11.4 (a) a=1.1101 and x=1.001. The sign extension circuit extends the coefficient x to  $W_d+W_c-1=5+4-1=8$  bits, or,  $x_{ext}=11111.001$ .

The multiplication with bit-serial multiplier is shown below.



Serial/parallel multiplier

|          | X | S4 | <b>S</b> 3 | S2 | <b>S</b> 1 | C4 | C3 | C2 | C1 | C0 | у |       |
|----------|---|----|------------|----|------------|----|----|----|----|----|---|-------|
| reset    | 0 | 0  | 0          | 0  | 0          | 0  | 0  | 0  | 0  | 0  | 0 | (LSB) |
| $x_{-3}$ | 1 | 1  | 1          | 1  | 0          | 0  | 0  | 0  | 0  | 0  | 1 |       |
| $x_{-2}$ | 0 | 1  | 1          | 1  | 1          | 0  | 0  | 0  | 0  | 0  | 0 |       |
| $x_{-1}$ | 0 | 1  | 1          | 1  | 1          | 0  | 0  | 0  | 0  | 0  | 1 |       |
| $x_0$    | 1 | 0  | 0          | 0  | 1          | 1  | 1  | 1  | 0  | 1  | 0 |       |
| $x_1$    | 1 | 0  | 0          | 0  | 0          | 1  | 1  | 1  | 0  | 1  | 1 |       |
| $x_2$    | 1 | 0  | 0          | 0  | 0          | 1  | 1  | 1  | 0  | 1  | 0 |       |
| $x_3$    | 1 | 0  | 0          | 0  | 0          | 1  | 1  | 1  | 0  | 1  | 0 |       |
| $x_4$    | 1 | 0  | 0          | 0  | 0          | 1  | 1  | 1  | 0  | 1  | 0 | (MSB) |

The result is  $0.00101010_2 = 0.1640625_{10}$ .  $ax = (1.1101)_2 \cdot (1.001)_2 = (-0.1875)_{10} \cdot (-0.875)_{10} = (0.1640625)_{10}$ .

(b) The S/P multiplier in figure 11.15 needs  $(W_d + W_c - 1) + 1$  clock periods to process one data, so the throughput is  $\frac{1}{(16+4-1)+1} = \frac{1}{20}$  sample per clock period.

With S/P multiplier in Figure 11.45, the throughput is doubled, i.e.,  $\frac{1}{10}$  sample per clock period.