TSTE19 Power Electronics

Lecture 1

Tomas Jonsson

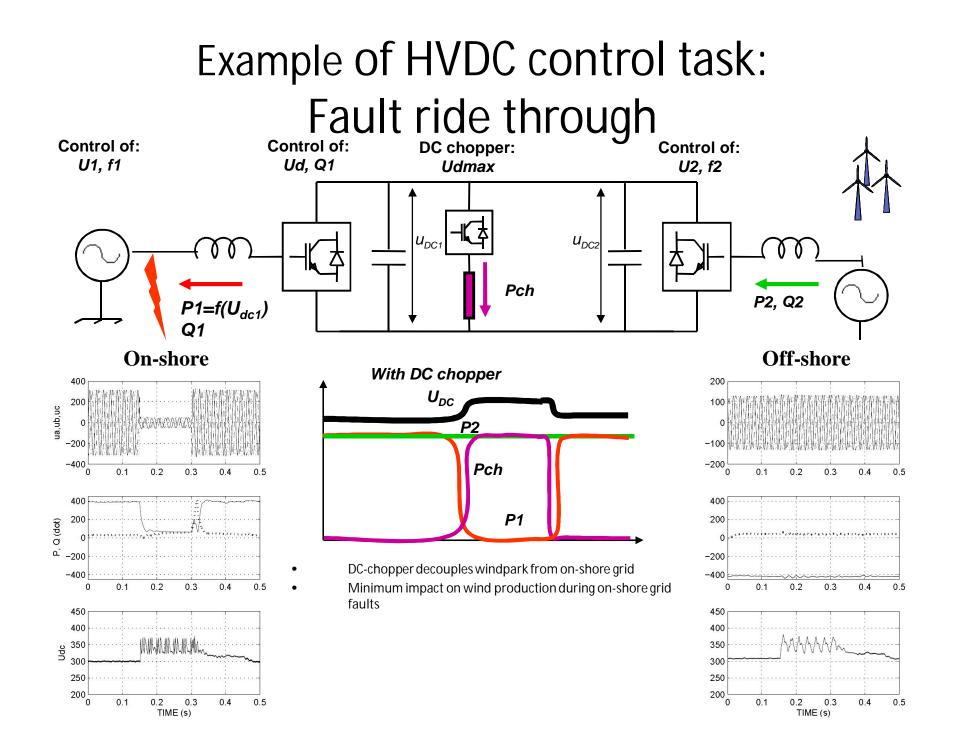
ICS/ISY

Tomas Jonsson

- Education
 - M. Sc. degree in Electrical Engineering from the Lund Institute of Technology, 1987
- Work Experience
 - Master thesis work at ABB HVDC Ludvika
 - ABB AB, Sweden since 1988.
 - HVDC control system design, Ludvika (1988 1992)
 - HVDC commissioning engineer, New Zealand HVDC project (1992-1993)
 - HVDC system development engineer, Ludvika (1993 1996)
 - HVDC system development manager, Ludvika (1997 1998)
 - Brazil-Argentina HVDC interconnection project (1998)
 - ABB Corporate Research HVDC & FACTS development projects, Västerås (1999-2009)
 - ABB Grid Systems, R&D project manager, including mentoring of R&D group in Chennai India
 - Since 2013, Senior Principal Engineer in the area of high power converters for power transmission at ABB Grid Systems.

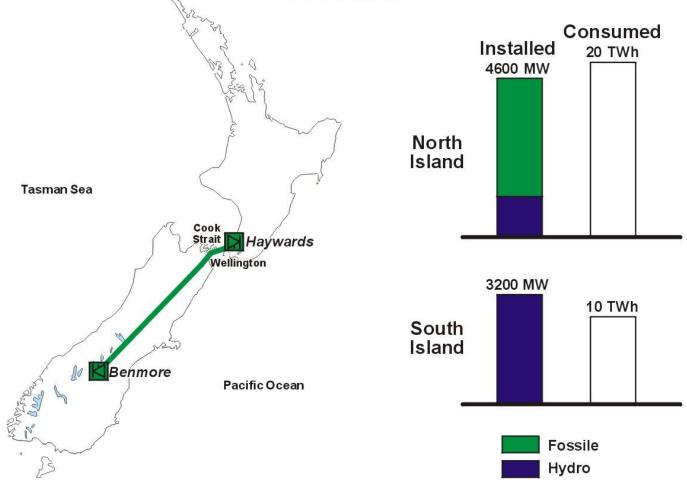
HVDC Transmission Technologies

Power control


- Terminals demand reactive power
- Reactive power balance by shunt bank switching
- Minimum system short circuit capacity of twice rated power

Capacitor Commutated Conveters (CCC)

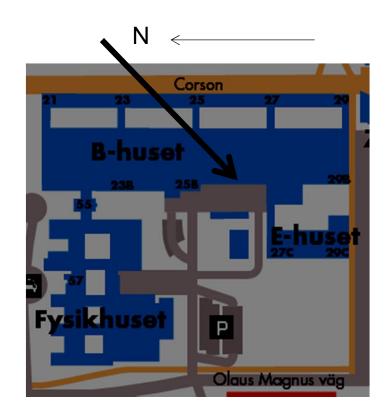
- Power control
- Weak systems, long cables
- Reactive power from series capacitor
- Minimum system short circuit capacity of rated power


HVDC Light[®], forced commutated converters (VSC)

- Real and Reactive Power control
- Dynamic voltage regulation
- Modular and expandable
- Black start capability
- No short circuit restriction

DC hybrid link, New Zealand, 1240 MW

New Zealand 1240 MW

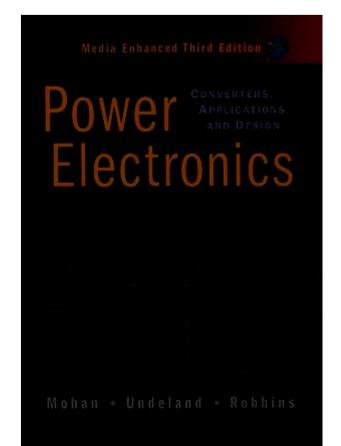

Course staff

Lectures

- Tomas Jonsson
- 013 28 17 21
- <u>tomas.u.jonsson@liu.se</u>
- Office 3D:513 (2nd floor, between entrance 25 & 27)

