## **TSTE19** Power Electronics

Lecture 3 Tomas Jonsson ICS/ISY



## Outline

- Rectifiers
  - Current commutation
- Rectifiers, cont.
  - Three phase



## Effect of L<sub>s</sub> on current commutation

- Current commutation = current path changed from one diode to another
  - Commutation not instantaneous when L<sub>s</sub> nonzero
  - Magnetic energy change
- Use simplified example
  - Output represented by constant dc current source





## Effect of L<sub>s</sub> on current commutation

- Current commutation = current path changed from one diode to another
  - Commutation not instantaneous when L<sub>s</sub> nonzero
  - Magnetic energy change
- Use simplified example
  - Output represented by constant dc current source





## Source inductance effects, cont

• Waveform if L=0



• Prior to  $\omega t = 0$ ,  $v_s$  is negative, current flow through D2

$$- v_d = 0, i_s = 0$$



TSTE19/Tomas Jonsson

## **Current commutation**

- During commutation ( $\omega t > 0$ )
  - $v_s$  positive, D1 turns on
  - $\mathbf{i}_{D1} = \mathbf{i}_{s}$
  - $-i_{D2} = I_d i_s$
  - $i_{D1} + i_{D2} = I_d$
  - D2 stops conducting when  $i_{D2} = 0$



10

15

wt [deg]

20

25

30

5

0





## **Commutation current**



 Temporary current contribution related to energy transfer

Figure 5-12 (a) Circuit during the commutation. (b) Circuit after the current commutation is completed.



Figure 5-13 Waveforms in the basic circuit of Fig. 5-11. Note that a large value of  $L_s$  is used to clearly show the commutation interval.

## Current commutation waveforms

- Large L<sub>s</sub> used to clearly show effect
- Time for commutation depend on L<sub>s</sub> size and current change in L<sub>s</sub>





**TSTE19/Tomas Jonsson** 

# Current commutation time

•  $i_s$  through inductor starts at zero, end at  $I_d$  when  $\omega t = u$ 

$$v_L = \sqrt{2}V_s \sin\omega t = L_s \frac{di_s}{dt} = \omega L_s \frac{di_s}{d(\omega t)} \mathbf{0} < \omega t < u$$
$$\sqrt{2}V_s \sin\omega t d(\omega t) = \omega L_s di_s$$

Integrate both sides, left is area  $A_{\mu}$  (voltage \* angle) •

$$A_u = \int_0^u \sqrt{2} V_s \sin \omega t d(\omega t) = \sqrt{2} V_s (1 - \cos u) = \omega L_s \int_0^{I_d} di_s = \omega L_s I_d$$

Commutation angle can be calculated ۲

$$\cos u = 1 - \frac{\omega L_s I_d}{\sqrt{2}V_s}$$





9

## Half-wave rectifier output voltage

 V<sub>do</sub> = Ideal average voltage of half-wave rectified voltage (effect of the commutation inductance L<sub>s</sub> neglected)

• 
$$V_{d0} = \frac{1}{2\pi} \int_0^{\pi} \sqrt{2} V_s \sin(\omega t) \, d\omega t = \frac{\sqrt{2} V_s}{2\pi} [-\cos(\omega t)]_0^{\pi} = \frac{2\sqrt{2} V_s}{2\pi}$$



#### Output voltage incl commutation voltage drop

• 
$$V_d = V_{d0} - \Delta V_d = V_{d0} - \frac{A_u}{2\pi} = 0.45 V_s - \frac{\omega L_s}{2\pi} I_d$$

• Commutation voltage drop appears as a resistance to the dcside current.  $R_{comm} = \frac{\omega L_s}{2\pi}$ 





# **Commutation conclusions**

- Conduction:
  - Magnetic energy is stored related to the inductance of the conduction path
- Commutation
  - Transfer of current between two paths:
  - →Stored magnetic energy needs to be transfered!
  - Output voltage reduction proportional to I<sub>d</sub> and L<sub>s</sub>



Figure 5-12 (a) Circuit during the commutation. (b) Circuit after the current commutation is completed.

## Exercise 5-5

Consider the basic commutation circuit of Fig. 5-11a with  $I_d = 10$  A.

- a) With  $V_s$ =120 V at 60 Hz and  $L_s$  = 0, calculate  $V_d$  and the average power  $P_d$
- b) With  $V_s$ =120 V at 60 Hz and  $L_s$  = 5 mH, calculate u,  $V_d$ , and  $P_d$
- c) With data as i b) calculate u,  $V_d$ , and  $P_d$  with  $I_d = 20$  A



Figure 5-11 Basic circuit to illustrate current commutation. Waveforms assume  $L_s = 0$ .



## Current commutation in full-bridge

• Same principle for area  $A_u$  due to  $L_s$ 







## Rectifier during current commutation

- v<sub>s</sub> negative before t = 0
  - D3 and D4 conducting
  - $-i_s = -I_d$
- v<sub>s</sub> positive
  - D1 and D2 starts conducting (Short circuit path through D3 and D4)
- i<sub>u</sub> are commutation currents
- $v_d = 0$  during commutation



Valid for  $-I_d < i_s < I_d$ 



## Current commutation angle

•  $i_s$  change is double that of previous example (from  $-I_d$  to  $I_d$ )

$$\cos u = 1 - \frac{2\omega L_s I_d}{\sqrt{2}V_s}$$



## Full-bridge rectifier output voltage

 V<sub>do</sub> = average voltage of full wave rectified voltage (effect of the commutation inductance L<sub>s</sub> neglected)





## Exercise 5-8

In the single-phase rectifier circuit shown in Fig. 5-14a,  $V_s = 120$  V at 60 Hz,  $L_s = 1$  mH, and  $I_d = 10$  A.

