

2023-10-02

2

TSTE12 Design of Digital Systems, Lecture 11

Agenda

- Microprogrammed control structures
- Microprogramming

TSTE12 Design of Digital Systems, Lecture 11 **Practical issues** • Handin part 2 deadline today (monday 2/10 at 23:30) • Individual work!

2023-10-02

2023-10-02

4

3

TSTE12 Design of Digital Systems, Lecture 11

Lab 3

- Deadline one week after project completion
- Uses an existing design, only add microcode definition
 - Ones and zeros in a memory
- Results always checked by me
 - Send email and ask for me to check

2023-10-02 9

Large number of control signals

Bit position Function

- 28 StoreRectData Store the inverted value of the latest data read from SRAM
- 27 ReadSW17_10 Read the settings of the switch 17 downto 10
- 26 Rect-RD Start a read from the SRAM
- 25 Rect-WR Start a write of the Rectangle data register into SRAM
- NextHorPos Increment horizontal position counter
 NextVertPos Increment vertical position counter
- 22 DecHorCnt Decrement horizontal counter
- 21 DecVertCnt Decrement vertical counter
- 20 SetHorPos Set the value of the horizontal position counter
- 19 SetVertPos Set the value of the vertical position counter
- 18 SetHorCnt Set the value of the horizontal counter
- 17 SetVertCnt Set the value of the vertical counter
- 16 LoadUpperLeftX Set the display showing upper left X value
- 15 LoadUpperLeftY Set the display showing upper left Y value LoadSizeX Set the display showing the horizontal size
- LoadSizeX Set the display showing the horizontal size
 LoadSizeY Set the display showing the vertical size
- ReadUpperLeftX Read the value from the upper left X display register
- 11 ReadUpperLeftY Read the value from the upper left X display register
- 10 ReadSizeX Read the value from the horizontal size display register
- 9 ReadSizeY Read the value from the vertical size display register
- 8-5 condition select.
- 4-0 jump address loaded into the microprogram address counter if the condition is true

TSTE12 Design of Digital Systems, Lecture 11

2023-10-02 10

Control machine contains large number of states

- Selection of coordinates
 - Upper left x, y of rectangle
 - Width, hight of rectangle
- Update coordinate value
- Loop: read data, invert, write data, increment adress
- Address should run line by line, if necessary increment vertical address and restart horizontal address
 - Total adress calculated automatically as y*1024+x

2023-10-02 11

TSTE12 Design of Digital Systems, Lecture 11 Partitioning of Finite State Machine (FSM)

- Main problem: Large set of possible sequences
- Dedicated FSM
 - Complex to design
 - Hard to modify
 - Efficient
- Alternative: Microcoded FSM
 - Structured, simple to design and modify
 - Large overhead for small state machines

TSTE12 Design of Digital Systems, Lecture 11

2023-10-02 12

Microcoded FSM

- Some applications requires a longer or complex control step sequence
 - E.g. controller for a microprocessor datapath
- Some applications are too simple for a microprocessor design - Datapath control
- Some microprocessors contains a microprogrammed controller
 - Allow patching of processor
 - E.g.; 68000 processor family

2023-10-02 13

Creating a microcontroller

- Simple control machine
 - ROM + register (FSM based on lookup table)
- Replace register with a counter
 - Next state usually corresponds to the next adress i the Lookup table
 - Remove need for an adress to be specified in every control word
 - Possible jump controlled by special control bit
- Conditional jump
 - Control selects condition input, forcing adress load if active

TSTE12 Design of Digital Systems, Lecture 11 **Behavior** Moore machine only - Control outputs never directly dependent on input Conditional jump limited - Adress +1 or one branch possible in current structure • Corresponds to single if-else Possible to expand hardware to support multichoice branching Corresponds to a case-statement

TSTE12 Design of Digital Systems, Lecture 11

Timing

- Expected signal update sequence
 - Clock edge -> new adress
 - New adress -> new control values
 - New control values -> new next address
- Some control signals affect outputs in the datapath directly
 - Example: output enable signals
- Some signals affect values on following clock edge
 - Example: register load
- To move a value between a register to another
 - In the same clock cycle enable the output register and the load enable of the reciever register
 - The reciver register will contain the new value at the start of the next clock cycle

2023-10-02 16

Control signals

• Current example have long propagation delay (ROM lookup etc.)