Lab's

• Martin Nielsen Lönn


Course Contents

- Course web page <u>http://www.isy.liu.se/edu/kurs/TSTE19/</u>
- 16 Lectures (incl exercises)
 - Introduce and explain material
 - Problem solving
 - Lab preparation
- 3 labs
 - Lab 1 & 2: Multisim simulation of power circuits
 - Lab 3: Control & measurements on power circuit
 - Lab notes will be available on course web page

Literature

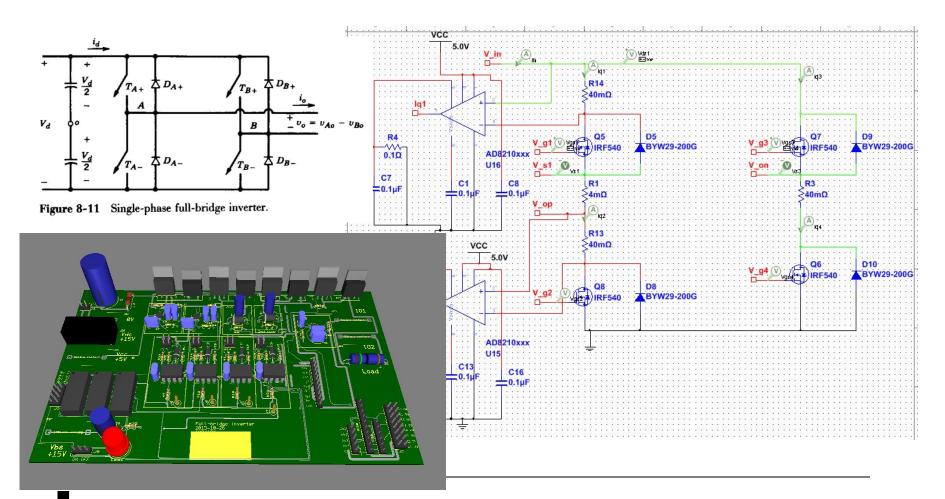
- Power Electronics: Converters, Applications, and Design, 3rd Edition
- N. Mohan, T. M. Undeland, W. P. Robbins
- ISBN: 978-0-471-22693-2
- Wiley & sons., Inc. 2003
- Will sometimes indicate corresponding Swedish term in {}

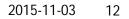
Lecture plan part 1

Date	Room	Number	Content
Tue 3/11	R34	1	Course introduction
13-15			"Energy conversion through power electronics" an overview of applications.
			Power electronic systems [1], Circuit theory [3-2]
Wed 4/11	R35	2	Diode rectifier, part 1:
10-12			Diode semiconductor theory [19,20], operation [5.2], harmonics
Tue 10/11	R26	3	Diode rectifier, part 2:
13-15			Commutation [5.3], reactive power [3.2], circuit simulation [4]
Wed 11/11	R42	4	Phase controlled converter:
10-12			Thyristor semiconductor theory [23], thyristor converter operation [6.2 – 6.4]
Mon 16/11	R18	5	Power semiconductor devices and rating:
8-10			Semiconductor switches (MOSFET, IGBT, GTO) [21-22, 24-26], data sheet, rating, cooling [29]
Wed 18/11	R35	6	DC/DC converter, part 1:
10-12			Switch-mode power supply [10], step-down [7.3], step-up [7.4]
Tue 24/11	R35	7	DC/AC inverter, part 1:
13-15			Half-bridge [8.3], commutation, PWM [8.2]
Wed 25/11	R34	8	DC/AC inverter, part 2:
10-12			Full-bridge [8.3], harmonics

Lecture plan part 2

Date	Room	Number	Content		
Tue 1/12	R36	9	DC/AC inverter, part 3:		
13-15			Blanking time [8.5], gate control [28]		
Wed 2/12	R37	10	Design review of full-bridge circuit for Lab3:		
10-12			Principles, component selection, control		
Tue 8/12	R18	11	Control & protection:		
13-15			Current control modes [8-6], snubbers [27], short circuit		
Wed 9/12	R23	12	DC/AC – AC/DC:		
10-12			Rectifier vs. inverter operation [8.7], 3-phase converter [8.4]		
Tue 15/12	R19	13	Switch-mode DC/DC converter, part 2:		
13-15			Buck-boost, converters with isolation [10-4], resonant converters		
Wed 16/12	R22	14	Utility applications [17]:		
10-12			HVDC, TCR, TSC, STATCOM		
Mon 21/12	P30	15	Motor drive applications [12-13]:		
8-12			Induction motors [14]		
Tue 22/12	P18	16	Preparation for exam		
13-15					



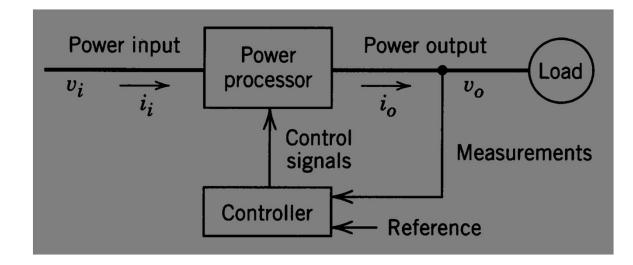

Lab schedule

Date	Room	Number	Content
Thu 19/11 17-21	Freja	1	Computer lab on diode bridge rectifier, phase controlled converter
Thu 3/12 17-21	Freja	2	Computer lab on VSC full-bridge Inverter, dc/dc buck
Thu 10/12 17-21	Transistorn	3	Measurement lab on VSC full-bridge inverter
Tue 15/12 17-21	Transistorn	1-3	Spare. Opportunity to complete any of Labs 1-3

Lab3: Full-bridge PWM inverter

Examination

- 3 Lab tasks completed and presented (during the lab)
 - Simulation and measurement tasks
- Written exam


Lecture 1

Power electronic systems from nW to GW Power electronic systems [Ch 1] Circuit theory [Ch 3-2] Exercises [1-1 – 1-5, 3-3 – 3-5]

Power Electronic Systems

• Transfer electric power from source into load, controlling voltage/current applied to the load

