TSTE19

Power Electronics

Examination (TEN1)

Time:	Wednesday $13^{\text {th }}$ J anuary 2016 at 8:00-12:00
Place:	U4/U6
Responsible teacher: Tomas J onsson	
	Will visit the exam location at 8:45 and 10.
Number of tasks:	6
Number of pages:	8
Allowed aids:	Calculator
Total points:	70
Notes:	A pass on the exam requires approx. 30 points.
	Describe your calculations clearly and detailed, explaining your methods, assumptions and equations used.

Question 1

Figure 1
a) A three phase diode rectifier acoording to Figure 1 has inductance, L_{s}, on the ac-side-and L_{d} on the dc-side. Which inductance shall be large in order to obtain continuous current through the dc-load.
b) List the three most important parameters that defines the commutation of current between two diodes in a rectifier as of Figure 1. Give a short motivation why.
c) In a DC/ DC converter, inductance is commonly used for energy transfer between low and high-voltage sides. If the average voltage across the inductance is greater than zero during a time interval, what can you say about the shape of the inductor current during this interval?

Figure 2
d) What device parameters are required to determine the conduction losses of a MOSFET if the drain current is known?
e) List three types of semiconductors with turn-off capability.

Question 2

Figure 3
A three phase thyristor rectifier as shown by Figure 3 is connected to a three phase voltage source with the phase-phase voltage Us=410 Vrms. The commutation inductance can be neglected.
a) Draw the waveform of the converter dc-side voltage u_{v} (before the inductor L_{d}) for a firing angle $\alpha=30$ deg.
b) Draw the waveform of the source current, $i_{\text {sa }}$, in one phase.
c) Determine the displacement power factor.
d) Calculate the dc-load voltage, U_{d}, and dc-power considering a resistive load of 25 ohm .
e) Calculate the fundamental frequency source rms current ($\mathrm{i}_{\text {sa }}$). Assume zero losses of the thyristor converter.

Question 3

Figure 4

In the buck converter in Figure 4, the current i_{L} is continuous with an average of 5 A , and with a negligible ripple magnitude. The MOSFET T1 is operated with a switching frequency $\mathrm{f}_{\mathrm{sw}}=120 \mathrm{kHz}$ and a duty cycle in order to keep the capacitor voltage at 10 V for an input voltage $\mathrm{U}_{\mathrm{d}}=24 \mathrm{~V}$.
a) Determine the duty cycle of the MOSFET T1.
b) Calculate the conduction losses in the MOSFET T1 if the on-state resistance $\mathrm{R}_{\mathrm{ds}(\mathrm{on})}=0.05 \mathrm{ohm}$.
c) Calculate the turn-on losses in the MOSFET T1 if the rise time of the drain current is 40 ns . Current rises linearly and voltage is constant.
d) Calculate the turn-off losses in the MOSFET T1 if the fall time of the drain current is 60 ns . Current rises linearly and voltage is constant.
e) Determine the maximum allowed thermal resistance of the heatsink
($\mathrm{R}_{\mathrm{th} \mathrm{AA}}$) for the MOSFET T1 in order to keep the heatsink temperature, $\mathrm{T}_{\mathrm{H}} \leq 60^{\circ} \mathrm{C}$ and the junction temperature, $\mathrm{T}_{\mathrm{J}} \leq 100^{\circ} \mathrm{C}$. The MOSFET has a thermal resistance $\mathrm{R}_{\text {thj }}=45.0^{\circ} \mathrm{C} / \mathrm{W}$. The ambient temperature, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. Note: T_{H} or T_{J} will equal the given limits, the other shall be lower.

Question 4

Figure 5
A half-bridge voltage source converter is connected between a dc-source and an acload as shown by Figure 5. The control of the switched output voltage is done through pulse width modulation (PWM) with a switching frequency $\mathrm{f}_{\mathrm{sw}}=950 \mathrm{~Hz}$, in order to obtain a 50 Hz voltage component with a defined magnitude.
a) What is the minimum required dc-side voltage, U_{d}, required if the magnitude of the 50 Hz voltage component shall be 24 V rms when the amplitude modulation ratio, ma=0.9.
b) Calculate the current ripple in the output current, I_{v}, during the time interval shown in Figure 6. The time is defined based on the switching frequency cycle, $\mathrm{T}_{\mathrm{sw}}=1 / \mathrm{f}_{\text {sww }}$. During this time interval $\mathrm{U}_{\mathrm{ac}}=0.4^{*} \mathrm{U}_{\mathrm{d}}$, for the value of U_{d} calculated in a). The inductance $L=3 \mathrm{mH}$. The initial current $\mathrm{I}_{\mathrm{v}}(\mathrm{t}=0)=0$.

