TSTE19 Power Electronics

Examination (TEN1)

Time:	Saturday 17 December 2011 at 14.00 - 18.00	
Place:	TER3	
Responsible teacher:	Kent Palmkvist, ISY, 28 13 47, 0705 23 31 59 (kentp@isy.liu.se) Will visit exam location at 15 and 17.	
Number of tasks:	5	
Number of pages:	4	
Allowed aids:	Calculator	
Notes:	A pass on the exam requires approximately 30 points. Remember to indicate the steps taken when solving problems.	
Exam presentation:	Friday 13 January 2011 13.00-14.00 (Kent Palmkvist's office)	

- 1. a) Can the displacement power factor (DPF) be larger than 1? Motivate your answer. (2)
 - b) How is the fill factor for a solar cell defined?
 - c) Is it necessary to have a common ground wire in a 3-phase system with a linear resistive load? Motivate your answer. (2)

(2)

- d) Will an ideal capacitor connected to a 220V 50Hz line outlet voltage get warm due to the current flowing through it? Motivate your answer. (2)
- e) Why is it sometimes better to use a transistor instead of a diode in a full bridge rectifier, even if the behavior (on and off times) is exactly the same. (2)

- 2. The output current from a power supply is shown above. The average output voltage V_0 is 12V. The capacitor size is 7500 μ F. The switching frequency is 10 kHz.
 - a) Calculate the average output current I₀. (4)
 - b) Draw the waveform of the output voltage $v_0(t)$. Indicate timing and voltage values. (6)
- 3. A full bridge DC->AC inverter is controlled using voltage cancellation with a waveform overlap angle of $\alpha = 45^{\circ}$. The output fundamental frequency is 50 Hz, and the input voltage is 310V.
 - a) Draw the output voltage waveform of the converter. Indicate voltage levels and phase angles. (6)
 - b) Calculate the output voltage rms value? (6)
 - c) Calculate the amplitude (peak value) of the output voltage fundamental $v_{01}(t)$. (6)

4. The step-down (buck) converter above is operating at the boundary between discontinuous and continuous current conduction mode. Switching ratio D = 0.3. The input voltage is 24V. The inductance L is 0.12 mH. The switching frequency is 10 kHz. The capacitance C is very large.

a)	What is the output voltage?	(6)

b) Draw the waveform for i_L and indicate when the switch is on and off. (6)

(4)

c) What is the average output current i_L ?

- 5. The snubber circuit above is designed to reduce the di/dt over the switch at turn-on. The switch have a t_{ri} of 5 μ s. The input voltage V_d is 300 V, and the output current I_o is 20 A. The turn-on snubber shall be designed so that the switch voltage at turn on is 5% of the V_d voltage, and that the switch current I_{SW} is equal to I_o after t_{ri} . The switching frequency is 1 kHz. Assume the snubber time constant is much larger than the transistor turn-off time.
 - a) How large would the turn-on power dissipation be in the switch if there was no turn-on snubber (that is, L = 0)? (4)
 - b) Calculate the value of L. (6)
 - c) Assume the turn-off switch voltage v_{SW} is not allowed to be larger than twice the value of V_d . What is the largest allowed value of R? (6)

Formula collection TSTE19 Power Electronics

Fourier series coefficients using symmetri, Table 3.1

Even
$$f(-t)=f(t)$$
 $b_{h}=0$ $a_{h}=\frac{2}{\pi}\int_{0}^{\pi}f(t)\cos(h\omega t)d(\omega t)$
Odd $f(-t)=-f(t)$ $a_{h}=0$ $b_{h}=\frac{2}{\pi}\int_{0}^{\pi}f(t)\sin(h\omega t)d(\omega t)$
Half-wave $f(t)=-f(t+\frac{1}{2}T)$ $a_{h}=b_{h}=0$ for even h
 $a_{h}=\frac{2}{\pi}\int_{0}^{\pi}f(t)\cos(h\omega t)d(\omega t)$ for odd h
 $b_{h}=\frac{2}{\pi}\int_{0}^{\pi}f(t)\sin(h\omega t)d(\omega t)$ for odd h
Even quarter-wave Even and half-wave $b_{h}=0$ for all h
 $a_{h}=\frac{4}{\pi}\int_{0}^{\frac{\pi}{2}}f(t)\cos(h\omega t)d(\omega t)$ for odd h
 $a_{h}=0$ for even h
Odd quarter-wave Odd and half-wave $a_{h}=0$ for all h
 $b_{h}=\frac{4}{\pi}\int_{0}^{\frac{\pi}{2}}f(t)\sin(h\omega t)d(\omega t)$ for odd h
 $b_{h}=0$ for all h
 $b_{h}=0$ for even h

Undamped series resonant circuit, equations 9-3, 9-4

$$i_{L}(t) = I_{L0} \cos \omega_{0}(t-t_{0}) + \frac{V_{d} - V_{c0}}{Z_{0}} \sin \omega_{0}(t-t_{0})$$
(9-3)

$$V_{d} = V_{c} [V_{c0}] = V_{d} - (V_{d} - V_{c0}) \cos \omega (t - t_{0}) + Z_{0} I_{L0} \sin \omega_{0} (t - t_{0})$$
(9-4)

Undamped parallel resonant circuit, equations 9-20, 9-21

$$i_{L}(t) = I_{d} + (I_{L0} - I_{d}) \cos \omega_{0}(t - t_{0}) + \frac{V_{c0}}{Z_{0}} \sin \omega_{0}(t - t_{0})$$
(9-20)

$$I_{d} \downarrow L \downarrow c \downarrow c \downarrow V_{C}[V_{C0}] \qquad I_{L}(t) = I_{d} + (I_{L0} - I_{d}) \cos \omega_{0}(t - t_{0}) + \frac{1}{Z_{0}} \sin \omega_{0}(t - t_{0}) \qquad (9-20)$$

$$v_{c}(t) = Z_{0}(I_{d} - I_{L0}) \sin \omega(t - t_{0}) + V_{c0} \cos \omega_{0}(t - t_{0}) \qquad (9-21)$$

Integration rules

$$\int_{a}^{b} f(ax) dx = \int_{A}^{B} f(g(t))g'(t) dt \quad \text{if } a = g(A) \text{ and } b = g(B)$$

$$\int_{a}^{b} \sin(x) dx = [-\cos(x)]_{a}^{b}$$

$$\int_{a}^{b} \cos(x) dx = [\sin(x)]_{a}^{b}$$