TSTE19 Power Electronics

- Lecture 8
- Tomas Jonsson
- ISY/EKS

Outline

- DC-AC switching inverters 2
-Full-bridge inverter

-Harmonics

-DC-side current

Half-bridge (2-level) converter

- DC-side midpoint '0' reference point for ac-output
- Output voltage switched between $+\frac{V_{d}}{2}$ and $-\frac{V_{d}}{2}$

Full-bridge inverter

- M aximum output voltage doubled compared to halfbridge inverter
- No need for midpoint voltage

PWM switching strategies

- Bipolar voltage switching
- Both pairs (TA+, TB-) and (TA-, TB+) controlled simultaneous
- 2 possible switch configurations

1. TA+, TB-: vA-vB positive
2. $T A-, T B+: v A-v B$ negative

PWM bipolar switching

- Both legs switch at the same time

$$
\begin{aligned}
& \mathrm{m}_{\mathrm{a}}<1.0 \\
& \quad \hat{V}_{o 1}=m_{a} V_{d} \\
& \mathrm{~m}_{\mathrm{a}}>1.0 \\
& \quad V_{d}<\hat{V}_{o 1}<\frac{4}{\pi} V_{d}
\end{aligned}
$$

Figure 8-12 PWM with bipolar voltage switching.

PWM modulation harmonics

- Harmonics as sidebands around multiples of switching frequency

Harmonics due to m_{a} and $m_{f}>9$

- For $\mathrm{m}_{\mathrm{f}}<9$ is harmonics almost independent of m_{f}
- Choose m_{f} odd integer
- Odd symmetry
- Half-wave symmetry
- Only odd harmonics
- Even harmonics $=0$
- With $v_{A}=\hat{V}_{A} \sin \omega t$
all harmonics $\sin h \omega t$

Table 8-1 Generalized Harmonics of $v_{A o}$ for a Large m_{f}.

\boldsymbol{m}		m_{a}				

Fundamental

m_{f}	1.242	1.15	1.006	0.818	0.601
$m_{f} \pm 2$	0.016	0.061	0.131	0.220	0.318
$m_{f} \pm 4$					0.018
$2 m_{f} \pm 1$	0.190	0.326	0.370	0.314	0.181
$2 m_{f} \pm 3$		0.024	0.071	0.139	0.212
$2 m_{f} \pm 5$				0.013	0.033
$3 m_{f}$	0.335	0.123	0.083	0.171	0.113
$3 m_{f} \pm 2$	0.044	0.139	0.203	0.176	0.062
$3 m_{f} \pm 4$		0.012	0.047	0.104	0.157
$3 m_{f} \pm 6$				0.016	0.044
$4 m_{f} \pm 1$	0.163	0.157	0.008	0.105	0.068
$4 m_{f} \pm 3$	0.012	0.070	0.132	0.115	0.009
$4 m_{f} \pm 5$			0.034	0.084	0.119
$4 m_{f} \pm 7$				0.017	0.050

Note: $\left(\hat{V}_{A 0}\right)_{h} / \frac{1}{2} V_{d} \mathrm{I}=\left(\hat{V}_{A N}\right)_{h} / \frac{1}{2} V_{d} \mathrm{~J}$ is tabulated as a function of m_{a}.

 $i_{o}(t)=\sqrt{(2)} I_{o} \sin \left(\omega_{1} t-\varphi\right)$$V_{d} i^{*}{ }_{d}(t)=v_{o}(t) i_{o}(t)$
$i^{*}{ }_{d}(t)=I_{d}-\sqrt{(2)} I_{d 2} \cos \left(2 \omega_{1} t-\varphi\right)$

$$
\begin{gathered}
\text { where } \\
I_{d}=\frac{V_{o} I_{o}}{V_{d}} \cos \varphi \\
I_{d 2}=\frac{1}{\sqrt{(2)}} \frac{V_{o} I_{o}}{V_{d}}
\end{gathered}
$$

-Unipolar (3-level) voltage switching

-Switches in each inverter leg (A and B) are controlled independently of the other leg
-4 possible switch configuration

1. $T A+, T B+: v A-v B=0$
2. $T A+, T B-: v A-v B>0$
3. TA-, TB-: $v A-v B=0$

4. TA-, TB+: vA $-\mathrm{vB}<0$

Unipolar PWM-control

- One leg controlled by $\mathrm{v}_{\text {control }}$
- Other leg controlled by $-v_{\text {control }}$
- Four states

PWM unipolar switching harmonics

- Harmonics at twice the switching frequency
- m_{f} even makes switching frequency harmonic cancel out

PWM unipolar switching dc current

- Less ripple compared to bipolar switching

8-1

- In a single-phase full-bridge PWM inverter, the input dc voltage varies in a range of $295-325 \mathrm{~V}$. Because of the low distortion required in the output vow, $\mathrm{m}_{\mathrm{a}}<1.0$.
a) What is the highest V_{01} that can be obtained and stamped on its nameplate as its voltage rating?
b) Its nameplate volt-ampere rating is specified as 2000 VA , that is, $\mathrm{V}_{\mathrm{o} 1, \text { max }} \mathrm{I}_{\mathrm{o} 1, \text { max }}=2000 \mathrm{VA}$, where i_{o} is assumed to be sinusoidal. Calculate the combined switch utilization ratio when the inverter is supplying its rated volt-amperes.
c) Compare with results for a half-bridge.

DC/DC-converter control

- Pulse width modulation, PWM, to control switching

- Switching frequency f_{s}
(a)

(switching frequency $f_{s}=\frac{1}{T_{s}}$)
(b)

Figure 7-3 Pulse-width modulator: (a) block diagram; (b) comparator signals.

Exersice 8-100

- In a half-bridge converter with $\mathrm{U}_{\mathrm{d}}=2 \mathrm{~V}$ and $\mathrm{L}=2 \mathrm{mH}$ switching is done with $\mathrm{m}_{\mathrm{a}}=0.8$ and $\mathrm{m}_{\mathrm{f}}=5$

- Construct graphically the output voltage and current, u_{v} and i_{v}
- $u_{L}=L \frac{d i_{L}}{d t}$

$$
\Delta i_{L}=\frac{u_{v}-u_{a c}}{L} \Delta t
$$

www.liu.se

LINKÖPING UNIVERSITY

