TSTE17 System Design, CDIO
General project hints

* Lecture 4
- Project hints and deadline suggestions * Required documents
- Modulation, cont. - Requirement specification
- Channel coding - Design specification

- Project plan
- Time plan
— Project report
* 4 versions of the requirement specification

— Other documents updated as needed (4 times at least)
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General project hints, cont. Behavioral Model
* Final presentation and demonstration * Describe external behavior of each block in the
- All group members should participate design

* Next thing to do * Used to verify block diagram and function in the

. . S complete system
— Complete the first requirement specification p y

- Create project plan and time plan * Internals not of interest
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Behavour Example Filter vs Functional Model

scrambler
* Filter descriptions * Focus on internal implementation of behavour
- mathematical expression (transfer function) - May introduce non-ideal effects (noise, crosstalk,

- May use complex blocks in simulink aliasing, etc.)

* Used to select functional implementation of a

- No description of algorithm to use g
given behavour

* Scrambler descriptions
* Functional imperfections influences overall

- shift register with feedback (structure) performance

- vector of bits xor:ed once with complete input
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Functional Example Filter vs :
p Bit-True Model
scrambler

* Filter * Model function as implemented in digital

- Filter structure (sequence of operations) environment

- Scaling of filter * Include truncation, overflow, latency etc.
* Scrambler * Do not describe limits on clock frequencies

- shift register with feedback
- multiple bit state machine
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Bit-True Example Filter vs scrambler

e Filter

— Filter architecture (what hardware units, how they are
interconnected, etc.)

* Scrambler
- Same as functional.

- May introduce extra pipelining etc.
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Deadline suggestions
* Labs

- Everyone have completed this
* Requirement specification (1* of 4 versions)

- 1* version Monday 14/9
- Final v1.0 Thursday 17/9

* Project plan (1* of 4 versions)

- 1* version Tuesday 22/9
- Final v1.0 Friday 25/10
* Weekly meetings
- Start week 38 (18/9 latest)

TSTE17 System Design, CDIO Department of Electrical Engi g kent.palml

Kent Palmkvist Linkoping University

11

General project hints, cont.

* Models sorted by complexity
— Model 4: Most complicated
- Model 1
- Model 2
- Model 3: Least complex

* Complexity also dependent on what is included in

each model
- Synchronisation, channel estimation

- Timing
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Components of a digital
communication system

Digital
Source
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Source Channel
Coding Coding - i

Channel

Synchronize

Estimate of
Digital Source
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Quadrature Amplitude Modulation
(QAM)

* Modulate both amplitude and phase
* Use equal distance between all points

* Each point represents transmission of one
sinusoidal waveform with unique amplitude and
phase combination

Im

16-QAM
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Non-Coherent Modulation

* RF carriers not synchronized

- Amplitude may vary

- Phase may vary
ASK, PSK, QAM does not work
* Use Differential modulation

- Differential PSK (DPSK)
- Differential APSK (DAPSK)

* Compares previous symbol with current

TSTE17 System Design, CDIO Department of Electrical Engineering iu.se

Kent Palmkvist Linkoping University W du/kurs'TSTE17

14

Coherent and non-coherent
modulation

¢ Coherent modulation

- requires a phase lock between transmitter and reciever
RF carrier waves.

- Gives higher performance

- Requires more complex reciever structure
* Non-coherent modulation

- Simpler reciever structure

— Can not use QAM, PSK, ASK

TSTE17 System Design, CDIO Department of Electrical Engineering kent.palmkvist@isy.liu.se II u
o

Kent Palmkvist Link6ping University www.isy.liu.se/edu/kurs/TSTE17

16

Differential PSK (DPSK)

* Constellation equal to PSK
* Difference is in mapping of bits
- Binary DPSK
bn = dn ® dn-l
* Used for low data rates systems

» Used if simple receiver structure is needed
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Differential Modulation Detection

* Two step procedure

- Remove differential encoding

— Use normal demodulation as in coherent modulation
* Two symbols used for each detection

* Double amount of noise per detected symbol
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Shannon Channel Limit (1948)

Capacity of an AWGN channel

C=Wlog,(1+ )

W N,

C : Channel capacity
W : Bandwidth
P : Average transmitted power

N, : power-spectral density of the additive noise
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Differential Amplitude Phase
Modulation (DAPSK)

* Combine differential phase with differential
amplitude

* Amplitude modulation uses nonuniform
constellation shape

- Needed as scaling is unknown f ’\\
[[//‘T\\'\.l\a a2 |a®
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How to reach high capacity?

