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C

 

OMPUTATIONAL PROPERIES OF DSP ALGORITHM

 

S

 

DSP Algorithms

 

A DSP algorithm is a computational rule, 

 

f

 

, that maps an ordered input
sequence, 

 

x

 

(

 

nT

 

), to an ordered output sequence, 

 

y

 

(

 

nT

 

), according to

   ,    := 

Generally, in hard real-time applications the mapping is required to be
causal since the input sequence is usually causal. 

We stress that the computational rule is an unambiguously specified
sequence of operations on an ordered data set. 

x nT( ) y nT( )Æ y nT( ) f x nT( )( )

DSP ALGORITHM

Basic set of arithmetic
and logic operations

Ordered
data set

Sequence of
operations
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A DSP algorithm can be described by a set of expressions. The sign ":="
is used to indicate that the expressions are given in computational order. 

DSP algorithms can be divided into 

 

iterative processing

 

 and 

 

block pro-
cessing

 

 algorithms. 

An iterative algorithm performs computations on a semi-infinite stream of
input data, i.e., input data arrive sequentially and the algorithm is executed
once for every input sample and produces a corresponding output sample. 

In block processing, a block of output samples is computed for each input
block, which results in a large delay between input and output. 

x1 n( ) := f 1  x1 n 1–( )º xp n 1–( ) xp n 2–( ) º a1 b1 º, , , , , ,,–[ ]

x2 n( ) := f 2  x1 n 1–( )º xp n 1–( ) xp n 2–( ) º a2 b2 º, , , , , ,,–[ ]

x3 n( ) := f 3 x1 n( ) x1, n 1–( )º xp n 1–( ) xp n 2–( ) º a3 b3 º, , , , , ,[ ]

xN n( ) := f N x1 n( ) x1 n 1–( )º xp n 1–( ) xp n 2–( ) º aN bN º, , , , , ,,[ ]
Ó
Ô
Ô
Ô
Ì
Ô
Ô
Ô
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PRECEDENCE GRAPHS

 

A 

 

precedence graph

 

 describes the order of occurrence of events: 

 

A, B, …,
F

 

. 

The directed branches between the nodes denote the ordering between the
events which are

 

 represented 

 

by the nodes. 

A directed branch between node 

 

E

 

 and 

 

B

 

 shows that event 

 

E

 

 precedes
event 

 

B

 

. 

 

E

 

 is therefore called a 

 

precedent 

 

or predecessor to B. 

Node E also precedes event 

 

A

 

, and therefore node 

 

E

 

 is a
second-order precedent to node 

 

A

 

. 

Event 

 

B

 

 is a succedent to event 

 

E

 

. 

An

 

 initial node

 

 has no precedents and a 

 

terminal node

 

has no succedents, while an

 

 internal node

 

 has both. 

If two events are not connected via a branch, then their precedence order
is unspecified.

E

F

C

B

A

D
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Sometimes, it may be more convenient to let the
branches represent the events and the nodes repre-
sent the precedence relations. 

Such precedence graphs are called AOA (activity on
arcs) graphs while the former type of graphs, with
activity on the nodes, are called AON (activity on
nodes) graphs. 

E

F

C

B

A

DF

E
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Parallelism in Algorithms

Precedence relations between operations are unspecified in a parallel
algorithm. 

The figure illustrates two examples of parallel algo-
rithms. In the first case, the additions have a com-
mon precedent, while in the second case they are
independent. 

Two operations (algorithms) are concurrent if their
execution times overlap. 

In a sequential algorithm every operation, except
for the first and the last, has only one precedent and
one succedent operation. 

Thus, the precedence relations are uniquely speci-
fied for a sequential algorithm. 



DSP Integrated Circuits Department of Electrical Engineering larsw@isy.liu.se
Lars Wanhammar Linköping University http://www.es.isy.liu.se/

6

Latency

We define latency as the time it takes to generate an output value from the
corresponding input value.

