TSTE19 Power Electronics

Lecture 3

Tomas Jonsson ICS/ISY

Outline

- Rectifiers
- Current commutation
- Rectifiers, cont.
- Three phase

Effect of L_{s} on current commutation

- Current commutation $=$ current path changed from one diode to another
- Commutation not instantaneous when L_{s} nonzero
- Magnetic energy change
- Use simplified example

- Output represented by constant dc current source

Effect of L_{s} on current commutation

- Current commutation = current path changed from one diode to another
- Commutation not instantaneous when L_{s} nonzero
- Magnetic energy change
- Use simplified example
- Output represented by constant dc current source

Source inductance effects, cont

- Waveform if $\mathrm{L}=0$

- Prior to $\omega \mathrm{t}=0, \mathrm{v}_{\mathrm{s}}$ is negative, current flow through D2
$-v_{d}=0, i_{s}=0$

Current commutation

- During commutation ($\omega \mathrm{t}>0$)
- V_{s} positive, D1 turns on
$-\mathrm{i}_{\mathrm{D} 1}=\mathrm{i}_{\mathrm{s}}$
$-i_{D 2}=I_{d}-i_{s}$
$-\mathrm{i}_{\mathrm{D} 1}+\mathrm{i}_{\mathrm{D} 2}=\mathrm{I}_{\mathrm{d}}$
- D2 stops conducting when $\mathrm{i}_{\mathrm{D} 2}=0$

l.U
UNIVERSITY

Commutation current

- Commutation current

- Temporary current contribution related to energy transfer

(b)

Figure 5-12 (a) Circuit during the commutation. (b) Circuit after the current commutation is completed.

Figure 5-13 Waveforms in the basic circuit of Fig. 5-11. Note that a large value of L_{p} is used to clearly show the commutation interval.

Current commutation waveforms

- Large L_{s} used to clearly show effect
- Time for commutation depend on
L_{s} size and current change in L_{s}

Current commutation time

- i_{s} through inductor starts at zero, end at I_{d} when $\omega \mathrm{t}=\mathrm{u}$

$$
\begin{gathered}
v_{L}=\sqrt{2} V_{S} \sin \omega t=L_{s} \frac{d i_{s}}{d t}=\omega L_{s} \frac{d i_{s}}{d(\omega t)} 0<\omega t<u \\
\sqrt{2} V_{S} \sin \omega t d(\omega t)=\omega L_{s} d i_{s}
\end{gathered}
$$

- Integrate both sides, left is area A_{u} (voltage * angle)

$$
A_{u}=\int_{0}^{u} \sqrt{2} V_{s} \sin \omega t d(\omega t)=\sqrt{2} V_{s}(1-\cos u)=\omega L_{s} \int_{0}^{I_{d}} d i_{s}=\omega L_{s} I_{d}
$$

- Commutation angle can be calculated

$$
\cos u=1-\frac{\omega L_{s} I_{d}}{\sqrt{2} V_{s}}
$$

Half-wave rectifier output voltage

- $\mathrm{V}_{\mathrm{do}}=$ Ideal average voltage of half-wave rectified voltage (effect of the commutation inductance L_{s} neglected)
- $V_{d 0}=\frac{1}{2 \pi} \int_{0}^{\pi} \sqrt{2} V_{s} \sin (\omega t) d \omega t=\frac{\sqrt{2} V_{s}}{2 \pi}[-\cos (\omega t)]_{0}^{\pi}=\frac{2 \sqrt{2} V_{s}}{2 \pi}$
- $V_{d 0} \approx 0.45 V_{s}$

Output voltage incl commutation voltage drop

- $\mathrm{V}_{\mathrm{d}}=\mathrm{V}_{\mathrm{d} 0}-\Delta \mathrm{V}_{\mathrm{d}}=\mathrm{V}_{\mathrm{d} 0}-\frac{A_{u}}{2 \pi}=0.45 \mathrm{~V}_{\mathrm{s}}-\frac{\omega L_{s}}{2 \pi} I_{d}$
- Commutation voltage drop appears as a resistance to the dcside current. $\mathrm{R}_{\text {comm }}=\frac{\omega L_{s}}{2 \pi}$

Commutation conclusions

- Conduction:
- M agnetic energy is stored related to the inductance of the conduction path
- Commutation
- Transfer of current between two paths:

(a)

(b)

Figure 5-12 (a) Circuit during the commutation. (b) Circuit after the current commutation is completed.

