
Date Class Type Page
2019-11-08 Public Lab manual 1 of 17
Title Power estimation using Design Compiler and Nanosim
Authors Vishnu Unnikrishnan, Henrik Ohlsson, Erik Backenius

Power estimation using Design Compiler and Nanosim

Description

This document is intended to serve as a manual for laboratory 1 exercises in the course TSTE85, low power elec-
tronics, provided at the division of Integrated Circuits and Systems, dept. of Electrical Engineering, Linköping
University.

Contents

1 Introduction . 2
1.1 Example design . 2

2 A short introduction to VHDL . 3
2.1 Some basic VHDL syntax . 3
2.2 Some useful constructs in VHDL . 3
2.3 Library declaration . 3
2.4 Examples of combinational circuits . 4

2.4.1 Full adder . 4
2.4.2 1-bit multiplexer . 4
2.4.3 4-bit multiplexer . 5
2.4.4 New component constructed using components . 5
2.4.5 Example of a sequential circuit . 6

2.5 Further reading . 6

3 Setting up the laboratory . 7

4 Introduction to Modelsim . 8
4.1 Useful tips in Modelsim . 9

5 Introduction to Design Compiler . 10
5.1 Logic synthesis using Design Compiler . 10
5.2 Timing, area and power estimations . 11
5.3 Information about some useful commands . 14
5.4 Further information . 15

6 Estimating power using Nanosim . 16

This document is released by Integrated Circuits and Systems, Dept. of Electrical Engineering, Linköping University

Page
2 of 17

1 Introduction

The purpose of this laboratory is mainly to introduce tools used for implementation of low power designs using
VHDL, logic synthesis and standard cells. The tools shall also be used in the project part of this course. The
following tools are discussed in this manual.

• Modelsim from Mentor Graphics for VHDL simulation

• Design Compiler from Synopsys for logic synthesis and power estimations

• Nanosim from Synopsys for power estimations

This document is divided into four small parts: a very short introduction to VHDL, a Modelsim tutorial, a
Design Compiler tutorial and a tutorial on Nanosim.

1.1 Example design

The example used in the first part of this tutorial is a 4-bit ripple carry adder with registers at the inputs and
at the outputs as shown in Fig. 1.

Figure 1: Four bit ripple carry adder.

This document is released by Integrated Circuits and Systems, Dept. of Electrical Engineering, Linköping University

Page
3 of 17

2 A short introduction to VHDL

For the exercises we shall use structural VHDL coding, which is a small subset of the language. In this chapter
a brief overview of how to write structural VHDL code is provided. The student is encouraged to read further
about the language for more details.

2.1 Some basic VHDL syntax

• VHDL is not case sensitive.

• Semicolon is used to terminate a statement.

• Two dashes (’- -’) are used to comment.

• Identifiers must begin with an alphabet; subsequent characters can include alphanumeric characters or
’_’ (underscore).

2.2 Some useful constructs in VHDL

A signal assignment is done using the <= operator. The signal to be assigned a value is placed on the left hand
side and the value is placed on the right hand side. The value can be either a constant, another signal, or an
expression as shown below.

a <= ’1’;
b <= c;
c <= d AND e;

The last example includes an AND statement. This corresponds to the logical AND operation between, in this
case, the signals d and e. The result is assigned to a signal c. Commonly used logical operations such as AND,
XOR, OR, NAND, NOR, XNOR and NOT are available in the language. VHDL is a concurrent programming
language. If we consider the three signal assignments presented above, the concurrency implies that all the
three assignments are performed in parallel. For example, if d changes from ’0’ to ’1’ while e is ’1’, c shall
transit from ’0’ to ’1’. At the same time b shall change from ’0’ to ’1’. Operations can be executed in sequence
as well. For this a process statement is introduced. Any code written inside a process statement is executed
in sequence. A typical sequential construct is the if-statement. The signals that should activate the process is
collected in the sensitivity list.

process(<sensitivity_list>)
if (condition) then
end if | elsif
end process;

2.3 Library declaration

The LIBRARY statement is used to reference a group of previously defined VHDL design units, other entities
or groups of procedures/functions together known as packages. The USE statement specifies what entities or
packages to use out of this library; in this case USE IEEE.std_logic_1164.all imports all procedures/functions
in the std_logic_1164 package. The 1164 single bit type std_logic and the vector type std_logic_vector (for
busses) shall be used for all signal types in the tutorial examples.