Power electronic systems

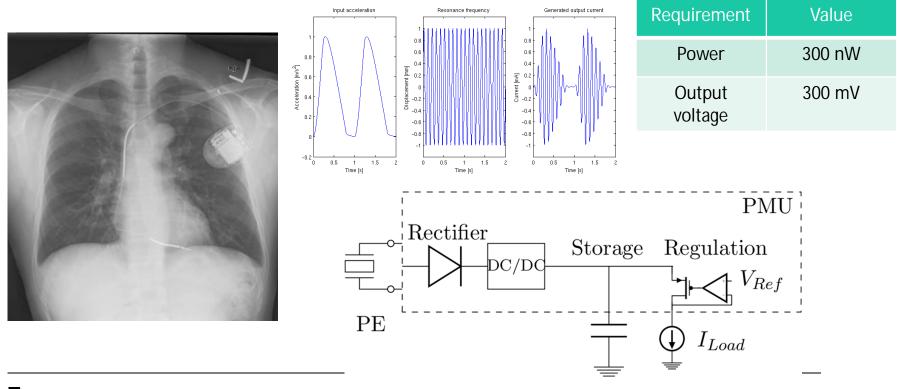
- Power conversion
 - Frequency transformation, e.g. AC to DC, DC to AC
 - Voltage level transformation, 230V to 12V
 - Current control/limitation
 - Power control, charging v.s. discharging
 - Control related to load variations
 - Control related to source variations

Goals of the power transformation

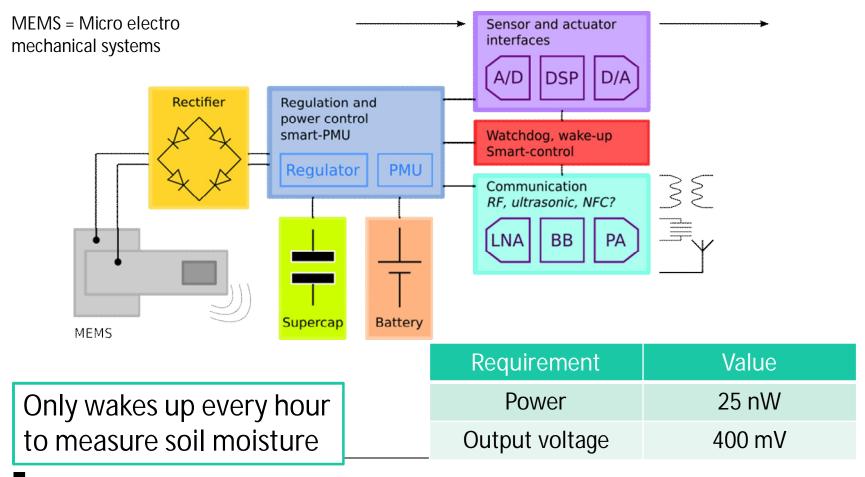
• High efficiency

$$\eta = \frac{P_{out}}{P_{in}} \approx \mathbf{1}$$

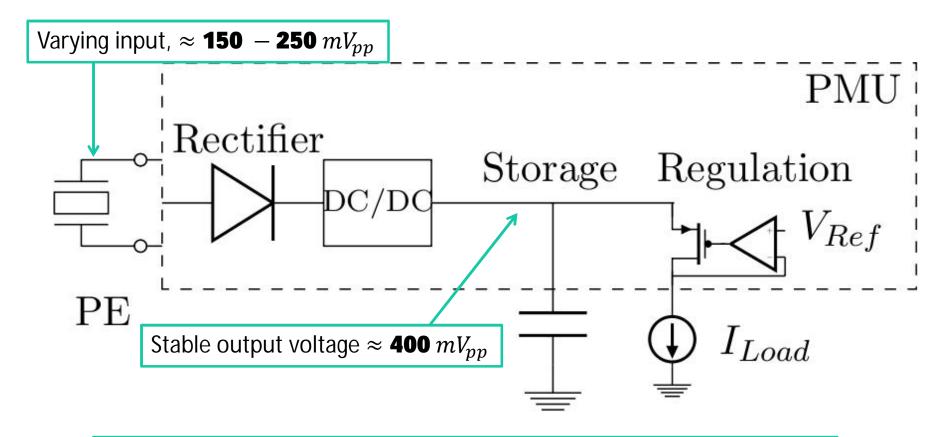
- Accurate output voltages/currents
 - Voltage/current ripple
 - Correct for varying load impedance
- Small size
- Low cost
- :


Lecture 1, Power electronics over 18 decades (10⁻⁸ W - 10¹⁰ W)

MEMS P = 10^{-8} = 10 nW (200 mV, 50 nA) Electric Vehicle battery charger P = 1 kW - 50 kW Wind turbine speed/power control P=5 MW HVDC power transmission P = 10^{10} = 10 GW (±800 kV, 6 kA)


MEMS for pace maker power supply

• Energy harvesting from human heart vibrations for power supply of pace maker implants.



Soil moisture sensor node

Soil moisture sensor PMU

Picks up vibration in the ground or the human body, rectifies and boost the voltage to store it in a supercapacitor

Battery charging

- AC-DC converter
- Power conversion from AC power source to DC load
 - Battery
 - Mobile phone ...

2151

Review of Battery Charger Topologies, Charging Power Levels, and Infrastructure for Plug-In Electric and Hybrid Vehicles

Murat Yilmaz, Member, IEEE, and Philip T. Krein, Fellow, IEEE

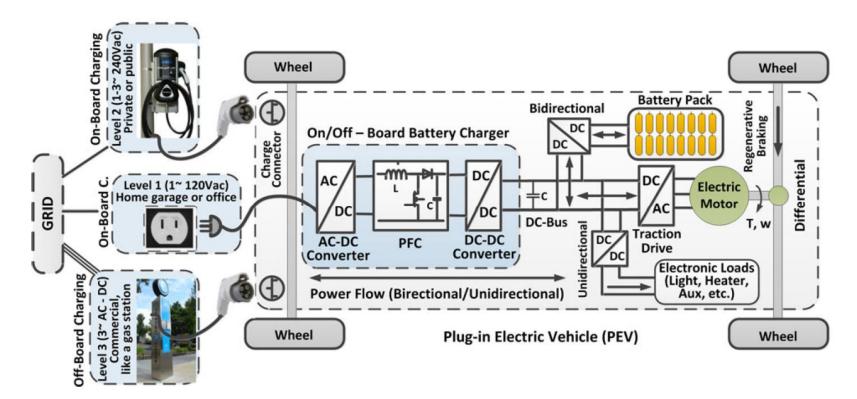


Fig. 6. On/off board charging system and power levels for EVs.