* Increase bandwidth
* Increase transmitted power

¢ Reduce additive noise

- Noise sources includes physical media, amplifiers,
filters, etc.

* Note: Shannon capacity is an upper limit!

— Most modulation techniques are far from the limit
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Modulation Selection

 Affects many properties
- Bit Error Rate (BER)
- Peak to Average ratio (PAPR)
- RF Spectrum shape

« Minimum distance (d_; )

— Shortest distance between any two points in a
constellation

- Determines the least amount of noise needed to
generate a decision error
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Modulation Comparison Criteria

o Compare d_. for a given energy per bit or signal
symbol
- Bit energy to noise density ratio E, /N,
- Signal energy to noise density ratio E /N,
U ES = kEb
- k bits transmitted in each symbol
* Average power is scaled 1
- Equally likely points ae M,{: 1
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Bit Error Rate Calucation

* Q(x) is used in many

cases to calculate .
probability of a bit error x):%f e 2dt x>0
P TC &

b

* Q(x) is the area under
the tail of the Probability P,cQ \/F
Density Function of a
Zero mean, unit variance
normal random variable.
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Amplitude Shift Keying (ASK)
* 2-ASK E,
P.=Ql\—
N 0
* General M-ASK —
- A is minimal distance s M 2N,
* SNR increase (required to reach same BER as 2-
ASK)
- 4-ASK 6.99 dB
- 8-ASK 6.23 dB
Kent pami 8 CPIO ihaping Untversty T N
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Phase Shift Keying (PSK)

BPSK P =0 \/ﬂ
S NO

PSK P =2Q \/2& 1_lQ \/zﬂ
Q s N, 2

P_2 Es . TT
High order PSK T+ 2Q | Sm(ﬁ)

0

* SNR increase to keep BER when adding one
more bit

* QPSK 3.00 dB, 8-PSK 5.33 dB, 16-PSK 5.85 dB
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Constellation Point Labeling

« Shortest dInin most

. 16-QAM bob by by
likely error o4 bt
UU‘IU Ul.lll 1 ll.l(l lU.l(J
- Neighbouring
pOil‘ltS should 0011 0L | 1T 10,11

f

differ in as few
—— ™

blts as possjble UU‘.UI Ull.Ul | 111()1 IU;UI !
1
- Results in a non-
natul‘al Orderlng UU.UU UI'UU | 11.()0 IU.UU
- Gray coding
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Quadrature Amplitude Modulation
(QAM)

* M-QAM
p~al1——L |0 \/ 3E,
’ VM (M—-1)N,
* SNR increase for each additional bit (initially
QPSK)

- 8-QAM 4.77 dB
- 16-QAM 2.22 dB
- 32-QAM 3.01 dB
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Detection of Coherent Modulations

¢ Must correct for channel effects first

* Hard Decision Detection
— Slicer
- # Inputs to modulator equal to # outputs
* Soft Decision Detection
- Outputs both a bit value and reliability information

- Sign indicates bit value, magnitude indicates
reliability
- Useful information for channel coding
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Channel Coding

* Add capability to correct data errors
- Requires additional information to be sent

- Removing errors makes larger noise power accepted
while keeping the same BER.

* Performance measured as coding gain

- How much can E /N be reduced while keeping a
given BER

- Different combinations of coding and modulation
may produce equal data rates, but different SNR
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Convolutional codes

* 802.11a uses a length 7 (constraint length)
convolutional encoder % rate

- rate 1/2: 1 input bit => 2 output bits
- 2° = 64 different states

T T & b,
X® —{p || @;E@*@f@f
D~ o—b

2n+1
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Different coding types

* Block codes
- Map k input symbols into n coded symbols, n>k
- Example: Reed-Solomon

* Convolutional codes

- Map k input bits in a continuous stream onto n output
bits.