This document is released by Integrated Circuits and Systems, Dept. of Electrical Engineering, Linköping University

Page
4 of 17

2.4 Examples of combinational circuits

Some basic components useful in this course are described in structural VHDL in this section.

2.4.1 Full adder

Full adder is a commonly used arithmetic circuit.

library IEEE;
use IEEE.std_logic_1164.all;
entity fulladder is
port(

signal a, b, cin: in std_logic;
signal sum, cout: out std_logic);

end fulladder;

architecture structural of fulladder is
begin

sum <= a XOR b XOR cin;
cout <= (a AND b) OR (a AND cin) OR (b AND cin);

end structural;

2.4.2 1-bit multiplexer

A 2-1 multiplexer can be described using a process and an if-statement. On the sensitivity list we have the
three input signals. Each time anyone of these signals has a transition, the process is executed.

library IEEE;
use IEEE.std_logic_1164.all;
entity two2one_mux is
port(

signal a, b, sel: in std_logic;
signal o: out std_logic);

end two2one_mux;

architecture structural of two2one_mux is
begin

process(a, b, sel)
begin
if sel = ’0’ then

o <= a;
else

o <= b;
end if;
end process;

end structural;

In the above examples signals with a width of one bit have been used. The signals are of the type std_logic.
However, it is also possible to use bit vectors which will be shown in further examples.

This document is released by Integrated Circuits and Systems, Dept. of Electrical Engineering, Linköping University

Page
5 of 17

2.4.3 4-bit multiplexer

The design is a 2 to 1 multiplexer with a data width of 4 bits. Here we use std_logic_vector(width 1 downto 0)
as the data type.

library IEEE;
use IEEE.std_logic_1164.all;
entity two2one_mux_4bit is
port(

signal a, b: in std_logic_vector(3 downto 0);
signal sel: in std_logic;
signal o: out std_logic_vector(3 downto 0));

end two2one_mux_4bit;

architecture structural of two2one_mux_4bit is
begin

process(a, b, sel)
begin
if sel = ’0’ then

o <= a;
else

o <= b;
end if;
end process;

end structural;

2.4.4 New component constructed using components

In this example, it is shown how a design can be constructed using several instances of a component. The full
adder introduced above is used to construct a 4 bit ripple carry adder (in vhdl-files/ripple_carry_adder.vhdl).
You will use components later on in the project.

library IEEE;
use IEEE.std_logic_1164.all;
entity ripple_carry_4bit is
port(

signal a, b: in std_logic_vector(3 downto 0);
signal cin: in std_logic;
signal cout: out std_logic;
signal sum: out std_logic_vector(3 downto 0));

end ripple_carry_4bit;

architecture structural of ripple_carry_4bit is

component fulladder
port(

signal a, b, cin: in std_logic;
signal sum, cout: out std_logic);

end component;

signal c_1, c_2, c_3 : std_logic;

begin
FA_0: fulladder portmap (a(0), b(0), cin, sum(0), c_1);
FA_1: fulladder portmap (a(1), b(1), c_1, sum(1), c_2);

This document is released by Integrated Circuits and Systems, Dept. of Electrical Engineering, Linköping University

Page
6 of 17

FA_2: fulladder portmap (a(2), b(2), c_2, sum(2), c_3);
FA_3: fulladder portmap (a(3), b(3), c_3, sum(3), cout);

end structural;

2.4.5 Example of a sequential circuit

A basic sequential component is the D-flip-flop. Here, the code for a positive edge triggered D flip-flop with an
asynchronous reset is shown.

library IEEE;
use IEEE.std_logic_1164.all;

entity DFF is
port(

signal d, clk, reset: in std_logic;
signal q: out std_logic);

end DFF;

architecture structural of DFF is
begin

process(clk, reset, d)
begin
if reset = ’1’ then

q <= ’0’;
elsif rising_edge(clk) then

q <= d;
end if;
end process;

end;

2.5 Further reading

The above section is merely a quick-start overview to VHDL in order to help the student through the exercises
and the project. For further details, the student is encouraged to utilize the abundant resources on the web as
well as several books available on the topic. A collection of links to VHDL websites suitable for beginners can
be found at http://www.1001tutorials.com/vhdl/index.shtml. A book for further study of VHDL for synthesis:
"VHDL for Programmable Logic" by Kevin Skahill.

