Exercise 1

For a cascade of n noisy stages, Friis' formula determines the overall noise factor as

$$
F=F_{1}+\frac{F_{2}-1}{G_{1}}+\frac{F_{3}-1}{G_{1} G_{2}}+\ldots+\frac{F_{n}-1}{G_{1} G_{2} \ldots G_{n-1}}
$$

where F_{i} and G_{i} are the noise factor and power gain of stage i in the cascade, respectively. Now consider a short-range wireless system consisting of two stages with $G_{1} G_{2}=100$ $(40 \mathrm{~dB}) . G_{1}$ and G_{2} should be chosen so that the total power consumption is minimized. Assume the system is bandwidth limited with $P_{i}=\gamma G_{i} f$, where γ is a constant and f is the signal frequency.
a) What F would yield minimal power dissipation if $F_{1}=2$ and $F_{2}=10$?
b) How large noise figure can be tolerated for the individual stages if F_{1} and F_{2} are selected equal for both stages and the power dissipation is minimized?

Exercise 2

The voltage gain of the RF amplifier shown in Figure 1 is $A=g_{m} Z_{0}$ at resonance, where $Z_{0}=Q \omega_{0} L=Q /\left(\omega_{0} C\right)$. The current through the MOSFET can be described by $I=g_{m} V_{e f f} / 2$. How much power can be saved in the circuit if the Q value is increased with a factor of k ?

Figure 1. Simple RF amplifier.

Exercise 3

Consider a Low-Noise Amplifier (LNA).
a) How can the linearity be increased?
b) How can the noise be decreased?
c) How does the scaling towards shorter channel length affect Noise Figure (NF) and power gain?
d) How does scaling of power supply voltage affect SNR?

Exercise 4

Consider power amplifier design. How is power consumption traded with linearity?

Exercise 5

The common-gate low-noise amplifier to the left in Figure 2 should be designed with a higher input impedance $Z=Z_{1}$ than the required Z_{0} to save power. The input is then transformed to Z_{0} with the addition of the LC-net to the right.

Figure 2. Common-gate low-noise amplifier.
The current through the MOSFET is $I=g_{m} V_{\text {eff }} / 2=V_{\text {eff }}(2 Z)$. To maintain a constant IIP3 (linearity) V_{b} needs to be adjusted so that $V_{\text {eff }}{ }^{\prime}=V_{\text {eff }} \sqrt{Z_{1} / Z_{0}}$. How much power is saved by the transformation, assuming that the scaling is kept within practical limits?

Exercise 6

a) There is a need of large-value, high-quality inductors in RF circuits. Why is it more power efficient to use an on-chip inductor compared with an external inductor?
b) How may technology scaling benefit low-power operation of a radio system?
c) Why is the conventional superheterodyne architecture avoided in power efficient transceivers?

Exercise 7

The total noise factor F of an RF system with n cascaded components can be calculated from the noise factors F_{i} and the gains G_{i} of the individual components i using
Friis' formula, i.e., $F-1=\sum_{i=1}^{n} \frac{F_{i}-1}{i-1}$. The total gain is given by $G=\prod_{j=1}^{n} G_{j}$.
Consider the system with two cascaded components depicted in Figure 3. In this exercise it is assumed to be used over long range. Hence the design will be limited by both the linearity and the sensitivity.

Figure 3. Two cascaded RF components.
The minimal power consumption of this system is given by the formula

$$
P_{\text {min }}=\frac{I P 3}{F-F_{1}}\left[\kappa_{1}\left(F_{2}-1\right)+2 \sqrt{\kappa_{1} \kappa_{2} G\left(F-F_{1}\right)\left(F_{2}-1\right)}+\kappa_{2} G\left(F-F_{1}\right)\right]
$$

where IP3 is the third-order input intercept point of the total system, and κ_{1}, κ_{2} are the power linearity parameters of the individual components. Assume that $I P 3$ and κ_{1}, κ_{2} are fixed, positive constants in our system of interest.
a) Show that it is sufficient to know the gain of the individual components to determine the minimal power consumption.
b) Assume that we would like to design the system with $\kappa_{1}=\kappa_{2}, G_{1} \geq 1, G_{2} \geq 1$, and $G=G_{f}>1$, where G_{f} is a fixed total gain. How should the gain of the individual components be selected to yield the lowest power consumption?