- Simple structure: Convolving

- Most commonly used
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Puncturing Convolutional codes

* Doubling the number of bits in the coder may be
to much redundancy

— Want other rates: 3/4, 9/16, 2/3

* Create other rates by removing (puncture) bits in
the bitstream

- 3/4 by removing 2 out of 6 output bits (3 inputs give
6-2 = 4 outputs)
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Trellis description

* The coder has 2°°""™" 8" states. Indicate each
possible state by a dot. Add a time scale. Connect
dots depending on possible input.

S
S

S,

S

solid tine = 0 (zero) input
dashed line = 1 {(one) input
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Viterbi algorithm

* Measure distance between signals at each
sampling instant t, and all paths entering each

state or node at time t,

* Save the path with the lowest distance for each
state or node at time t,. Save the sum of the
distances for each saved path.

* Advance deeper in the trellis. The surviving path
is then the most likely bitstream.
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Decoding

* Channel coding makes some received bit
sequences impossible

- By identifying these can errors be detected and
possibly corrected

* Want to estimate the received data by the
sequence of bits that gives the smallest distance
metric

- total distance between received and expected
constellation points
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Interleaving

* Want to avoid get bursts of bit errors

- Helps getting good results in channel coding by
changing error distribution

* Interleaving increases delay
- More efficient with large interleave

— Acceptable delay often limited
* phone to phone delay < 20 ms
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Block interleaver

* Rearrange bits one writs bits
block of bits at a time l l l l l l
* Interleaving depth is ——[b0] b8 [b16][b2a[p32]ba0
the size of the block [ b1 b9 |b17]b25 |33 |b41
—| b2|b10|b18|b26|b34|b42
Input read bits —— | b3 [b11 |b19|b27|b35|b43
[by by, by, by, L] —— | ba|b12|b20]|b28]536 |64s
Output —_— Zs 213 11:21 :29 Zs7 :45
— | 06| P14 1022|030 (038 1b46
[by> bgs bygs Doy -]

——| b7 [b15]|523|b31|b39 |b47
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802.11a OFDM Parameters

* Bitrate 6,9, 12, 18, 24, 36, 48, and 54 Mbps

* Modulation BPSK, QPSK, 16-QAM, 64-QAM
* Coding rates 1/2, 2/3, 3/4

* Number of subcarriers 52 (4 pilots)

OFDM symbol duration 4 ps (800 ns guard
interval)

* Signal bandwidth 16.66 Mhz
* Subcarrier spacing 312.5 kHz
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Convolutional interleaver

¢ Best suited for continous streams

* Smaller memory requirements compared to block
interleaver

* Identical interleave and deinterleave structures
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802.11a & HiperLAN/2
Transmitter Details

* Excluding interpolation, A/D, and RF circuits

5 - - -
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802.11a Preamble

* Used to detect start of packet
* Used to synchronize receiver

* 10 short symbols + 2 long symbols

8+8=16us
-+ »

10% 088 us ‘\1 2x08:2x32-80us | 08432 ‘(”“-L(]S 324043 | 084324045

]

T T T T T T T e T
ﬁ Ly by sl b lg L Hj[(}lz | T (iJ\SlG\IJ\LY(iI\ Data 1
| I ' L1l Il Il Il

-
Channel and Fine Frequency ~ RATE SERVICE + DATA  DATA
Offset Estimation LENGTH

=3

T
Gl Data 2

>
Signal Detect, Coarse Freq.
AGC, Diversity Offset Estimation
Selection Timing Synchronize
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Packet synchronization

* Use only in packet sending applications
- Broadcasting system does not need them

* Task: Find start of the preamble of an incoming
packet

* Two possible values
- H,, packet not present

- H, packet present
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Synchronization

* Coherent modulation => Must synchronize
carrier frequency

* OFDM works with frames => Must detect start of
frame

* Channel is slowly changing => Must correct for
changes
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Packet Detection