This document is released by Integrated Circuits and Systems, Dept. of Electrical Engineering, Linköping University

Page
7 of 17

3 Setting up the laboratory

Open a terminal window and start by logging onto the server naum via the intermediate server ssh with the
commands

ssh -X ssh.edu.liu.se
ssh -X naum.ad.liu.se

Go to your home directory by typing

cd $HOME

on the command line. Now you need to create a course directory and a directory for this lab.

mkdir TSTE85
cd TSTE85
mkdir lab1
cd lab1

Copy the directories for this lab

cp -r /coop/e/eks/course/TSTE85/lab1/files/* .

Take a look on what has been copied

ls

You should find five directories (Design Analyzer, Design Compiler, Modelsim, Nanosim, vhdl-files) in the current
directory. Load the modules for this lab:

module load mentor
module load synopsys/2011.09

Keep the terminal window open, since you will use it throughout this lab.

This document is released by Integrated Circuits and Systems, Dept. of Electrical Engineering, Linköping University

Page
8 of 17

4 Introduction to Modelsim

We will use the 4-bit ripple carry adder that is described in section 1.1 as an example.

1. Ensure that the current location is the Modelsim directory using the pwd command. Use the command
cd to call the right directory.

2. Create a directory for the vhdl compiler. Note that the command vlib must be used, not mkdir.

vlib work

3. Compile the file ripple_carry_adder.vhdl using the commands:

vcom -93 ../vhdl-files/ripple_carry_adder.vhdl

4. Start the Modelsim simulator using the command:

vsim &

5. In the ModelSim window, on the left hand side, a library is shown. Click on the cross to the left of the
work folder. Double click on ripple_carry_4bit.

6. The Wave window displays waveforms, names and current values for signals you have selected.

view wave

7. To add the signals to the Wave window, right-click on the ’Objects’ window and select Add to Wave... /
Signals in region, from the dialog box.

8. Apply stimulus to the clock input in the Transcript prompt:

force clk 0 0, 1 2 -repeat 4

The force command is case-insensitive. The above command is interpreted by Modelsim to mean:

• Force clk to ’0’ at 0 ns after the current time
• Force clk to ’1’ at 2 ns after the current time
• Repeat the cycle every 4 ns

The other inputs can be assigned in a similar way.

force a 1011
force b 1001
force cin 0
force reset 0

You will see the effects of the force commands as soon as you tell the simulator to run.

9. Run for 16 ns.

run 16

10. Right-click in the wave window and select Zoom Full.

11. After how many clock cycles are the respective signals valid?

This document is released by Integrated Circuits and Systems, Dept. of Electrical Engineering, Linköping University

Page
9 of 17

Figure 2: Four bit ripple carry adder.

12. What is the final output result?

13. Determine and sketch where the internal signals are localized in the figure below.

14. Now it is time to test the functionality of the adder using the simulator. Test a few different input values
of a and b and verify the functionality. Which inputs did you use and which results did you get?

4.1 Useful tips in Modelsim

Here are some hints that might be useful during the labs and the project.

force a 10#5 - same as force a 0101. Simplifies if the signal a is very wide.

Copy and paste text commands from the transcript file. All items that do not start with # is a vsim sim-
ulator command.

To change the radix of a signal in the wave window:
1. Select the signal name in the wave window.
2. Click right mouse button, choose radix and select appropriate radix, eg. decimal

This document is released by Integrated Circuits and Systems, Dept. of Electrical Engineering, Linköping University

Page
10 of 17

5 Introduction to Design Compiler

Design Compiler from Synopsys is a tool for logic synthesis. It takes design written in VHDL or Verilog
as input and translates it to a netlist consisting of logical building blocks. The building blocks can be, for
example, the logical cells of an FPGA or standard cells in a library. In this laboratory we us a standard cell
library implemented in a 0.35 μm CMOS process.