2015-11-03

23

TSTE19/Tomas Jonsson

2015-11-03 24

Bidirectional DC/DC

Converter

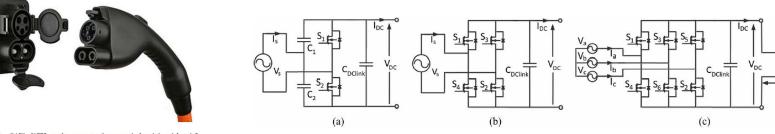
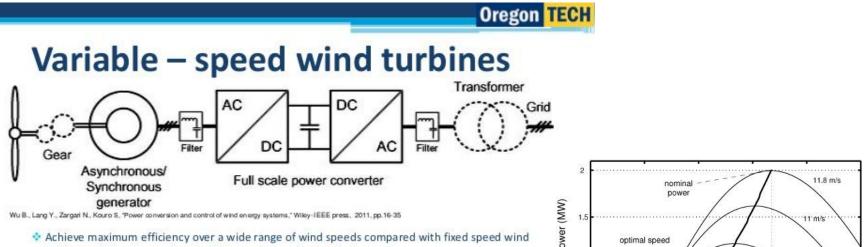


Fig. 5. SAE's J1772 *combo connector* for ac or dc Level 1 and Level 2 charging [65].


Fig. 4. Bidirectional chargers: (a) single-phase half-bridge, (b) single-phase full-bridge, and (c) three-phase full-bridge.

	Battery Type	All- Electric Range	Connector Type	Level 1 Charging		Level 2 Charging		DC Fast Charging	
	and Energy			Demand	Charge Time	Demand	Charge Time	Demand	Charge Time
Toyota Prius PHEV(2012)	Li-Ion 4.4kWh	14 miles	SAE J1772	1.4kW (120V)	3 hours	3.8kW (240V)	2.5 hours	N/A	N/A
Chevrolet Volt PHEV	Li-Ion 16kWh	40 miles	SAE J1772	0.96–1.4 kW	5–8 hours	3.8kW	2–3 hours	N/A	N/A
Mitsubishi i-MiEV EV	Li-Ion 16kWh	96 miles	SAE J1772 JARI/TEPCO	1.5kW	7 hours	3kW	14 hours	50kW	30 minutes
Nissan Leaf EV	Li-Ion 24kWh	100 miles	SAE J1772 JARI/TEPCO	1.8kW	12–16 hours	3.3kW	6–8 hours	50 + kW	15-30 minutes
Tesla Roadster EV	Li-Ion 53kWh	245 miles	SAE J1772	1.8kW	30 + hours	9.6–16.8 kW	4–12 hours	N/A	N/A

TABLE II CHARGING CHARACTERISTICS AND INFRASTRUCTURES OF SOME MANUFACTURED PHEVS AND EVS

Wind turbine converter control

turbines which only reach peak efficiency at a particular wind speed

- variable speed systems could lead to maximize the capture of energy during partial load operation
- Can use either induction generator or a synchronous generator
- Can operate gearless, lowers the cost