Solution 1

a) $\quad F=F_{1}+\frac{F_{2}-1}{G_{1}} \Leftrightarrow G_{1}=\frac{F_{2}-1}{F-F_{1}}$
$P=P_{1}+P_{2}=\gamma G_{1} f+\gamma G_{2} f=\gamma f\left(G_{1}+\frac{100}{G_{1}}\right)=\gamma f\left(\frac{F_{2}-1}{F-F_{1}}+100 \frac{F-F_{1}}{F_{2}-1}\right)$
Let $A=\frac{P}{\gamma f}, B=F-F_{1}$ and use numerical values $\Rightarrow A=\frac{9}{B}+100 \frac{B}{9}$
Look for extreme points $\frac{d A}{d B}=-\frac{9}{B^{2}}+\frac{100}{9}=0 \Rightarrow B= \pm \frac{9}{10}$
Since $A>0, B=0.9 \Rightarrow F=F_{1}+B=2.9$ (show that this is a minimum...)
b) Using $G_{2}=100 / G_{1}$, we obtain $P_{\text {tot }}=\gamma f\left(G_{1}+\frac{100}{G_{1}}\right)$

Search for extreme points by $\frac{d P_{\text {tot }}}{d G_{1}}=\gamma f-\frac{100 \gamma f}{G_{1}^{2}}=0 \Rightarrow G_{1}= \pm 10$
Since $G_{1}>0, G_{1}=10$ should be the correct solution
2nd derivative test $\frac{d^{2} P_{\text {tot }}}{\left(d G_{1}\right)^{2}}=\frac{200 \gamma f}{G_{1}^{3}}>0$ for $G_{1}=10 \Rightarrow G_{1}=10$ is a local minimum
Hence $G_{1}=G_{2}=10$ minimizes the power dissipation
Use $x=F_{1}=F_{2}$ in Friis' formula for $n=2$:
$\mathrm{NF}=\mathrm{SNR}_{\text {in }}-\mathrm{SNR}_{\text {out }}=10 \log _{10} F \Rightarrow \mathrm{NF} \leq 10 \log _{10} x \approx 4.5 \mathrm{~dB}$

Solution 2

$g_{m}=\frac{2 I}{V_{e f f}} \Rightarrow A=\frac{2 I}{V_{e f f}} Z_{0}=\frac{2 I}{V_{e f f}} Q \omega_{0} L$
To maintain the same gain A of the amplifier when Q is increased with a factor of k, the new current is set to $I_{\text {new }}=I / k$.
$P=I V_{D D} \Rightarrow P_{\text {new }}=I_{\text {new }} V_{D D}=I V_{D D} / k=P / k$
Hence $1-1 / k$ of the original power consumption can be saved

Solution 3

(solution is missing)

Solution 4

(solution is missing)

Solution 5

$$
I=\frac{1}{2} \frac{V_{\text {eff }}^{\prime}}{Z_{1}}=\frac{1}{2} \frac{V_{\text {eff }}}{Z_{1}} \sqrt{\frac{Z_{1}}{Z_{0}}}=I \sqrt{\frac{Z_{0}}{Z_{1}}} \Rightarrow \frac{P^{\prime}}{P}=\frac{I}{I}=\sqrt{\frac{Z_{0}}{Z_{1}}}
$$

Solution 6

a) There is no power wasted in driving the extra stray capacitance of the pad, package and board.
b) The digital parts may have a substantial reduction in power dissipation while the analog part is little affected from scaling down a technology.
c) It has more power consuming stages than a homodyne (zero IF) transceiver or a transceiver that processes the signals with low IF.

Solution 7

a) Noise factor for $n=2: F-1=\sum_{i=1}^{2} \frac{F_{i}-1}{i-1} \prod_{j=1} G_{j}$

Total gain for $n=2: G=\prod_{j=1}^{2} G_{j}=G_{1} G_{2}$
Insert $\left(F-F_{1}\right)$ and G into formula for $P_{\text {min }}$

$$
\begin{aligned}
& P_{\text {min }}=\frac{I P 3}{\left(F-F_{1}\right)}\left[\kappa_{1}\left(F_{2}-1\right)+2 \sqrt{\kappa_{1} \kappa_{2} G\left(F-F_{1}\right)\left(F_{2}-1\right)}+\kappa_{2} G\left(F-F_{1}\right)\right] \\
& P_{\text {min }}=\frac{G_{1} I P 3}{F_{2}-1}\left[\kappa_{1}\left(F_{2}-1\right)+2 \sqrt{\kappa_{1} \kappa_{2} G_{2}\left(F_{2}-1\right)^{2}}+\kappa_{2} G_{2}\left(F_{2}-1\right)\right] \\
& F_{2}>1 \Rightarrow P_{\text {min }}=G_{1} I P 3\left(\kappa_{1}+2 \sqrt{\kappa_{1} \kappa_{2} G_{2}}+\kappa_{2} G_{2}\right)
\end{aligned}
$$

Hence, it is sufficient to know the gains G_{1} and G_{2} to calculate $P_{\text {min }}$
b) $\kappa_{2}=\kappa_{1}>0 \Rightarrow P_{\text {min }}=\kappa_{1} I P 3 G_{1}\left(1+2 \sqrt{G_{2}}+G_{2}\right)=\kappa_{1} I P 3 G_{1}\left(1+\sqrt{G_{2}}\right)^{2}$

With $G_{1}=\frac{G_{f}}{G_{2}}, P_{\min }=\kappa_{1} I P 3 G_{f}\left(\frac{1}{\sqrt{G_{2}}}+1\right)^{2}$, i.e. the higher G_{2}, the lower $P_{\text {min }}$
The highest G_{2} is obtained for the lowest $G_{1}=1$, yielding $G_{2}=G_{f}$

