3.5We need to find a closed formulae for T(n), i.e, for the time
required to solve a large problem. We will do this by using the z-
transform. However, we first make the substitution.

X(m) = _TE)Cr;n)

in order to obtain a linear difference equation

where we for the sake of simplicity have selected MinSize = 1.
Further, we have assumed that the size of the subproblems is a
power of c¢cM, i.e., the subproblems have sizes: n/cl, n/c2, n/c3, etc.
Applying the z-transform yields
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but the initial value, m = 0, yields x(0) = x(-1) +d=a O
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x(m)=a—d+dZ(E) , m=0
i=0
Thus
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but m = loge(n). Finally we get
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We have three interesting cases.
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Hence, T(n) O O(n) since, b'°9¢(M grows no faster than n.
Case: b = ¢

For b = ¢ we have
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Finally we get: T(n) O O[b'°9c(M] = O[n'09c(D)]