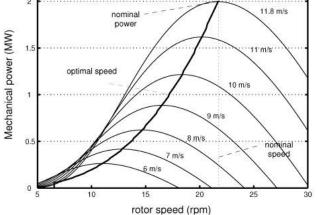
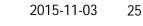
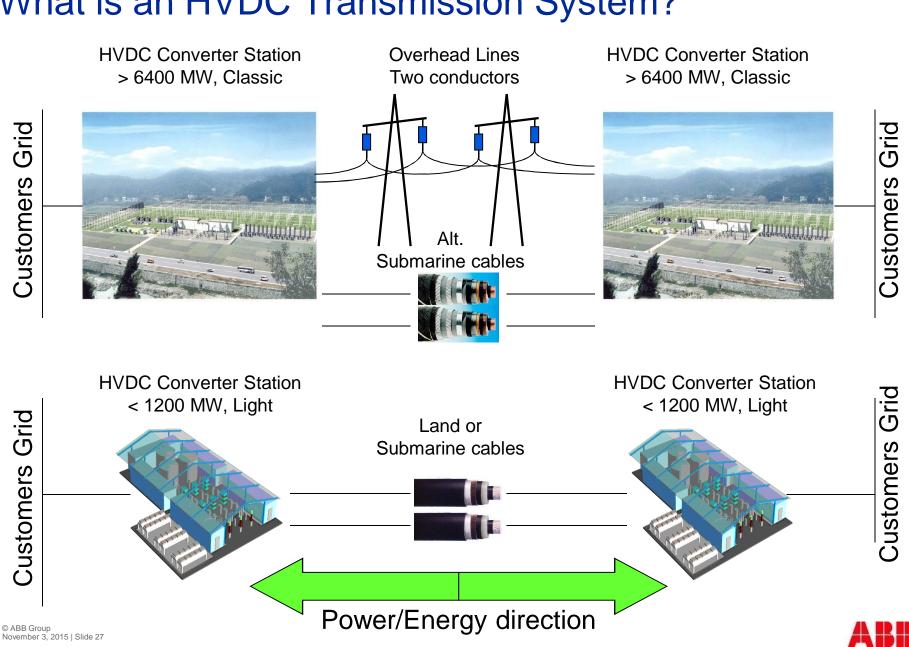
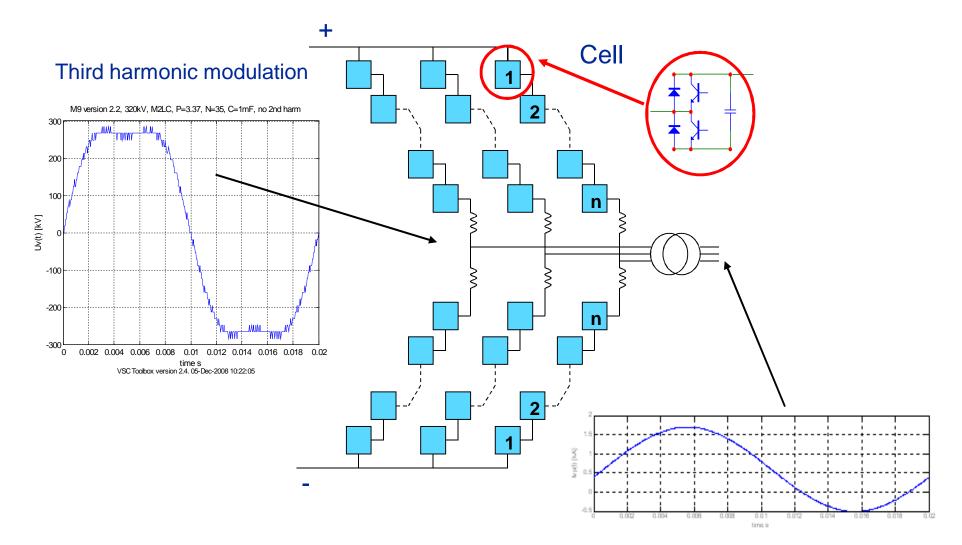
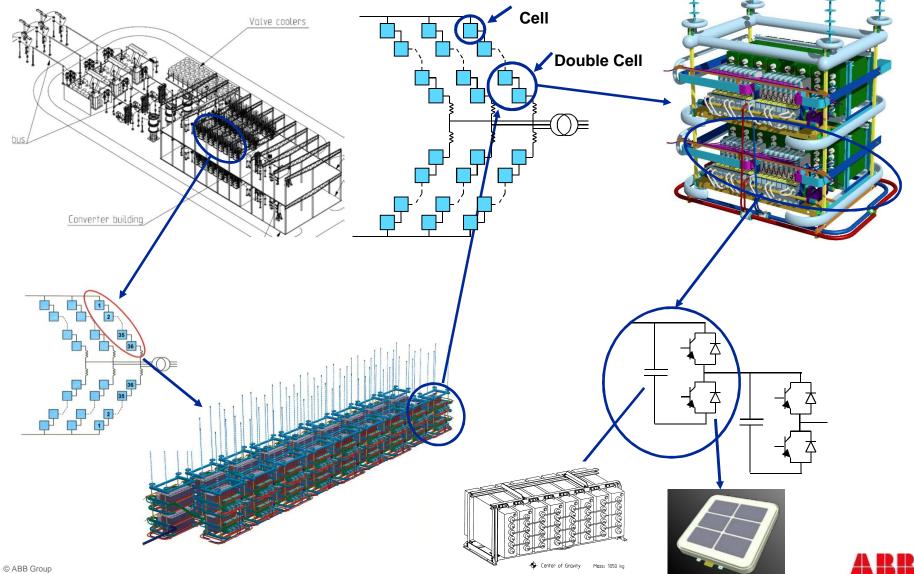



Fig. 8 Output power for different values of wind speed (m/s).

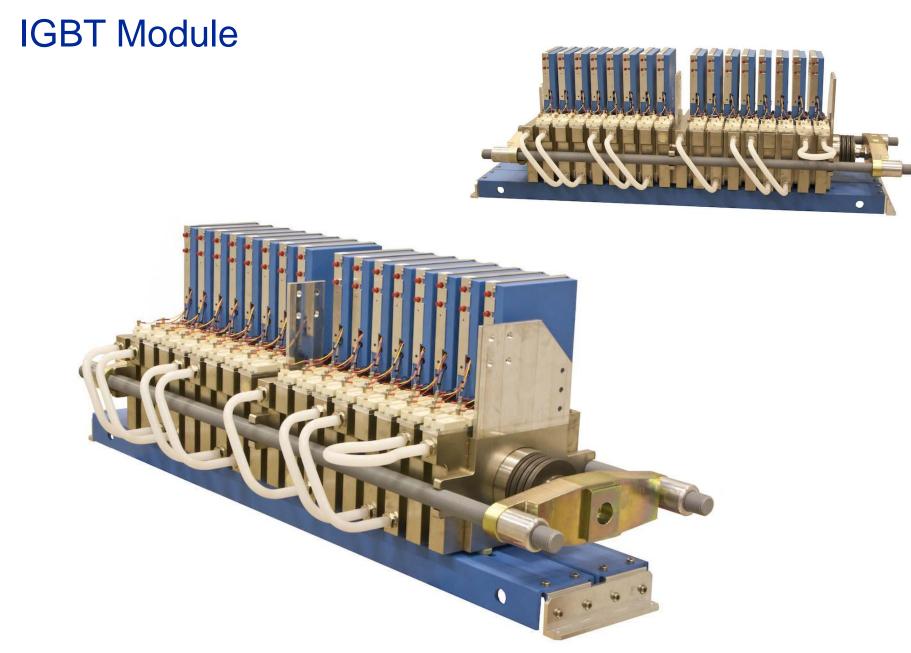


Lecture 1, Power electronics of 20 decades (10⁻¹⁰ W - 10¹⁰ W)


HVDC


What is an HVDC Transmission System?

