows no faster than n .

Case: b = c

For b = c we have
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Case: b > c

We have
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Finally we get: T(n) ∈  O [blogc(n)] = O[nlogc(b)]


