TSTE19 Power Electronics

- Lecture 8
- Tomas Jonsson
 - ISY/EKS

Outline

DC-AC switching inverters 2

Full-bridge inverter

Harmonics

DC-side current

Half-bridge (2-level) converter

DC-side midpoint \bullet 'O' reference point $\frac{V_{a}}{2} + C_{+}$ D for ac-output A Output voltage V_d switched between οC + $\frac{V_d}{2}$ and - $\frac{V_d}{2}$ ★D_ $\frac{V_d}{2}$ C_{-} Ň VAO v_{Ao} , fundamental = $(v_{Ao})_1$

Full-bridge inverter

0

- Maximum output voltage doubled compared to halfbridge inverter
- No need for midpoint voltage

PWM switching strategies

- Bipolar voltage switching
 - Both pairs (TA+, TB-) and (TA-, TB+) controlled simultaneous

PWM bipolar switching

Figure 8-12 PWM with bipolar voltage switching.

PWM modulation harmonics

 Harmonics as sidebands around multiples of switching frequency

- For m_f < 9 is harmonics almost independent of m_f
- Choose m_f odd integer
 - Odd symmetry
 - Half-wave symmetry
 - Only odd harmonics
 - Even harmonics = 0
 - With $v_A = \hat{V}_A \sin \omega t$ all harmonics $\sin h \omega t$

Table 8-1 Generalized Harmonics of v_{Ao} for a Large m_{f} .					
h m _a	0.2	0.4	0.6	0.8	1.0
1	0.2	0.4	0.6	0.8	1.0
Fundamental					
m _f	1.242	1.15	1.006	0.818	0.601
$m_f \pm 2$	0.016	0.061	0.131	0.220	0.318
$m_f \pm 4$					0.018
$2m_f \pm 1$	0.190	0.326	0.370	0.314	0.181
$2m_f \pm 3$		0.024	0.071	0.139	0.212
$2m_f \pm 5$				0.013	0.033
3m _f	0.335	0.123	0.083	0.171	0.113
$3m_f \pm 2$	0.044	0.139	0.203	0.176	0.062
$3m_f \pm 4$		0.012	0.047	0.104	0.157
$3m_f \pm 6$				0.016	0.044
$4m_f \pm 1$	0.163	0.157	0.008	0.105	0.068
$4m_{f} \pm 3$	0.012	0.070	0.132	0.115	0.009
$4m_f \pm 5$			0.034	0.084	0.119
$4m_f \pm 7$				0.017	0.050
Note: $(\hat{V}) / V$	$I = (\hat{U} \rightarrow I)$	IZ 1 in tabul	atad as a fu	notion of m	

Unipolar (3-level) voltage switching

 Switches in each inverter leg (A and B) are controlled independently of the other leg

- 1. TA+, TB+: vA vB = 0
- 2. TA+, TB-: vA vB > 0
- 3. TA-, TB-: vA vB = 0
- 4. TA-, TB+: vA vB <0

Unipolar PWM-control

- One leg controlled by v_{control}
- Other leg controlled by -v_{control}
- Four states

PWM unipolar switching harmonics

- Harmonics at twice the switching frequency
- m_f even makes switching frequency harmonic cancel out

PWM unipolar switching dc current

Less ripple compared to bipolar switching

8-1

- In a single-phase full-bridge PWM inverter, the input dc voltage varies in a range of 295-325 V. Because of the low distortion required in the output *vow*, $m_a < 1.0$.
 - a) What is the highest V_{o1} that can be obtained and stamped on its nameplate as its voltage rating?
 - b) Its nameplate volt-ampere rating is specified as 2000 VA, that is, $V_{o1,max} I_{o1,max} = 2000$ VA, where i_o is assumed to be sinusoidal. Calculate the combined switch utilization ratio when the inverter is supplying its rated volt-amperes.
 - c) Compare with results for a half-bridge.

DC/DC-converter control

- Pulse width modulation, PWM, to control switching
- Switching frequency f_s

Figure 7-3 Pulse-width modulator: (a) block diagram; (b) comparator signals.

Exersice 8-100

- In a half-bridge converter with U_d=2V and L = 2mH switching is done with m_a=0.8 and m_f=5
- Construct graphically the output voltage and current, u_v and i_v

•
$$u_L = L \frac{di_L}{dt}$$

 $\Delta i_L = \frac{u_v - u_{ac}}{L} \Delta t$