Figure 6

Question 5

The half-bridge converter in Figure 5 has a parasitic inductance, L_{c}, between the dc-source and the half-bridge. Figure 7 the switching waveform of the current through the MOSFET switch T1. The current $\mathrm{I}_{\mathrm{v}}=12$ A flows through L out of the converter.

Figure 7
a) Draw the waveform of the voltage across MOSFET T1, related to the current given in Figure 7 and considering the inductance $\mathrm{L}_{c}=40 \mathrm{nH}$. The dc-voltage $U_{d}=110 \mathrm{~V}$.
b) What is the peak voltage across the MOSFET?

Question 6

A parallel capacitive snubber shall be designed for limitation of the peak voltage across the MOSFET switches of a half-bridge converter. The snubber, as shown by Figure 8, consists of a diode D_{s}, which will charge the snubber capacitor C_{s} during over-voltage but prevent discharge when the MOSFET turns on. The dc-side voltage $\mathrm{U}_{\mathrm{d}}=110 \mathrm{~V}$. The design shall be based on the switching conditions related to a load current $\mathrm{I}_{\mathrm{v}}=12 \mathrm{~A}$.

Figure 8
a) Draw the waveforms of the current and voltage related to $\mathrm{T} 1, \mathrm{D} 2$ and Cs .

Assume the T1 current turn-off to be instantaneous as shown above. The snubber capacitor is initially charged to $\mathrm{U}_{\mathrm{c}}=\mathrm{U}_{\mathrm{d}}$ at the instant of T1 turn-off.
b) Calculate the required snubber capacitance in order to limit the over voltage to 20% when T 1 is turned off.

Formula collection TSTE19 Power Electronics

Fourier series coefficients using symmetry,

Even	$f(-t)=f(t)$	$b_{h}=0 \quad a_{h}=\frac{2}{\pi} \int_{0}^{\pi} f(t) \cos (h \omega t) d(\omega t)$
Odd	$f(-t)=-f(t)$	$a_{h}=0 \quad b_{h}=\frac{2}{\pi} \int_{0}^{\pi} f(t) \sin (h \omega t) d(\omega t)$
Half-wave	$f(t)=-f\left(t+\frac{1}{2} T\right)$	$a_{h}=b_{h}=0$ for even h
		$a_{h}=\frac{2}{\pi} \int_{0}^{\pi} f(t) \cos (h \omega t) d(\omega t)$ for odd h
		$b_{h}=\frac{2}{\pi} \int_{0}^{\pi} f(t) \sin (h \omega t) d(\omega t)$ for odd h
Even quart-wave	Even and half-wave	$b_{h}=0$ for all h
		$a_{h}=\frac{4}{\pi} \int_{0}^{\frac{\pi}{2}} f(t) \cos (h \omega t) d(\omega t)$ for odd $\mathrm{h}, a_{h}=0$ for even h
Odd quarter-wave	Odd and half-wave	$a_{h}=0$ for all h
		$b_{h}=\frac{4}{\pi} \int_{0}^{\frac{\pi}{2}} f(t) \sin (h \omega t) d(\omega t)$ for odd $\mathrm{h}, b_{h}=0$ for even h

Undamped resonant circuits

Even
Odd
Half-wave

$$
f(-t)=f(t)
$$

$$
f(-t)=-f(t)
$$

$a_{h}=0$
$a_{h}=b_{h}=0$ for even h
$a_{h}=\frac{2}{\pi} \int_{0}^{\pi} f(t) \cos (h \omega t) d(\omega t)$ for odd h
$b_{h}=\frac{2}{\pi} \int_{0}^{\pi} f(t) \sin (h \omega t) d(\omega t)$ for odd h
Even quart-wave Even and half-wave $b_{h}=0$ for all h
$a_{h}=\frac{4}{\pi} \int_{0}^{\frac{\pi}{2}} f(t) \cos (h \omega t) d(\omega t)$ for odd $\mathrm{h}, a_{h}=0$ for even h
Odd quarter-wave Odd and half-wave $a_{h}=0$ for all h
$b_{h}=\frac{4}{\pi} \int_{0}^{\frac{\pi}{2}} f(t) \sin (h \omega t) d(\omega t)$ for odd $\mathrm{h}, b_{h}=0$ for even h

Integration rules

$$
\begin{aligned}
& \int_{a}^{b} f(x) d x=\int_{A}^{B} f(g(t)) g^{\prime}(t) d t \text { if } a=g(A), b=g(B) \text { and } g \text { is monotone in }[\mathrm{A}, \mathrm{~B}] \\
& \int_{a}^{b} \sin (x) d x=[-\cos (x)]_{a}^{b} \\
& \int_{a}^{b} \cos (x) d x=[\sin (x)]_{a}^{b}
\end{aligned}
$$