- \Rightarrow Stored magnetic energy needs to be transfered!
- Output voltage reduction proportional to I_{d} and L_{s}

Exercise 5-5

Consider the basic commutation circuit of Fig. 5-11a with $\mathrm{I}_{\mathrm{d}}=10 \mathrm{~A}$.
a) With $\mathrm{V}_{\mathrm{s}}=120 \mathrm{~V}$ at 60 Hz and $\mathrm{L}_{\mathrm{s}}=0$, calculate V_{d} and the average power P_{d}
b) With $\mathrm{V}_{\mathrm{s}}=120 \mathrm{~V}$ at 60 Hz and $\mathrm{L}_{\mathrm{s}}=5 \mathrm{mH}$, calculate $\mathrm{u}, \mathrm{V}_{\mathrm{d}}$, and P_{d}
c) With data as i b) calculate u, V_{d}, and P_{d} with $\mathrm{I}_{\mathrm{d}}=20 \mathrm{~A}$

(a)

(b)

Figure 5-11 Basic circuit to illustrate current commutation. Waveforms assume $L_{s}=0$.

Current commutation in full-bridge

- Same principle for area A_{u} due to L_{s}
(b)

(c)

(d)

Rectifier during current commutation

- v_{s} negative before $\mathrm{t}=0$
- D3 and D4 conducting
$-\mathrm{i}_{\mathrm{s}}=-\mathrm{I}_{\mathrm{d}}$
- v_{s} positive
- D1 and D2 starts conducting (Short circuit path through D3 and D4)
- i_{u} are commutation currents

Valid for $-I_{d}<i_{s}<I_{d}$

- $\mathrm{v}_{\mathrm{d}}=0$ during commutation

Current commutation angle

- i_{s} change is double that of previous example (from $-\mathrm{I}_{\mathrm{d}}$ to I_{d})

$$
\cos u=1-\frac{2 \omega L_{s} I_{d}}{\sqrt{2} V_{s}}
$$

Full-bridge rectifier output voltage

- $\mathrm{V}_{\mathrm{do}}=$ average voltage of full wave rectified voltage (effect of the commutation inductance L_{s} neglected)
$-V_{d 0}=\frac{1}{\pi} \int_{0}^{\pi} \sqrt{2} V_{s} \sin (\omega t) d \omega t=\frac{\sqrt{2} V_{s}}{\pi}[-\cos (\omega t)]_{0}^{\pi}=\frac{2 \sqrt{2} V_{s}}{\pi}$
$-V_{d 0} \approx 0.9 V_{s}$

Exercise 5-8

In the single-phase rectifier circuit shown in Fig. 5-14a, $\mathrm{V}_{\mathrm{s}}=120 \mathrm{~V}$ at $60 \mathrm{~Hz}, \mathrm{~L}_{\mathrm{s}}=1 \mathrm{mH}$, and $\mathrm{I}_{\mathrm{d}}=10 \mathrm{~A}$.

1. Calculate u, V_{d}, and P_{d}
2. What is the percentage voltage drop in V_{d} due to L_{s} ?

3-phase full-bridge rectifier, general view

- Less ripple on output
- Handles higher power
- No current in neutral wire

3-phase full bridge rectifiers, $\mathrm{L}=0$

- One diode in each group is conducting at any time

Diode rectifier

Diode rectifier

$u_{a}-u_{c}$

Diode rectifier

Diode rectifier

rectifier bridge

Diode rectifier

Diode rectifier

3-phase full bridge rectifier waveforms

- Every diode conducts $1 / 3$ of the cycle
- Output waveform contains 6 segments

$$
v_{d}=v_{P_{n}}-v_{N_{n}}
$$

- Instantaneous
current commutation due to $\mathrm{L}=0$

$$
v_{d_{\max }}=\sqrt{2} V_{L L}
$$

$$
\begin{gathered}
v_{d o}=\frac{1}{\pi / 3} \int_{-\pi / 6}^{\pi /} \sqrt{2} V_{L L} \cos \omega t d(\omega t) \\
=1.35 V_{L L}
\end{gathered}
$$

Principles of $\mathrm{AC} / \mathrm{DC}$ conversion, 6-pulse bridge

Exercise 3-100

- In the ideal three-phase rectifier circuit, construct the wave forms of diode D1 and D2 voltages and currents.

