22-13. Two overstress possibilities, overvoltage across drain-source terminals because of stray inductance and excessive power dissipation. Check for overvoltage first.

$$
\mathrm{V}_{\mathrm{DS}}{ }^{(\text {turn-off })}=\mathrm{V}_{\mathrm{d}}+\mathrm{L} \frac{\mathrm{di}}{\mathrm{dt}}=100+\left(10^{-7}\right) \text { 自 } \frac{100}{5 \times 10^{-8}} \text { 目 }=300 \mathrm{~V}>\mathrm{BV}_{\mathrm{DSS}}=150 \mathrm{~V}
$$

Check for excessive power dissipation.

$$
\begin{aligned}
& \mathrm{P}_{\text {allowed }}=\frac{\mathrm{T}_{\mathrm{j}, \mathrm{max}}-\mathrm{T}_{\mathrm{a}}}{\mathrm{R}_{\square \cdot \mathrm{j}-\mathrm{a}}}=\frac{150-50}{1}=100 \text { watts } ; \mathrm{P}_{\text {dissipated }}=\left[\mathrm{E}_{\mathrm{on}}+\mathrm{E}_{\mathrm{sW}}\right] \mathrm{f}_{\mathrm{s}} \\
& \mathrm{E}_{\mathrm{on} \text { S }} \mathrm{f}_{\mathrm{S}}=\frac{\mathrm{I}_{\mathrm{o}}^{2} \mathrm{r}_{\mathrm{DS}(\mathrm{on})}}{2}=\frac{(100)^{2}(0.01)}{2}=50 \text { watts } \\
& \mathrm{E}_{\mathrm{SW}}=\frac{\mathrm{V}_{\mathrm{d}} \mathrm{I}_{\mathrm{O}}}{2}\left[\mathrm{t}_{\mathrm{ri}}+\mathrm{t}_{\mathrm{fi}}+\mathrm{t}_{\mathrm{rv}}+\mathrm{t}_{\mathrm{fv}}\right]=\frac{(100)(100)}{2}\left[(2)\left(5 \times 10^{-8}\right)+(2)\left(2 \times 10^{-7}\right)\right] \\
& \mathrm{E}_{\mathrm{SW}}=2.5 \times 10^{-3} \text { joules } ; \mathrm{E}_{\mathrm{sw}} \mathrm{f}_{\mathrm{s}}=\left(2.5 \times 10^{-3}\right)\left(3 \times 10^{4}\right)=75 \text { watts } \\
& \mathrm{P}_{\text {dissipated }}=50+75=125 \text { watts }>\mathrm{P}_{\text {allowed }}=100 \text { watts }
\end{aligned}
$$

MOSFET overstressed by both overvoltages and excessive power dissipation.