Example: Bit-parallel multiplication

Note that latency refers to the time between input and output, while the
algorithmic delay refers to the difference between input and output sam-
ple indices.

Input x

Input a

Output y

TLatency

t

1

Throughput
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Example: Bit-serial multiplication

Bit-serial multiplication can be done either by processing the least signif-
icant or the most significant bit first. 

The latency, if the LSB is processed first, is in principle equal to the num-
ber of fractional bits in the coefficient. 

For example, a multiplication with a coefficient Wc = (1.0011)2C will have
a latency corresponding to four clock cycles. 

Input x

Input a

Output y

TLatency

t

LSB MSB

LSB

LSB

MSB

MSB

1
Throughput

a)
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A bit-serial addition or subtraction has in principle zero latency while a
multiplication by an integer may have zero or negative latency. 

However, the latency in a recursive loop is always positive, since the oper-
ations must be performed by causal PEs. 

Latency models for bit-serial arithmetic.

D

FA
x(n)
y(n) S(n)

x0 xWd–1…

y0

x1

y1 yWd–1

SWd–1

…

…S0 S1

Latency

+

D

D

FA
x(n)
y(n) S(n)

x0 …

y0

x1

y1 yWd–1

SWd–1

…

…S0 S1

Latency

+

xWd–2

yWd–2

Model 1Model 0

xWd–1

S2
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Denoting the number of fractional bits of the coefficient Waf, the latencies
become Waf for latency model 0, and Waf + 1 for latency model 1. 

x0 x1 xWd–2

yWd+Wcf–1

…

…

Latency

y0 yWd–1 …

Serial/parallel
multiplier

a x

x(n) y(n)

a

D

xWd–1

Model 1

x0 x1 xWd–1

yWd+Wcf–1

…

…

Latency

y0 yWd–1 …

Serial/parallel
multiplier

a x

x(n) y(n)

a
Model 0
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Sequentially Computable Algorithms

A precedence graph may be contradictory in the sense that it describes an
impossible ordering of events. 

An example of such a precedence graph is shown in the
Figure.

Event A can occur only after event C has occurred. 

However, event C can only occur when event B has
occurred, but event B cannot occur until event A has
occurred. 

Hence, this sequence of events is impossible since the sequence can not
begin.

In a digital signal processing algorithm, events correspond to arithmetic
operations. 

In a proper algorithm at least one of the operations in each recursive loop
in the signal-flow graph must have all its input values available so that it
can be executed. 

A B

C
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This is satisfied only if the loops contain at least one delay element, since
the delay element contains a value from the preceding sample interval that
can be used as a starting point for the computations in the current sample
interval. 

Thus, there must not be any delay-free loops in the signal-flow graph. 

For a sequentially computable algorithm the corresponding precedence
graph is called a directed acyclic graph (DAG).

A necessary and sufficient condition for a recursive algorithm to be
sequentially computable is that every directed loop in the signal-flow
graph contains at least one delay element.

An algorithm that has a delay-free loop is nonsequentially computable. 

Such an algorithm can be implemented neither as a computer program nor
in digital hardware. 
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Fully Specified Signal-Flow Graphs

In a fully specified signal-flow graph, the
ordering of all operations as uniquely specified
is illustrated in the figure. 

a

b

c

y = a + b + c

a

b c

y = a + b + c
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SFGs IN PRECEDENCE FORM

A signal-flow graph in precedence form shows the order in which the node
values must be computed. 

Example 6.1

The necessary quantization in the
recursive loops is shown but not the
ordering of the additions. Hence, the
signal-flow graph is not fully speci-
fied. 

We get a fully specified signal-flow
graph by ordering the additions. Note
that there are several ways to order
the additions.

The first step, according to the proce-
dure in Box 6.1, does not apply since,
in this case, there are no multiplica-
tions by –1. 