Input line current 3ph rectifier

- No 3rd harmonic
- Compare with single phase $\mathrm{PF}=0.9$

$$
D P F=\cos \phi_{1}=1.0
$$

$$
P F=\frac{P}{S}=\frac{V_{s} I_{s 1} \cos \phi_{1}}{V_{s} I_{s}}=\frac{I_{s 1}}{I_{s}} \cos \phi_{1}=\frac{3}{\pi}=0.955
$$

Single phase rectifier, input current

- Fourier analysis gives additional harmonic components
- Remember calculation uses RMS of $I_{s}, I_{s 1}$ and I_{d}

$$
I_{s 1}=\frac{2}{\pi} \sqrt{2} I_{d}=0.9 I_{d}
$$

Source inductance effects, DC current load

- Source L not 0
- Only one current commutation at a time
- 6 commutations during one line-frequency cycle

Transfer of current from valve 1 to valve 3

Current commutation

- Current commutation phase c->phase a (D5->D1)
- A_{u} indicates the current commutation voltage drop

(a)

$$
i_{c}+i_{a}=I_{d}
$$

- A_{u} only half of area between v_{a} and v_{c} because of two

(b)

Figure 5-35 Current commutation process.

Effect of commutation inductance

$$
\begin{aligned}
& A_{u}=\omega L_{s} \int_{0}^{I_{d}} d i_{u}=\omega L_{s} I_{d}= \\
& =\int_{0}^{u} \frac{v_{a n}-v_{c n}}{2} d(\omega t)=\int_{0}^{u} \frac{\sqrt{2} v_{L L} \sin (\omega t)}{2} d(\omega t)=\frac{\sqrt{2} v_{L L}(1-\cos (u))}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \Delta V_{d}=\frac{\omega L_{s} I_{d}}{\pi / 3}=\frac{3}{\pi} \omega L_{s} I_{d} \\
& V_{d}=V_{d 0}-\Delta V_{d}=1.35 V_{L L}-\frac{3}{\pi} \omega L_{s} I_{d}
\end{aligned}
$$

Exercise 3-101

A 3-ph rectifier feeding a constant current load has the following data:
$\mathrm{V}_{\mathrm{LL}}=400 \mathrm{~V}$ at $50 \mathrm{~Hz}, \mathrm{~L}_{\mathrm{s}}=7 \mathrm{mH}$.
The maximum ac-side rms current $\mathrm{I}_{\mathrm{s}}=10 \mathrm{~A}$.
Calculate
a) Max dc-side current
b) Average dc-side voltage at max current
c) Max active power
d) Diode average current

e) Diode rms current

Exercise 3-102

Using results from exercise 3-101, calculate

- Diode conduction losses ($\mathrm{p}_{\mathrm{D} 1}=\int \mathrm{u}_{\mathrm{D} 1 \mathrm{D}} \mathrm{iD}_{1}$) using the diode BYW29E with $\mathrm{V}_{0}=0.79 \mathrm{~V}, \mathrm{R}_{\mathrm{s}}=0.013 \mathrm{ohm}\left(\mathrm{T}_{\mathrm{j}}=25 \mathrm{C}\right)$
- Use the diode on-state model below where i_{D} can be expressed with its average and rms current as calculated above

Diode on-state model

(1) $\mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C}$; typical values;
(2) $\mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C}$; maximum values;
(3) $\mathrm{T}_{\mathrm{j}}=25{ }^{\circ} \mathrm{C}$; maximum values;
$\mathrm{V}_{\mathrm{O}}=0.791 \mathrm{~V} ; \mathrm{R}_{\mathrm{S}}=0.013 \Omega$

Inrush current

- LC-circuit fed by voltage step
- Worst case when input voltage at maximum when applied

$$
\begin{gathered}
v_{d}=2 \sqrt{2} V_{s}(\text { single phase }) \\
v_{d}=2 \sqrt{2} V_{L L}(\text { three phase })
\end{gathered}
$$

- Peek voltage twice the input voltage step
- DC circuit needs to support twice the peak input voltage!
- Alternative: limit current, using resistor. Short resistor after start using thyristor

TSTE19/Tomas Jonsson

www.liu.se

L.JUNVERSITY

