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DFT—THE DISCRETE FOURIER TRANSFORM

 

The 

 

discrete Fourier transform
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Direct Computation of the DFT

 

Program Direct_DFT;
var

x, Y: array[0..Nminus1] of Complex; 
begin

for k := 0 to N–1 do
begin

Y[k] := x[0];
for n := 1 to N–1 do
Y[k] := Y[k] + Wnk * x[n];

end;
end.

 

FFT — THE FAST FOURIER TRANSFORM ALGORITHM

 

In 1965, Cooley and Tukey developed a fast algorithm based on the
divide-and-conquer principle which requires only 
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The Cooley-Tukey FFT

 

Radix-2 FFT

 

Program CT_FFT;
const

N = 1024;  M = 10;  Nminus1 = 1023; { N = 2^M }
type

Complex = record
re : Double; im : Double;

end;
C_array : array[0..Nminus1] of Complex;

var
Stage, Ns, M1, k, kNs,  p, q : integer;
WCos, WSin, TwoPiN, TempRe, TempIm : Double;
x : C_array;

begin { READ INPUT DATA INTO x }
Ns := N;  M1 := M; 
TwoPiN := 2 * Pi/N;
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for Stage := 1 to M do
begin

k := 0;
Ns := Ns div 2;
M1 := M1 – 1;
while k < N do
begin
for q := 1 to Ns  do
begin
p := Digit_Reverse(k/2^M1);
WCos := cos(TwoPiN * p); {W to the power of p }
WSin := –sin(TwoPiN * p); {W = exp(–j2

  

pppp

 

/N) }
kNs := k + Ns;
TempRe := x[kNs].re * WCos – x[kNs].im * WSin;
TempIm := x[kNs].im * WCos + x[kNs].re * WSin;
x[kNs].re := x[k].re – TempRe;
x[kNs].im := x[k].im – TempIm;
x[k].re := x[k].re + TempRe;
x[k].im := x[k].im + TempIm;
k := k + 1;
end;
k := k + Ns;
end;

end;
Unscramble; { OUTPUT DATA STORED IN x }

end.
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Digit Reversal

 

function Digit_Reverse(Digit: Integer) : Integer;
var

N, q, NewAddr, Rmbit, OldAddr : Integer;
begin

NewAddr := 0;
OldAddr := Digit;
for q := 1 to M do

begin
Rmbit := OldAddr mod 2;
OldAddr := OldAddr div 2;
if Rmbit = 1 then

NewAddr := NewAddr * 2 + 1
else

NewAddr := NewAddr + NewAddr;
end;

Digit_Reverse := NewAddr;
end;

0 1101

01 1 0 1
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Unscramble

 

procedure Unscramble;
var

temp : Complex;
k, q : integer;

begin
for k := 0 to N – 1 do

begin
q := Digit_Reverse(k);
if q > k then

begin
temp := x[k];
x[k] := x[q];
x[q] := temp;
end;

end;
end;
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Cooley-Tukey FFT Signal-Flow Graph
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Sande-Tukey’s FFT Signal-Flow Graph
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Radix-2 Butterfly
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Radix-4 Butterfly

Radix-8 Butterfly
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Table 1: Radix-

 

r

 

 4096-points FFT Algorithms 

 

Operation Radix-2 Radix-4 Radix-8

Complex Multiplications 22528 15360 10752

Real Multiplications 0 0 8192

Complex Additions 49152 49152 49152

Real Additions 0 0 8192

Memory Accesses 49152 24576 16384
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The Inverse FFT

 

The inverse FFT (

 

IFFT

 

) can be computed by a simple modification of the
input read process. 

The IFFT is obtained by computing the FFT of the following sequence

Thus, the first value is stored at address 0 while the rest are stored in
reverse order. This operation can easily be implemented in hardware by
changing the address lines to the memory or by using an up–down counter
that is properly initiated.

Another method to compute the IFFT is to first interchange the real and
imaginary parts, then perform the FFT, and, finally, interchange the real
and imaginary parts. We will use this method in an implementation of an
FFT processor.
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FFT PROCESSOR—CASE STUDY 1

 

Develop an FFT processor usable VLSI building block.

In order to be flexible so that the processor, the performance in terms of
computational throughput, word length, and transform length should be
easily modifiable. 

 

Specification

 

The processor shall compute a 1024-point complex FFTs with a continu-
ous throughput of more than 2000 FFTs per second. 

The processor shall also be able to perform both the FFT and the IFFT.

The host is a general purpose 32-bit computer. 

We assume that the data rate is a modest 16 MHz.

The data word length for both input and output is selected to be 16 bits for
the real and imaginary parts.
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The internal data word length is, in this early stage of the design process,
estimated to 21 bits.

The required coefficient word length is assumed to be14 bits

We arbitrarily select to implement the Sande–Tukey FFT.

System Design Phase

The first step in the system design phase is to partition the computation of
an FFT into three consecutive processes; 

• reading the input data from the host, 
• performing the FFT/, and 
• writing the result into the memory of the host. 

The requirement is that the execution time for the FFT, including I/O,
should not exceed 0.5 ms. 

The I/O transfer frequency should be only 16 MHz. Input and output data
to the FFT processor are transferred as two 16-bit real numbers. 
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A total of 1024 complex numbers are transferred to and from the FFT pro-
cessor. 

The time needed for the I/O is

It is possible to overlap the I/O operations, i.e., writing and reading data,
and computation of the FFT, thereby effectively extending the available
time for computing the FFT. For the sake of simplicity we assume that this
possibility is not exploited. 

The available time for the FFT is therefore 0.372 ms. 

The I/O processes will handle both the rearranging of data that is required
to compute the IFFT and the unscrambling of the data array in the last
stage of the FFT.

tI /O
2 1024◊
16 106◊
------------------- 0.128 ms= =
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The IFFT can be obtained by interchanging the real and imaginary parts,
when the data are both written into and read from the memory. 

The unscrambling can be accomplished by reversing the address lines to
the memory when reading data out of the FFT processor. 

Hence, both of these tasks can be accomplished without any extra process-
ing time.

In fact, this is an example of merging operations and communications!


