Exercise 1-5 RMS current calculation

(a)

Figure 1

```
Vd=20V
Duty cycle \(\mathrm{D}=0.75\)
\(\mathrm{fs}=300 \mathrm{kHz}\)
\(\mathrm{L}=1.3 \mu \mathrm{H}\)
\(\mathrm{C}=50 \mu \mathrm{~F}\)
Pload \(=240 \mathrm{~W}\)
\(\mathrm{V} 0=15 \mathrm{~V}\)
```

The inductor current is defined with an average value given by Pload and Vo: $\mathrm{I}_{\text {Lav }}=240 / 15=16 \mathrm{~A}$.
The switched voltage voi is defined by the duty cycle D as shown below.

Figure2
$\mathrm{Ts}=1 / 300 \mathrm{kHz}=3.33 \mu \mathrm{~s}$
Ton $=D * T s=0.75 * 3.33 \mu \mathrm{~s}=2.5 \mu \mathrm{~s}$

The ripple current is defined by the voltage across the inductor, $\mathrm{v}_{\mathrm{L}}=\mathrm{V}_{0 i}-\mathrm{V}_{\mathrm{O}}$

Figure 3
The current gets two slopes:

- Rising slope with a $\mathrm{dl} 1 / \mathrm{dt}=\mathrm{V}_{\mathrm{L}} / \mathrm{L}=5 / 1.3[\mathrm{~A} / \mu \mathrm{s}]$
- Dropping slope $\mathrm{d} / 2 / \mathrm{dt}=\mathrm{v}_{\mathrm{L}_{2}} / \mathrm{L}=15 / 1.3[\mathrm{~A} / \mu \mathrm{S}]$

Figure 4
$\mathrm{t} 1=1.25 \mu \mathrm{~s}, \mathrm{t} 2=2.5 \mu \mathrm{~s}, \mathrm{t} 3=2.9 \mu \mathrm{~s}, \mathrm{t} 4=3.3 \mu \mathrm{~s}$

The RMS current of the inductor current can be divided in a dc-part (Lav) and a ripple-part (iเr). The total rms is defined as:

$$
I_{L R M S}=\sqrt{I_{L a v}^{2}+i_{\text {LrRMS }}^{2}}
$$

The general formula for the RMS current is.

$$
\mathrm{I}=\sqrt{\frac{1}{T} \int_{0}^{T} i^{2}(t) d t}
$$

The ripple current RM S can be calculated by considering the four separate triangles, each with a magnitude of ΔI, for the time intervals (t0..t1), (t1..t2), (t2..t3), (t3..t4).

$$
\Delta I=\frac{\mathrm{d} \mathrm{I} 1}{d t} t 1=\frac{5}{1.3} 1.25=4.8 \mathrm{~A}
$$

Considering the triangle (t1..t2) where we shift the time to get a zero point at t 1 , gives:

$$
\begin{gathered}
I_{\text {LrRMS } 2}=\sqrt{\frac{1}{t 2-t 1} \int_{t 1}^{t 2}\left(\Delta I \cdot \frac{t-t 1}{t 2-t 1}\right)^{2} d t}=\{\tilde{t}=t-t 1\}=\sqrt{\frac{1}{t 2-t 1} \int_{0}^{t 2-t 1}\left(\Delta I \cdot \frac{\tilde{t}}{t 2-t 1}\right)^{2} d t} \\
=\sqrt{\frac{\Delta I^{2}}{(t 2-t 1)^{3}}\left[\frac{\tilde{t}^{3}}{3}\right] t 2-t 1}=\frac{\Delta I}{\sqrt{3}}
\end{gathered}
$$

The total RMS for the ripple current becomes the same since it is the sum of the four triangles divided by 4 to get the total RM S for a full cycle.

$$
I_{L r R M S}=\frac{\Delta I}{\sqrt{3}}=\frac{4.8}{\sqrt{3}}=2.8 \mathrm{~A}
$$

The total RM S current;

$$
I_{L R M S}=\sqrt{I_{L a v}^{2}+i_{L r R M S}^{2}}=\sqrt{16^{2}+2.8^{2}}=16.2 \mathrm{~A}
$$