Q
X(z) Y(z)

a2

b1

z–1

c0

b2

a0

z–1

a1

Q

T

T

x(n) y(n)u1 u3 u6
a0 u7

c0
u2

u4 b1 a1v1(n) u8

u10

u5
b2 a2v2(n) u9
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The second step is to first assign node variables to the input, output, and
delay elements. 

Next we identify and assign node variables to the outputs of the basic
operations. 

Here we assume that multiplication, two-input addition, and quantization
are the basic operations. 

An operation can be executed when all input values are available. 

The input, x(n), and the values stored in the delay elements, v1(n) and
v2(n), are available at the beginning of the sample interval. 

Thus, these nodes are the initial
nodes for the computations. To find
the order of the computations we
begin (step 3) by first removing all
delay branches in the signal-flow
graph. 

Q
x(n) y(n)u1 u3 u6

a0 u7

c0
u2

u4
b1 a1v1(n) u8

u10

u5
b2 a2v2(n) u9
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In step four, all initial nodes are identified, i.e., x(n), v1(n), and v2(n).
These nodes are assigned to node set N1. 

I
n step five we remove all executable operations, i.e., all operations that
have only initial nodes as inputs. In this case we remove the five multipli-
cations by the coefficients: c0, a1, a2, b1, and b2. The resulting graph is 

Q
x(n) y(n)u1 u3 u6

a0 u7

c0
u2

u4
b1 a1v1(n) u8

u10

u5
b2 a2v2(n) u9

NmN1 N2 N3
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Q
y(n)u1 u3 u6

a0 u7

u2 u10

Q
y(n)u3 u6

a0 u7

u10

y(n)u6
a0 u7

u10

y(n)u7

u10

y(n)

N4N1 N2 N3 N7N5 N6

x(n)

y(n)

v1(n)

u1

v2(n)

u4

u5

u8

u9

u2

u3

u10

u6

u7

Q
y(n)u1 u3 u6

a0 u7

u2

u4 u8

u10

u5 u9
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Finally, we obtain the signal-flow graph in precedence form by connect-
ing the nodes with the delay branches and the arithmetic branches accord-
ing to the original signal-flow graph. 

The computations take place from left to right. 

A delay element is here represented by a branch running from left to right
and a gray branch running from right to left. 

N4N1 N2 N3 N7N5 N6

x(n)

y(n)

v1(n)

u1

v2(n)

u4

u5

u8

u9

u2

u3

u10

u6

u7

Q z–1

a0

z–1

a2

a1

b2

b1

A
lg

or
ith

m
ic

 D
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le
m
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ts

1 2 3 4 5 6

c0
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The latter indicates that the delayed value is used as input for the compu-
tations belonging to the subsequent sample interval. 

If a node value, for example, u1, is computed earlier than needed, an aux-
iliary node must be introduced. The branch connecting such nodes repre-
sents storing the value in memory. 

It is illustrative to draw the precedence
form on a cylinder to demonstrate the
cyclic nature of the computations. 

The computations are imagined to be
performed repeatedly around the cylin-
der. 

The circumference of the cylinder corre-
sponds to a multiple of the length of the
sample interval.

6 1 2 t

x(n)
c0 u1

v1(n)

b1
u4

u2

y(n)
u7

a1

b2

u5

u8 u10

v2(n) a2 u9
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DIFFERENCE EQUATIONS

A digital filter algorithm consists of a set of difference equations to be
evaluated for each input sample value. 

The difference equations in computable order can be obtained directly
from the signal-flow graph in precedence form.

The signal values corre-
sponding to node set N1
are known at the begin-
ning of the sample inter-
val. 

Hence, operations having
output nodes belonging to
node set N2 have the nec-
essary inputs and can
therefore be executed
immediately. 

N4N1 N2 N3 N7N5 N6

x(n)

y(n)

v1(n)

u1

v2(n)

u4

u5

u8
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u6
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Once this is done, those operations having output nodes belonging to node
set N3 have all their inputs available and can be executed. This process can
be repeated until the last set of nodes has been computed. 