* Usual test
- H, : m_ < Th=> Packet not present
- H, : m_>Th => Packet present
- m_ is a decision variable

- Th is a threshold
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Packet detection performance

Probability of detection P, should be as large as
possible
should be as low

Probability of false alarm P
as possible

Want high P and low P
generally increases P,

FA’

A DUt increasing Py
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Generally worse with low P,

Department of Electrical Engineering
Kent Palmkvist Linkoping University

45

Packet detection algorithms

* Received Signal Energy Detection

L-1 L-1
_ _ 2
mn_z rn—kr*n—k_z |rn—k|
k=0 k=0

* L samples added to reduce influence of noise

* The change of noise indicates start of packet
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Packet detection algorithms

* Received Signal Energy Detection
* Double Sliding Window Packet Detection

* Using the preamble structure
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Received Signal Energy Detection

* Moving sum of signal energy

m +1:mn+|rn+1|2_ |rn—L+1|2

n

* One complex multiplication/sample, L samples
stored in memory

* Drawback: Threshold depends on signal energy!
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Moving Sum Implementation

|2

T Shift register
% Reg
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Double Sliding Window Packet
Detection
* Two sliding windows

- One complex multiplication, one division, storage for

all values
M-1 M-1
2
2 rh*m rnf*m 2 |rn7m|
— a"_ m=0 — m=0
m,=-—=-7

L
2
*
rn+l rn+I Z |rn+l|
=1 1=0
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Double Sliding Window Packet
Detection
« Compute m_ as ratio between two consecutive
sliding windows
Packet —_—
—— >~ Th i
M =a /b,
Kem bt e PO irboping Universy e e [1,U
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Double Sliding Window Packet
Detection

¢ Can be used to estimate the received SNR

_apeak:S+N:S

mpeak—b N F_'_l

peak

SNR=m 1

peak

* Does not use known information about expected
format of the preamble
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Preamble components

Using the Structure of the Preamble
* t1 to t10 are short training symbols

* Use as much information as possible
- Identical 16 samples long

* Preambles in IEEE802.11a and HIPERLAN/2 i ) )
have been designed to ease detection * G12is a cyclic prefix
- 32 samples long
T, and T, are long training symbols

P §+8=16us
10% 088 ps >\< 21x08+2x32-80pus NPLEREE ‘(W_Lu&-:z |m.~>|<ox 32-40ps

T T T T T . ; ;
ﬁlg Gttt bl 1 qj[(;lz T I, (il\Sl(NALihm Data | Yun Data 2

] I T O B | L I I .

— e - Identical 64 samples long
P §+8=16us »
2x08+2x32=80us

RATE SERVICE = DATA  DATA
8= 8us 8 3
‘ 1% 08=8u bL N

Signal Dete y
Signal Detect, Coarse Freq Channel and Fine Frequency
AGC. Diversity Offset Estimation Offset Estimation LENGTH
Selection Timing Synchronize
.~ — — —
T T T T T
Gty Uy tstg by tg 1y tyg) GI2 | I
I N I | 1
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Delay and Correlate Algorithm Delay and Correlate Algorithm

 Take advantage of periodicity of the short

training symbols
- Correlate two consecutive short symbols (c )

- Normalize with signal power (p )

L-1
— *
= Z Pk TaskeD
k=0

L-1 L-1
=2 =) 2
pn_ rn+k+D P‘;n+k+D_ |rn+k+D|
k=0 k=0
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HiperLAN/2 Preambles

e Multiple preambles, different lengths
* General structure

- Two waveforms A and B
- Inverted versions of the waveforms IA and IB

* Broadcast packet preamble

[AlIAlallAlAlB[B[B[B[IBfcP| ¢ | ¢ |

Generates a zigzag detection output
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HiperLAN/2 Preambles

* Downlink packet preamble (stations already
synchronized)

ce| ¢ [ ¢ ]

* General uplink preamble

[B[B[B[B[IBfcP] Cc | ¢ ]

* Long uplink preamble (antenna diversity)

[B[B/B/B[B/B[B|B[B]IBjcP| C | C |
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