Today's converter design Converter output voltage

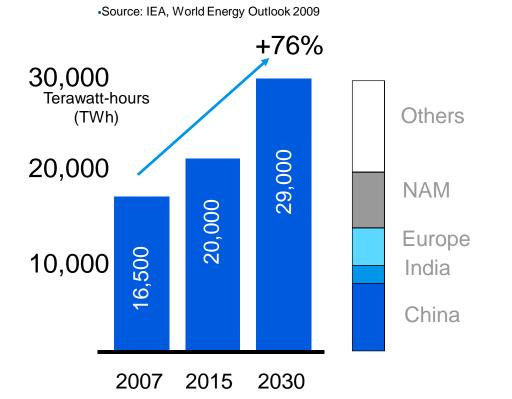




The converter valve Cell main components – IGBTs and Capacitors

November 3, 2015 | Slide 29

IGBT inner structure



Tackling society's challenges on path to low-carbon era means helping utilities do more using less

Forecast rise in electricity consumption by 2030

Solutions are needed for:

- Rising demand for electricity – more generation
- Increasing energy efficiency - improving capacity of existing network
- Reducing CO₂ emissions

 Introduce high level of renewable integration

Meeting the rise in demand will mean adding a 1 GW power plant

and all related infrastructure every week for the next 20 years

IEA World Energy Outlook 2012 - 2035

- 5 890 GW of capacity additions (> the total installed capacity in 2011) is required
- One-third of this is to replace retiring plants; the rest is to meet growing electricity demand.
- Renewables represent half : 3000 GW. Gas 1400 GW.
- The power sector requires investment of \$16.9 trillion,
- Investment in generation capacity, > 60% is for renewables: wind (22%), hydro (16%), solar PV (13%).

The evolution of HVDC grids: Connect remote renewables Europe & Germany are planning large scale HVDC

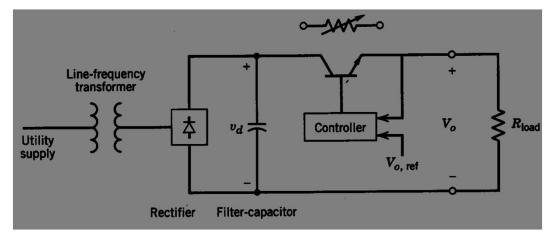
Source: DG Energy, European Commission

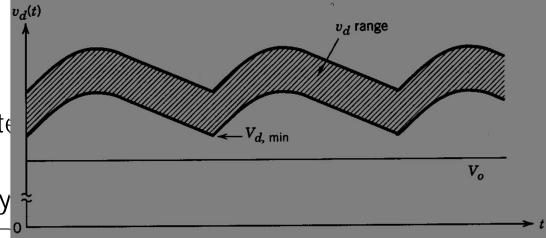
European Visions

- 1 Hydro power & pump storage -Scandinavia
- 2 >50 GW wind power in North Sea and Baltic Sea
- Hydro power & pump storage plants Alps
- 4 Solar power in S.Europe, N.Africa & Middle East

Germany (draft grid master plan)

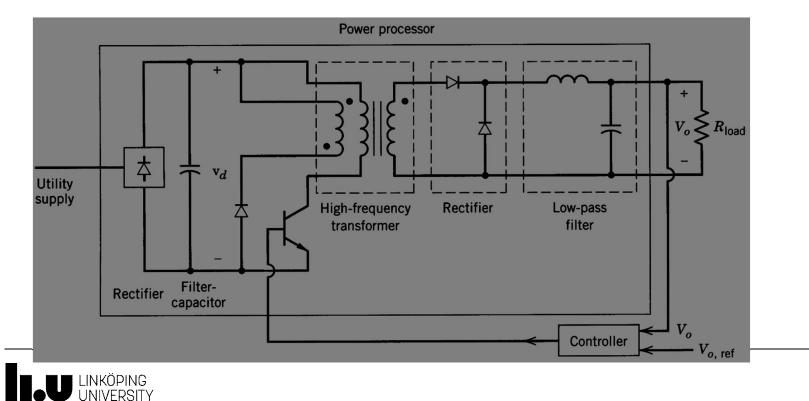
- Alternatives to nuclear-distributed generation
- Role of offshore wind / other renewables
- Political commitment
- Investment demand and conditions
- Need to strengthen existing grid


Lecture 1


Power electronic systems {Ch1} Power basics Circuit theory

Example: Power Supply

- Goal
 - Fixed DC voltage
 - Accept variation on input voltage
- Linear power supply
 - Adjustable resistor implemented using a transistor
 - Low efficiency, lot of power dissipate in transistor
 - Bulky line-frequency transformer



Example: Power Supply

- Switch-mode power supply
 - Transistor only used as switch
 - High efficiency, small size

Goal of power conversion

- Translate input voltage into expected waveform of output voltage
- Dissipate little/no power
- Technology: semiconductors, inductors, capacitors, (resistors)
- Should not use semiconductors as resistances

Symbol definitions

- u_{ab} , U_{ab} Voltage. U_{ab} is the voltage between points a and b.
- v_a Potential. The voltage to ground at point a.
- OBS, the course book uses american standard: v for voltages in general.
- i_a , I_a Current in path (phase) a.
- p_a, P_a Power. Active power
- Lower case symbols denotes instantaneous values
- Upper case symbols denotes average or RMS values

Power Basics

• For AC signal (pure sinusoidal)

$$u(t) = U\sin(\omega t + \phi_u)[V]$$

$$i(t) = I\sin(\omega t + \phi_i)[A]$$

$$where \ \omega = 2\pi f = \frac{2\pi}{T}$$

$$P = \int_{0}^{T} p(t)dt = \frac{U}{\sqrt{2}} \cdot \frac{I}{\sqrt{2}} \cos(\phi_u - \phi_i) = U_e * I_e * \cos\phi[W]$$

• For DC signals

P = UI

$$p(t) = u(t) * i(t)$$

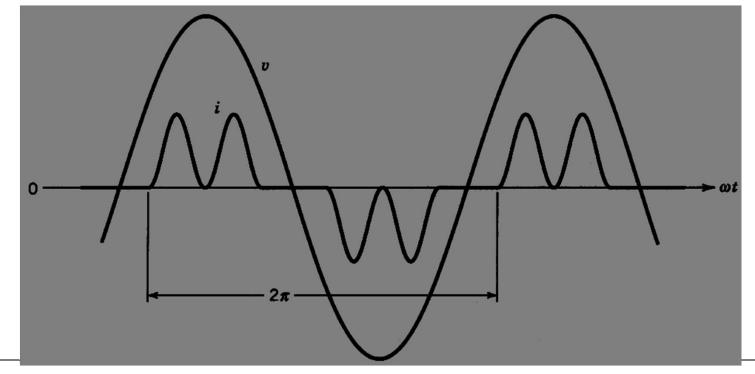
Average power and rms current

Instantaneous power

$$p(t) = u(t) \cdot i(t)$$

Average power

$$P_{av} = \frac{\mathbf{1}}{T} \int_{0}^{T} p(t) dt = \frac{\mathbf{1}}{T} \int_{0}^{T} u(t) \cdot i(t) dt$$
$$P_{av} = R \frac{\mathbf{1}}{T} \int_{0}^{T} i^{2}(t) dt$$
$$P_{av} = RI^{2}$$