- 1. Calculate u,  $V_{d'}$  and  $P_d$
- 2. What is the percentage voltage drop in  $V_d$  due to  $L_s$ ?





#### 3-phase full-bridge rectifier, general view

- Less ripple on output
- Handles higher power
- No current in neutral wire  $i_d$   $D_1 \neq D_3 \neq D_5$   $i_a$  a  $b_1 \neq b_3 \neq D_5$   $c_d = v_d$   $c_d = v_d$  $c_d = v_d$



## 3-phase full bridge rectifiers, L = 0

• One diode in each group is conducting at any time















#### Diode rectifier



#### TSTE19/Tomas Jonsson

## 3-phase full bridge rectifier waveforms

- Every diode conducts 1/3 of the cycle
- Output waveform contains 6 segments

 $v_d = v_{P_n} - v_{N_n}$ 

 Instantaneous current commutation due to L = 0

$$v_{d_{max}} = \sqrt{2}V_{LL}$$

$$v_{do} = \frac{1}{\pi/3} \int_{-\pi/6}^{\pi/6} \sqrt{2} V_{LL} \cos\omega t d(\omega t)$$

$$= 1.35 V_{LL}$$



Principles of AC/DC conversion, 6-pulse bridge



### Exercise 3-100

• In the ideal three-phase rectifier circuit, construct the wave forms of diode D1 and D2 voltages and currents.





## Input line current 3ph rectifier

• No 3rd harmonic

I INIV/FDSITV

• Compare with single phase PF = 0.9

RMS current: 
$$I_s = \sqrt{\frac{2}{3}} \cdot I_d$$
  
Fundamental current:  $I_{s1} = \frac{1}{\pi} \sqrt{6} I_d = 0.78 I_d$ 

2015-11-09

30

$$DPF = \cos \phi_1 = 1.0$$

$$PF = \frac{P}{S} = \frac{V_S I_{S1} \cos \phi_1}{V_S I_S} = \frac{I_{S1}}{I_S} \cos \phi_1 = \frac{3}{\pi} = 0.955$$

## Single phase rectifier, input current

Fourier analysis gives additional harmonic components

Remember calculation uses RMS of I<sub>s</sub>, I<sub>s1</sub> and I<sub>d</sub>





#### Source inductance effects, DC current load

• Source L not 0





#### Transfer of current from valve 1 to valve 3





## Current commutation

- Current commutation phase c -> phase a (D5 -> D1)
- $A_u$  indicates the current commutation voltage drop  $i_c + i_a = I_d$
- A<sub>u</sub> only half of area between v<sub>a</sub> and v<sub>c</sub> because of two inductances





Figure 5-35 Current commutation process.



#### Effect of commutation inductance

$$A_{u} = \omega L_{s} \int_{0}^{I_{d}} di_{u} = \omega L_{s} I_{d} =$$
  
=  $\int_{0}^{u} \frac{v_{an} - v_{cn}}{2} d(\omega t) = \int_{0}^{u} \frac{\sqrt{2}v_{LL}\sin(\omega t)}{2} d(\omega t) = \frac{\sqrt{2}v_{LL}(1 - \cos(u))}{2}$ 

$$\Delta V_d = \frac{\omega L_s I_d}{\pi/3} = \frac{3}{\pi} \omega L_s I_d$$
$$V_d = V_{d0} - \Delta V_d = \mathbf{1.35} V_{LL} - \frac{3}{\pi} \omega L_s I_d$$



## Exercise 3-101

A 3-ph rectifier feeding a constant current load has the following data:  $V_{LL} = 400 \text{ V}$  at 50 Hz,  $L_s = 7 \text{ mH}$ .

The maximum ac-side rms current  $I_s = 10 \text{ A}$ .

Calculate

- a) Max dc-side current
- b) Average dc-side voltage at max current
- c) Max active power
- d) Diode average current
- e) Diode rms current







## Exercise 3-102

Using results from exercise 3-101, calculate

- Diode conduction losses ( $p_{D1}=\int u_{D1\square}iD_1$ ) using the diode BYW29E with  $V_0=0.79V$ ,  $R_s = 0.013$  ohm ( $T_j=25C$ )
- Use the diode on-state model below where i<sub>D</sub> can be expressed with its average and rms current as calculated above



Diode on-state model





 (1) T<sub>j</sub> = 150 °C; typical values;
 (2) T<sub>j</sub> = 150 °C; maximum values;
 (3) T<sub>j</sub> = 25 °C; maximum values; V<sub>0</sub> = 0.791 V; R<sub>S</sub> = 0.013 Ω

## Inrush current

- LC-circuit fed by voltage step
  - Worst case when input voltage at maximum when applied

$$v_d = 2\sqrt{2}V_s$$
 (single phase)  
 $v_d = 2\sqrt{2}V_{LL}$  (three phase)

- Peek voltage twice the input voltage step
- DC circuit needs to support twice the peak input voltage!
- Alternative: limit current, using resistor. Short resistor after start using thyristor



#### **TSTE19/Tomas Jonsson**

www.liu.se

