1. a) $\mathrm{DPF}=\cos$ phi, and \cos never becomes larger than 1 .
b) Fill factor $=$ Pmax/(Uopen*Ishort), that is, the maximum output power over the product of no-load voltage times the short-circuit current.
c) No it is not necessary. The three currents cancels out, and the current through a common ground wire would be zero.
d) No, the capacitor will only produce reactive power, with zero active power.
e) The transistor can have a lower forward voltage drop than the diode
2. a) $\mathrm{I}_{\text {avg }}=10 * 75 / 100=7.5 \mathrm{~A}$
b) $\mathrm{i}_{\mathrm{C}}=\mathrm{i}_{\mathrm{O}}-\mathrm{I}_{\mathrm{O}}$, alternating between 2.5 and -7.5 A.

$$
\begin{aligned}
& i_{c}(t)=C \frac{d v_{c}}{d t}=C \frac{d v_{o}}{d t} \\
& \Delta v_{o}=\frac{1}{C} \int_{0}^{75 \cdot 10^{-6}} 2.5 d t=\frac{75 \cdot 10^{-6} \cdot 2.5}{7500 \cdot 10^{-6}}=25 \mathrm{mV}
\end{aligned}
$$

3. a) Select $\omega \mathrm{t}=0$ in middle of cancellation time.

$$
\begin{aligned}
V_{O, R M S} & =\sqrt{\frac{1}{T} \int_{0}^{T} v_{o}^{2}(t) d t}= \\
& =\sqrt{\frac{1}{360} \int_{0}^{360} v_{o}^{2}(\omega t) d(\omega t)}=
\end{aligned}
$$

b)

$$
\begin{aligned}
& =310 \sqrt{\frac{1}{360}\left(\int_{22.5}^{157.5} d(\omega t)+\int_{202.5}^{337.5} d(\omega t)\right)}= \\
& \left.=310 \sqrt{\frac{1}{360}(157.5-22.5+337.5-202.5}\right)= \\
& =310 \sqrt{\frac{270}{360}}=310 \frac{\sqrt{3}}{2}=268 \mathrm{~V}
\end{aligned}
$$

c) $f(t)$ with the chosen zero position is half-wave and odd, that is an odd quarter-wave ($f(-t)$ $=-f(t), f(t)=-f(t+1 / 2 T))$. Therefore $a_{1}=0$.

$$
\begin{aligned}
b_{1} & =\frac{4}{\pi} \int_{0}^{\frac{\pi}{2}} f(t) \sin (\omega t) d(\omega t)=\frac{4}{\pi} \int_{\frac{\pi}{8}}^{\frac{\pi}{2}} 310 \sin (\omega t) d(\omega t)=\frac{4 \cdot 310}{\pi}[-\cos (\omega t)]_{\pi / 8}^{\pi / 2}= \\
& =\frac{4 \cdot 310}{\pi}(-\cos (\pi / 2)--\cos (\pi / 8))=\frac{4 \cdot 310 \cos (\pi / 8)}{\pi}=365 \mathrm{~V}
\end{aligned}
$$

That is, the peak value of the fundamental of the output voltage is 365 V .
4. a) Buck converter voltage output for continuous current gives $\mathrm{V}_{\mathrm{o}}=\mathrm{D} \mathrm{V}_{\mathrm{d}}=0.3 * 24=7.2 \mathrm{~V}$
b) Boundary between discontinuous and continuous current $=>\mathrm{i}_{\mathrm{L}}$ goes to zero at $\mathrm{t}=\mathrm{T}_{\mathrm{S}}=$ $1 / 10 \mathrm{e} 3=0.1 \mathrm{~ms}$. Switch on between 0 and $0.3 \mathrm{~T}_{\mathrm{s}}$, off between $0.3 \mathrm{~T}_{\mathrm{s}}$ and T_{s}.
$T_{s}=\frac{1}{f_{s}}=\frac{1}{10 \cdot 10^{3}}=0.1 \mathrm{~ms}$ $i_{L \max }=0.7 T_{s} \frac{V_{o}}{L}=\frac{0.7}{f_{s}} \frac{V_{o}}{L}=\frac{0.7 \cdot 7.2}{10 \cdot 10^{3} \cdot 0.12 \cdot 10^{-3}}=4.2 \mathrm{~A}$
c) $\quad I_{O}=\frac{i_{\text {Lmax }}}{2}=\frac{4.2}{2}=2.1 \mathrm{~A}$
5. a) At turn on without the snubber results in the full voltage V_{d} being applied over the switch (diode in parallel with I_{0} conducting) while the current increase from zero to I_{0}.

$$
P_{\text {SWon }}=f_{\text {SWon }} \cdot V_{d} \cdot \frac{I_{0}}{2} \cdot t_{r i}=10^{3} \cdot 300 \cdot \frac{20}{2} \cdot 5 \cdot 10^{-6}=15 \mathrm{~W}
$$

b) 5% of V_{d} across the switch at turn on leaves 95% of V_{d} across L. The current increase should still be same as defined by the switch.

$$
L=\frac{v_{L}}{d i_{L} / d t}=\frac{0.95 V_{d}}{\Delta i_{L} / t_{r i}}=\frac{0.95 \cdot 300}{20 / 5 \cdot 10^{-6}}=71.3 \mu \mathrm{H}
$$

c) At turn-off will the diode in parallel with I_{o} start to conduct when the i_{sw} starts to decrease.
The snubber diode starts to conduct, and the current now flows through R instead of the switch. Assuming the current fall time can be neglected compared to the LR time constant τ_{LR} at time $\mathrm{t}_{\text {off }}$:

$$
\begin{aligned}
& v_{s w}=V_{d}+R I_{0} \\
& v_{s w}<2 V_{d} \\
& V_{d}+R I_{0}<2 V_{d} \\
& R I_{0}<2 V_{d}-V_{d}=V_{d} \\
& R<\frac{V_{d}}{I_{0}}=\frac{300}{20}=15 \Omega \\
& R<15 \Omega
\end{aligned}
$$