RMS current: the current value that defines the average power

$$= \sqrt{\frac{1}{T} \int_0^T i^2(t) dt}$$

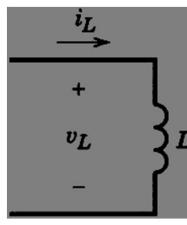
Steady state voltages and currents

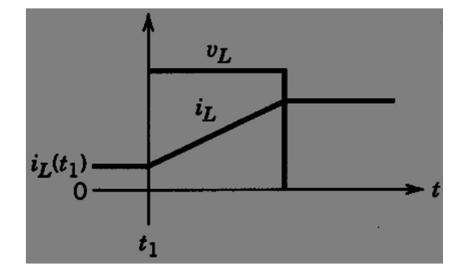
- Assume repeating waveform
- Ignore startup sequence (steady state)

Fourier analysis

Table 3-1 Use of Symmetry in Fourier Analysis

Symmetry	Condition Required	a_h and b_h
Even	f(-t)=f(t)	$b_h = 0$ $a_h = \frac{2}{\pi} \int_0^{\pi} f(t) \cos(h\omega t) d(\omega t)$
Odd	f(-t) = -f(t)	$a_h = 0$ $b_h = \frac{2}{\pi} \int_0^{\pi} f(t) \sin(h\omega t) d(\omega t)$
Half-wave	$f(t) = -f(t + \frac{1}{2}T)$	$a_h = b_h = 0$ for even h $a_h = \frac{2}{\pi} \int_0^{\pi} f(t) \cos(h\omega t) d(\omega t)$ for odd h
		$b_h = \frac{2}{\pi} \int_0^{\pi} f(t) \sin(h\omega t) \ d(\omega t)$ for odd h
Even quarter-wave	Even and half-wave	$b_{h} = 0 \text{for all } h$ $a_{h} = \begin{cases} \frac{4}{\pi} \int_{0}^{\pi/2} f(t) \cos(h\omega t) \ d(\omega t) & \text{for odd } h \\ 0 & \text{for even} \end{cases}$
Odd	Odd and half-wave	$a_h = 0$ for all h
quarter-wave		$b_h = \begin{cases} \frac{4}{\pi} \int_0^{\pi/2} f(t) \sin(h\omega t) \ d(\omega t) & \text{for odd } h \\ 0 & \text{for even } h \end{cases}$
		0 for even




Inductor behavour

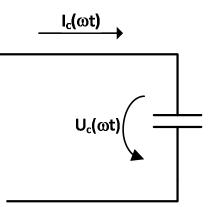
• Frequency and time domain

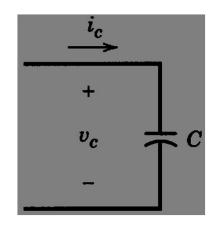
•
$$v_L = L \frac{di_L}{dt}$$
 $V_L = j \omega L I_L$
 $i_L(t) = i_L(t_1) + \frac{1}{L} \int_{t_1}^t v_L d\xi$

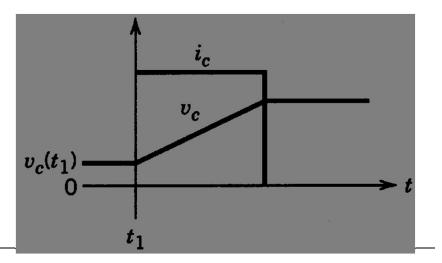
$$\xrightarrow{\mathbf{I}_L \quad j\omega L} \\ + \mathbf{V}_L \quad -$$

Inductor in steady state

- v(t+T) = v(t)
- i(t+T) = i(t)
- A = B in steady state

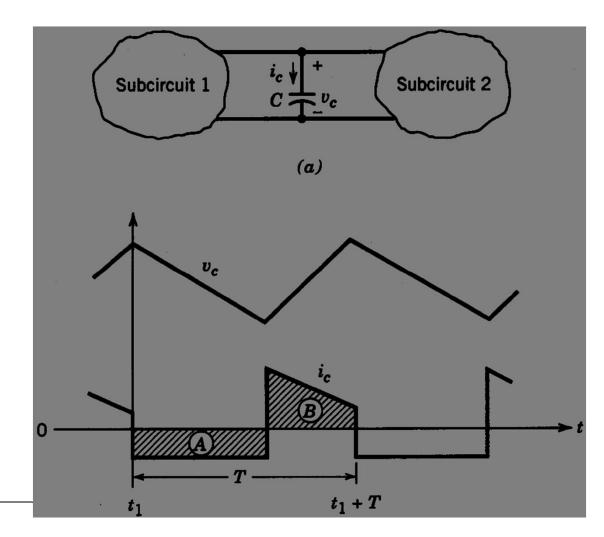




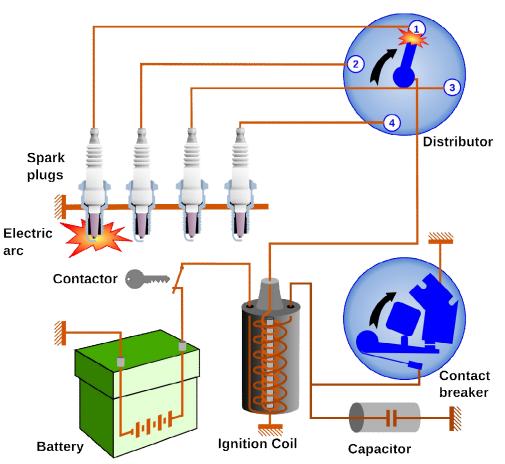

Capacitor behavior

• Frequency and time domain

 $V_{C} = \frac{\mathbf{1}}{j\omega C} I_{C}$ $v_{C}(t) = v_{C}(t_{1}) + \frac{\mathbf{1}}{C} \int_{t_{1}}^{t} i_{C} d\xi$