5.1 Logic synthesis using Design Compiler

1. Make sure that the current directory in the terminal window is DesignCompiler. Use command cd to
navigate, if required. Start the graphical interface for Design Compiler using the command:

design_vision &

A window similar to that shown in Fig. 3 should appear.

Figure 3: Design Compiler window

2. Now we shall use the command line interface of the Design Compiler, seen at the bottom of the window.
Create a proper WORK-directory by entering the following commands in the command line interface of
Design Compiler.

sh mkdir WORK
define_design_lib WORK -path "./WORK"

3. The next step is to read the vhdl file(s) into the tool. This is done by the command analyze.

analyze -format vhdl -lib WORK ../vhdl-files/ripple_carry_adder.vhdl

This document is released by Integrated Circuits and Systems, Dept. of Electrical Engineering, Linköping University

Page
11 of 17

If several files are to be analyzed, these can be specified simultaneously by <path1> <path2>.

4. The next step, elaborate, maps the vhdl code to generic logic building blocks. The top cell in the design
described by ripple_carry_adder.vhdl is ripple_carry_4bit which should be specified together with
the elaborate command.

elaborate ripple_carry_4bit -arch "structural" -lib WORK -update

Now, the building blocks of the design appears in the main window as shown in Fig. 4. The graphical
display of the design can be enabled by clicking on the button marked in Fig. 4.

Figure 4: The main window after elaborate

5. In the graphical display, double-click on the clk input pin after zooming in. In the attributes menu, select
Specify Clock. In the window that appears, specify the clock period to be 4 ns as shown in Fig. 5.

6. We shall use the command line interface of the Design Compiler for further steps. To map the design to
the standard cell library, use the command compile. This may take a few seconds.

compile

5.2 Timing, area and power estimations

After the design is compiled, we can obtain information about timing, area and power consumption of the
implementation. To get a report of the timing of the design use the command

report_timing

The result should look similar to Fig. 6. The values that you obtain may differ.

7. We see that we have a positive slack (time margin) which means that the design meets the requirement
given by the specified clock frequency. What is the slack in your case? What is the propagation time?

This document is released by Integrated Circuits and Systems, Dept. of Electrical Engineering, Linköping University

Page
12 of 17

Figure 5: Clock frequency specification

8. To get a report of the area of the design use the command:

report_area

Here the unit is in μm2. Give the total area in both in μm2 and mm2.

9. To get a report of the power consumption of the design use the command

report_power

Result?

10. With the following command, the power and toggle rate at different input nodes can be obtained:

report_power -net -include_input_nets

In the list, the toggle rate of the clock signal is seen as 0.5. Static probability is the probability that the
signal is one. Toggle rate is the number of transitions during 1 ns. What are the default toggle rates of
a, b and cin?

11. Using the toggle rates above, calculate the transition activities αclk,αa, αb and αcin.

12. The reset signal should be constant at 0. This is done using the command:

This document is released by Integrated Circuits and Systems, Dept. of Electrical Engineering, Linköping University

Page
13 of 17

Figure 6: Timing report

set_switching_activity -static_probability 0 -toggle_rate 0 reset

The static probability and the toggle rate of the output signals of the registers must be specified by the
user. Assume that a, b and cin are glitch-free and set the toggle rate for the output of all input registers.

set_switching_activity -toggle_rate 0.125 cin_pipe
set_switching_activity -toggle_rate 0.125 a_pipe
set_switching_activity -toggle_rate 0.125 b_pipe

Use the command report_power -net and verify that all the changes are done.
Use the command report_power to estimate the total dynamic power consumption of the circuit.
Results?

Use report_power -hier. How many percent of the power is consumed in the registers?

This document is released by Integrated Circuits and Systems, Dept. of Electrical Engineering, Linköping University

Page
14 of 17

13. Now the compiled design needs to be saved as a verilog file which we later will use in Nanosim. Make sure
that your top level block is selected.
Select File / Save As ...
Go up one directory and go down to the directory Nanosim.
Choose File Format as Verilog and File Name as ripple_carry_4bit.v
The switch "Save All Designs in Hierarchy" must be enabled.
Save. Quit Design Analyzer by selecting File / Exit.