Node set Equations
N2 u1 := c0x(n)

u4 := b1v1(n)
u5 := b2v2(n) 
u8:= a1v1(n)
u9 := a2v2(n)

N3 u2 := u4 + u5
u10 := u8 + u9

N4 u3 := u1 + u2

N5 u6 := [u3]Q

N6 u7 := a0u6

N7 y(n) := u7 + u10
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Finally, the signal values corresponding to node set N1, can be updated via
the delay elements. This completes the operations during one sample
interval.

Delay elements connected in series are updated sequentially starting with
the last delay element, so that auxiliary memory cells are not required for
intermediate values.

Operations with outputs belonging to the different node sets must be exe-
cuted sequentially while operations with outputs belonging to the same
node set can be executed in parallel. 

Similarly, updating of node values that correspond to delay elements must
be done sequentially if they belong to different subsets of N1k. 

The updating is done here at the end of the sample interval, but it can be
done as soon as a particular node value is no longer needed. 

Node set Equations
N11 v2(n + 1) := v1(n)

N12 v1(n + 1) := u6
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The system of difference equations can be obtained directly from the
table. 

In the method just discussed, a large number of simple expressions are
computed and assigned to intermediate variables. 

Hence, a large number of intermediate values are computed that must be
stored in temporary memory cells and require unnecessary store and load
operations. 

If the algorithm is to be implemented using, for example, a standard signal
processor, it may be more efficient to eliminate some of the intermediate
results and explicitly compute only those node values required. 

Obviously, the only values that need to be computed explicitly are
• Node values that have more than one outgoing branch
• Inputs to some types of non-commutating operations, and
• The output value.
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The only node with two
outgoing branches is node
u6. 

The remaining node val-
ues represent intermediate
values used as inputs to
one subsequent operation
only. 

Hence, their computation
can be delayed until they
are needed.

N4N1 N2 N3 N7N5 N6
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In this algorithm, the only operation that is noncommutating with its adja-
cent operations is the quantization operation. 

Generally, the inputs to such operations must be computed explicitly, but
in this case u3 appears in only one subsequent expression. 

Hence, u3 can be eliminated. 

We get the following expressions that can be translated directly into a pro-
gram.

u3 := c0x n( ) b1v1 n( ) b2v2 n( )+ +

u6 := u3[ ]
Q

y n( ) := a0u6 a1v1 n( ) a2v2 n( )+ +

v2 n 1+( ) := v1 n( )

v1 n 1+( ) := u6Ó
Ô
Ô
Ô
Ô
Ô
Ô
Ì
Ô
Ô
Ô
Ô
Ô
Ô
Ï
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u6 := c0x n( ) b1v1 n( ) b2v2 n( )+ +[ ]
Q

y n( ) := a0u6 a1v1 n( ) a2v2 n( )+ +

v2 n 1+( ) := v1 n( )

v1 n 1+( ) := u6Ó
Ô
Ô
Ô
Ì
Ô
Ô
Ô
Ï
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Program Direct_form_II;
const
c0 = ....; a0 = ....; a1 = ....; a2 = ....; b1 = ....; b2 = ....; Nsamples = ....;
var

xin, u6, v1, v2, y : Real;
i: Longint;

function Q(x: Real): Real;
begin

x := Trunc(x*32768);  { Wd = 16 bits => Q = 2^–15 }
if x > 32767 then x := 32767;
if x < –32768 then x := –32768;
x := x/32768;

end;
begin

for i := 1 to NSamples do 
begin

Readln(xin); { Read a new input value, xin }
u6 := Q(c0*xin + b1*v1 + b2*v2);  { Direct form II }
y := a0*u6 + a1*v1 + a2*v2;
v2 := v1;
v1 := u6;
Writeln(y);    { Write the output value }

end;
end.
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COMPUTATION GRAPHS

It is convenient to describe the computational properties of an algorithm
with a computation graph that combines the information contained in the
signal-flow graph with the corresponding precedence graph for the oper-
ations. 

