TSTE19 Power Electronics

Examination (TEN1)

Time: Friday 21 December 2012 at $8.00-12.00$
Place: KÅRA
Responsible teacher: Kent Palmkvist, ISY, 2813 47, 0705233159 (kentp@isy.liu.se) Will visit exam location at 9 and 11.
Number of tasks: 6
Number of pages: 4
Allowed aids: Calculator
Notes: A pass on the exam requires approximately 30 points.Remember to indicate the steps taken when solving problems.
Exam presentation: Friday 18 January 2013 12.30-13.30 (Kent Palmkvist's office)

1. a) Describe two ways a battery charger may determine if a battery cell is fully charged.
b) What type of motor have a permanent magnet as a rotor?
c) Why must the dv/dt be limited when applying a positive voltage across the thyristor, that is, what will happen if $\mathrm{dv} / \mathrm{dt}$ is to large?
d) What is a GTO?
e) What type of load (resistive, inductive, or capacitive) can sometimes be modeled as a current source?

2. The rectifier above to the right have a source voltage v_{s} as shown above to the left. The output voltage V_{O} is 265 V . The series resistance R_{S} is 15Ω.
a) Draw the input voltage v_{s}, resistor voltage v_{r}, and input current i_{s} shapes, indicate where each diode is on (conducting) or off (not conducting), and at what angles current and voltage changes happen.
b) Calculate the peak i_{s} source current.
c) Calculate the i_{s} source current rms value.

3. The DC-DC converter above is working in continuous conduction mode, $\mathrm{V}_{\mathrm{d}}=12 \mathrm{~V}$, $\mathrm{L}=37.5 \mu \mathrm{H}, \mathrm{D}=0.25, \mathrm{I}_{\mathrm{O}}=1.5 \mathrm{~A}$. Assume C is large.
a) Calculate the output voltage V_{o}.
b) Calculate the minimum switching frequency to keep continuous conduction mode.
4. A computer processor power supply have a 12 V input, and the processor dissipates 45 W when running at 1.5 V (this is the output of DC-DC converter). The efficiency of the DCDC converter is 90%. The ambient temperature is at most 25 degrees, and the maximum case (processor casing) temperature is 55 degrees.
a) How large is the average input current to the DC-DC converter?
b) How much power is dissipated by the DC-DC converter?
c) What is the largest thermal resistance Θ_{ca} allowed for the heat sink.

5. The thyristor based inverter above have the input voltage v_{s} shown above to the right. The thyristors have a 30 degree firing angle. The current source load I_{0} is 3 A , and the inductor $\mathrm{L}=110 \mathrm{mH}$.
a) Draw the output voltage v_{o} and the source current i_{s}, indicating which thyristor is on (conducting) and off (not conducting).
b) Calculate the average output voltage.
c) Calculate the displacement power factor (DPF) for the input power.
6. A full-bridge single-phase inverter is controlled using voltage cancellation. The output fundamental frequency should be 50 Hz . The input voltage is 310 V . The waveform overlap angle α is 60 degrees.
a) What are the switching frequency and duty ratio $\left(\mathrm{t}_{\mathrm{on}} / \mathrm{T}_{\mathrm{sw}}\right.$ ratio $)$ of the switches?
b) Calculate the amplitude of output voltage fundamental, v_{ol}.

Formula collection TSTE19 Power Electronics
Fourier series coefficients using symmetri, Table 3.1
Even

$$
f(-t)=f(t) \quad b_{h}=0 \quad a_{h}=\frac{2}{\pi} \int_{0}^{\pi} f(t) \cos (h \omega t) d(\omega t)
$$

Odd

$$
f(-t)=-f(t) \quad a_{h}=0 \quad b_{h}=\frac{2}{\pi} \int_{0}^{\pi} f(t) \sin (h \omega t) d(\omega t)
$$

Half-wave

$$
\begin{aligned}
f(t)=-f\left(t+\frac{1}{2} T\right) \quad a_{h} & =b_{h}=0 \text { for even } h \\
a_{h} & =\frac{2}{\pi} \int_{0}^{\pi} f(t) \cos (h \omega t) d(\omega t) \text { for odd } h \\
b_{h} & =\frac{2}{\pi} \int_{0}^{\pi} f(t) \sin (h \omega t) d(\omega t) \text { for odd } h
\end{aligned}
$$

Even quarter-wave Even and half-wave $b_{h}=0$ for all h

$$
\begin{array}{ll}
a_{h}=\frac{4}{\pi} \int_{0}^{\frac{\pi}{2}} f(t) \cos (h \omega t) d(\omega t) & \text { for odd } h \\
a_{h}=0 & \text { for even } h
\end{array}
$$

Odd quarter-wave Odd and half-wave $a_{h}=0$ for all h

$$
\begin{array}{ll}
b_{h}=\frac{4}{\pi} \int_{0}^{\frac{\pi}{2}} f(t) \sin (h \omega t) d(\omega t) & \text { for odd } h \\
b_{h}=0 & \text { for even } h
\end{array}
$$

Undamped series resonant circuit, equations 9-3, 9-4

Undamped parallel resonant circuit, equations 9-20, 9-21

$$
\begin{align*}
& \text { I }\left\{\mathrm{i}_{\mathrm{L}}\left[\mathrm{I}_{\mathrm{L} 0}\right]+i_{L}(t)=I_{d}+\left(I_{L 0}-I_{d}\right) \cos \omega_{0}\left(t-t_{0}\right)+\frac{V_{c 0}}{Z_{0}} \sin \omega_{0}\left(t-t_{0}\right)\right. \tag{9-20}\\
& v_{c}(t)=Z_{0}\left(I_{d}-I_{L 0}\right) \sin \omega\left(t-t_{0}\right)+V_{c 0} \cos \omega_{0}\left(t-t_{0}\right) \tag{9-21}
\end{align*}
$$

Integration rules

$$
\begin{aligned}
& \int_{a}^{b} f(x) d x=\int_{A}^{B} f(g(t)) g^{\prime}(t) d t \quad \text { if } a=g(A), b=g(B), \text { and } g \text { is monotone in }[A, B] \\
& \int_{a}^{b} \sin (x) d x=[-\cos (x)]_{a}^{b} \\
& \int_{a}^{b} \cos (x) d x=[\sin (x)]_{a}^{b}
\end{aligned}
$$