5.3 Information about some useful commands

The result from a power estimation can be presented in different ways. The first one makes a summary of the
overall power consumption. The -cell switch presents the power consumption by each cell. Similarly, the -net
switch presents power consumed in the nets of the design. Finally, the -hier switch will give you a more detailed
presentation of the overall power consumption.

report_power
report_power -cell
report_power -net
report_power -hier

In addition to the power consumption, these commands also give information about how the consumption is
estimated. For example, the command below returns information of the switching activity used when computing
the power for each net.

report_power -net -include_input_nets

To obtain realistic power consumption estimations, the signal properties at different nodes in the design can be
changed. The default the probability for an input signal to have the value 1 is 0.5. A default toggle rate will
be derived from this value as well. Thus, when the probability for a one is changed, the toggle rate is changed
as well. However, by assigning the toggle rate to a value, the probability of the signal being one is unaffected.
The signal properties can be changed using the command set_switching_activity. For example, to change
the probability of a value one on the reset signal to 0 use the command

set_switching_activity -static_probability 0 reset

In a similar way the toggle rate for a signal, in this case, the MSB of the input a, use

set_switching_activity -toggle_rate 0.1 a[3]

If the toggle rate of all elements in a vector a should be set,

set_switching_activity -toggle_rate 0.1 a

It is also possible to get the default values back for all signals using the command

reset_switching_activity

This document is released by Integrated Circuits and Systems, Dept. of Electrical Engineering, Linköping University

Page
15 of 17

5.4 Further information

There is a help function available for the command you write on the command line. To get, for example, all
possible switches for the report_power command, enter the following command on the command line.

help report_power

This document is released by Integrated Circuits and Systems, Dept. of Electrical Engineering, Linköping University

Page
16 of 17

6 Estimating power using Nanosim

1. Make sure that the current directory in the terminal window is Nanosim. We will run Nanosim directly
from the terminal window. Load the module:

module load synopsys

2. Run nanosim:

nanosim -nvlog ripple_carry_4bit.v -m ripple_carry_4bit -nspi spice.sp -L
/coop/e/eks/course/TSTE85/c35_CORELIB -nvec test050.vec -c cfg -t 4008.00
-o ripple_carry_4bit_050

module load synopsys This command is also found in the file run050 (It should be possible to run the file
with: sh run050 in the terminal window). The clock period is as before 4 ns and the data inputs (a, b and
cin) are random. The switches of the command are explained below.

-nvlog, the verilog-file to read,
-m, the toplevel of the design,
-nspi, the spice-file to read
-L, the standard cell library that should be used,
-nvec, the test vector file,
-c, the configuration file,
-t, simulation time in ns
-o, output file name

Look into the files to see how different parameters are specified. After the execution finishes, a report
shall be displayed. You can ignore the warnings that says "...model already exists, ... is ignored".
Power consumption?

3. Open emacs from the terminal window

emacs &

and take a look at the generated file ripple_carry_4bit_050.cnt (or use the command cat in the ter-
minal window). How many transitions does the clk do?

4. Calculate the transition activity of the clock signal.

5. Approximately, what is the transition activity of all data inputs?

6. Give the number of transitions found in cin, c_1, c_2, c_3 and cout_pipe.

This document is released by Integrated Circuits and Systems, Dept. of Electrical Engineering, Linköping University

Page
17 of 17

7. Why is the number of transitions higher in c_out_pipe than in cin?

8. Consider the signal sum_pipe[3] and the output sum[3]. Number of transitions? How can the number
of transitions in these two nodes differ as much as they do?

9. Now we run a simulation where the inputs have half the activity of the previous simulation (run025).

nanosim -nvlog ripple_carry_4bit.v -m ripple_carry_4bit -nspi spice.sp -L
/coop/e/eks/course/TSTE85/c35_CORELIB -nvec test025.vec -c cfg -t 4008.00
-o ripple_carry_4bit_025

Power consumption?

10. Now, the transition activity of the inputs have been reduced to half, but why is the power consumption
not reduced to half of the original?

Congratulations! You have finished the first lab in TSTE85. Show your results and answers to your laboratory
assistant.

This document is released by Integrated Circuits and Systems, Dept. of Electrical Engineering, Linköping University