The computation graph will later be used as the basis for scheduling the
operations. Further, the storage and communication requirements can be
derived from the computation graph. 

In this graph, the signal-flow graph in precedence form remains essen-
tially intact, but the branches representing the arithmetic operations are
also assigned appropriate execution times. 

Branches with delay elements are mapped to branches with delay. 

Additional branches with different types of delay must often be inserted
to obtain consistent timing properties in the computation graph. 

These delays will determine the amount of physical storage required to
implement the algorithm. 
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Critical Path
By assigning proper execution times to the operations, represented by the
branches in the precedence graph, we obtain the computation graph. 

The longest (time) directed path in the computation graph is called the
critical path (CP) and its execution time is denoted TCP. 

Several equally long criti-
cal paths may exist. For
example, there are two crit-
ical paths in the computa-
tion graph. 

The first CP starts at node
v1(n) and goes through
nodes u4, u2, u3, u6, u7, and
y(n) while the second CP
begins at node v2(n) and
goes through nodes u5, u2,
u3, u6, u7, and y(n).
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Equalizing Delay
Assume that an algorithm shall be executed with a sample period T and
the time taken for the arithmetic operations in the critical path is TCP,
where TCP < T. Then additional delay, which is here called equalizing
delay, has to be introduced into all branches that cross an arbitrary vertical
cut in the computation graph. 

This delay accounts for the time difference between a path and the length
of the sample interval. The required duration of equalizing delay in each
such branch is

Te = T – TCP

The amount of equalizing delay, which usually corresponds to physical
storage, can be minimized by proper scheduling of the operations.

Shimming Delay
If two paths in a computation graph have a common origin and a common
end node, then the data streams in these two paths have to be synchronized
at the summation node by introducing a delay in the fastest path. 
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For example, execution of the two multiplications may be started at time
instances t0a and t0b, and the times required for multiplication are ta and
tb, respectively. This means that the products will arrive at the inputs of
the subsequent adder with a time difference

 

A delay must therefore be inserted in the upper
branch of the computation graph so that the prod-
ucts arrive simultaneously. These delays are called
shimming delays or slack. Shimming delay usually
correspond to physical storage.

Dt

t

ta

tb

t0a t0b

Dt t0b tb+( ) t0a ts+( )–=
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x(n)

v1(n)

c0

v2(n)

Q

a0

a2

a1

b2

b1

1 2 3 4 5 6

y(n)

TCP Tsample

Equalizing Delays

Memory corresponding to
Algorithmic Delay Elements

Shimming Delays
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Maximal Sample Rate

The maximal sample rate of an algorithm is determined only by its recur-
sive parts. 

The minimal sample period for a recursive algorithm that is described by
a fully specified signal-flow graph is

where Topi is the total latency of the arithmetic operations, etc. and Ni is
the number of delay elements in the directed loop i. 

Nonrecursive parts of the signal-flow graph, e.g., input and output
branches, generally do not limit the sample rate, but to achieve this limit
additional delay elements may have to be introduced into the nonrecursive
branches. 

Tmin
max

Topi
Ni

------------
Ó ˛
Ì ˝
Ï ¸

i
=
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The minimal sample period is also referred to
as the iteration period bound. 

Loops that yield Tmin are called critical loops.

The signal-flow graph has two loops. Loop 1 is
the critical loop if

otherwise loop 2 is the critical loop. 

The iteration period bound is of course not possible to improve for a given
algorithm. However, a new algorithm with a higher bound can often be
derived form the original algorithm. 

We recognize that there are two possibilities to improve the bound.
• Reduce the operation latency in the critical loop.
• Introduce additional delay elements into the loop

Q

T

T

x(n) y(n)

Loop1

Loop2

b1

b2Tb2 2Tadd TQ+ +

2
------------------------------------------------

Tb1 Tadd Tq+ +

1
--------------------------------------------<