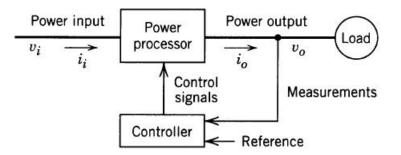
Capacitor in steady state


- v(t+T) = v(t)
- i(t+T) = i(t)
- A = B in steady state

Car ignition system

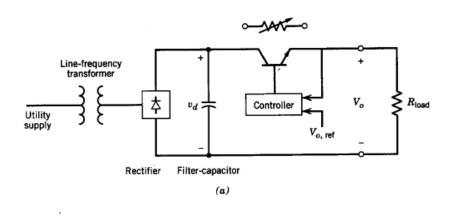
- Sudden opening of the contact breaker give high dI/dt through the ignition coil
- 20-50kV obtained at the spark plug
- Capacitor protects the contact breaker from excessive voltage

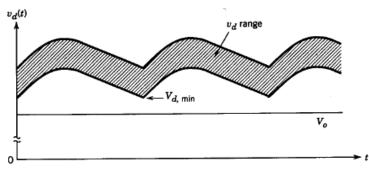
TSTE19/Tomas Jonsson


2015-11-0439

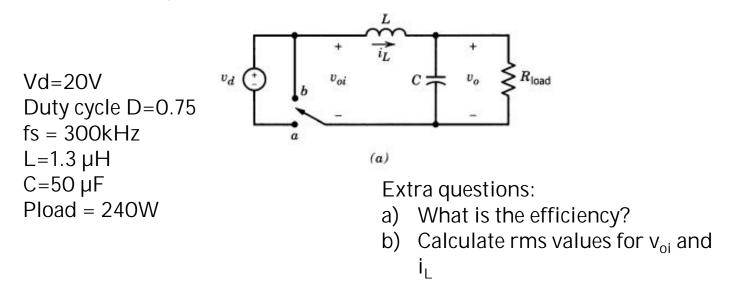
Exercises, lecture 1

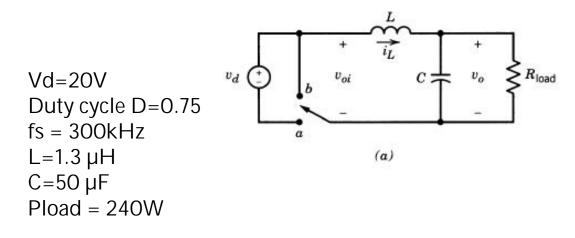
1-1, 1-2, 1-3, 1-4, 1-5 3-3, 3-4, 3-5


1-1 In the power processor of Fig. 1-1, the energy efficiency is 95%. The output to the three-phase load is as follows: 200 V line-to-line (rms) sinusoidal voltages at 52 Hz and line current of 10 A at a power factor of 0.8 (lagging). The input to the power processor is a single-phase utility voltage of 230 V at 60 Hz. The input power is drawn at a unity power factor. Calculate the input current and the input power.



TSTE19/Tomas Jonsson


1-2 Consider a linear regulated dc power supply (Fig. 1-2a). The instantaneous input voltage corresponds to the lowest waveform in Fig. 1-2b, where $V_{d,\min} = 20$ V and $V_{d,\max} = 30$ V. Approximate this waveform by a triangular wave consisting of two linear segments between the above two values. Let $V_o = 15$ V and assume that the output load is constant. Calculate the energy efficiency in this part of the power supply due to losses in the transistor.



1-5 In Problem 1-4, assume the output voltage to be a pure dc $V_o = 15$ V. Calculate and draw the voltage and current associated with the filter inductor L, and the current through C. Using the capacitor current obtained above, estimate the peak-to-peak ripple in the voltage across C, which was initially assumed to be zero. (*Hint:* Note that under steady-state conditions, the average value of the current through C is zero.)

- 1-3 Consider a switch-mode dc power supply represented by the circuit in Fig. 1-4*a*. The input dc voltage $V_d = 20$ V and the switch duty ratio D = 0.75. Calculate the Fourier components of v_{oi} using the description of Fourier analysis in Chapter 3.
- 1-4 In Problem 1-3, the switching frequency $f_s = 300$ kHz and the resistive load draws 240 W. The filter components corresponding to Fig. 1-4a are $L = 1.3 \mu$ H and $C = 50 \mu$ F. Calculate the attenuation in decibels of the ripple voltage in v_{oi} at various harmonic frequencies. (*Hint:* To calculate the load resistance, assume the output voltage to be a constant dc without any ripple.)

3-3

 For the waveforms in Fig. P3-3, calculate their average value and the rms values of the fundamental and the harmonic frequency components.

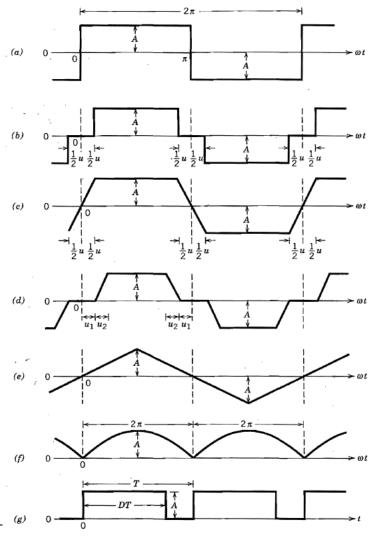


Figure P3-3

3-4

In the waveforms of Fig. P3-3 of Problem 3-3, A = 10 and $u = 20^{\circ}$ (ul = U2 = u/2), where applicable. Calculate their total rms values as follows:

- a) By using the results of Problem 3-3 in Eq. 3-28.
- b) By using the definition of the rms value as given in Eq. 3-5.

3-5

Refer to Problem 3-4 and calculate the following:

- a) For each of the waveforms *a-e*, calculate
 - i. the ratio of the fundamental frequency component to the total rms value
 - ii. the ratio of the distortion component to the total rms value.
- b) For the waveforms f and g, calculate the ratio of the average value to the total rms value.

TSTE19/Tomas Jonsson

2015-11-0537

TSTE19/Tomas Jonsson tomas.u.jonsson@liu.se

www.liu.se

www.liu.se