2023-10-02 18

- Current example may have glitches on control signals
 - Should not be a problem if design is fully synchronous
- Additional registers may be added
 - ROM output / control bit decode
 - Will delay control signals relative to branching!

2023-10-02 19

2023-10-02 20

Control word (ROM output)

- Can be split into different sections
 - Individual control pins
 - Branch selection
 - Branch address
- Individual bits controls data-path of the system
- Branch related bits control sequence in controller

TSTE12 Design of Digital Systems, Lecture 11

Branch

- Branch selection
 - Encoded selection possible
- Branch implemented as address register load
- Branch may be done based on more than one input bit
 - Example: microcontroller in microprocessor branch on status bit combinations such as zero or negative

2023-10-02 21

2023-10-02 22

Branch, cont.

- · More specialized version possible if important
 - Select 1 out of N (e.g., decode OPCODE in a processor)
 - Dedicated hardware that compute start adress (small ROM)

TSTE12 Design of Digital Systems, Lecture 11

Design steps

- Partition into data flow and FSM
 - Indicate control signals
- Create FSM graph
 - Limit branching
 - Define reset state
- Find sequences
 - What should happen in which order
 - Initially ignore if things can be done in parallel

TSTE12 Design of Digital Systems	, Lecture 11
----------------------------------	--------------

Lab example, ROM

- Replace contents in ROM
- Use comment text as help
- Keep at least one '1' in each column of the control signals
 - Not necessary for branch adress or jump condition
 - May get synthesis errors if not included

ARCHITECTURE behav OF microprogram IS

SUBTYPE memword is bit_vector(28 downto 0); TYPE memarray is array (0 to 31) of memword;

2023-10-02

26

CONSTANT microprogmem : memarray :=

			LL	RR	-		
	S		00	ee			
	t		aa	aa			
	oR	Ν	dd	dd	jmp		
	re	Ne D S S	UU	UU			
	ea	exDeSeSe	ppLL	ppRR	С		
	Rd	xtecetet	ррос	oppee	0		
	eSRR	tVcVtVtV	eeaa	aeeaa	n		
	cWee	Нененене	rrdo	drrdd	d		
	t1cc	orororor	LLSS	SLLSS	i		
	D7tt	rtrtrtrt	eeii	ieeii	t		
	a	PPCCPPCC	ffzz	zffzz	i		
	t1RW	oonnoonn	ttee	ettee	0	branch	
	a0DR	ssttsstt	XYXY	YXYXY	n	Addr	
(B"0000_	_00000000_	_0000	00000_	_0000_	_00000",	 0
	B"0000_	_00000000_	_0000	00000_	_0000_	_00000",	 1
	B"0000_	_00000000_	_0000	00000_	_0000_	_00000",	 2
	B"0000_	_00000000_	_0000	00000_	_0000_	_00000",	 3
	B"0000_	_00000000_	_0000	00000_	_0000_	_00000",	 4

2023-10-02 27

.

Lab example task

• Key press detection

TSTE12 Design of Digital Systems, Lecture 11

- Multiple branch, wait for activation
- Switch setting detection
 - Multiple input branch
- Load/store coordinate info
 - Multiple load/store?
- Memory access
 - Wait for acknowledge
- Wait for key release after completing task

TSTE12 Design of Digital Systems, Lecture 11

2023-10-02 28

Example microcode use in processor

- Material from "TSEA83 Computer Hardware and Architecture" (by Michael Josefsson)
 - Small simple microprocessor design
 - Programming model is only accumulator, stack, program counter, index register, memory
 - Shows fetch, decode and execute of one instruction
 - Load accumulator with constant \$12.
 - www.isy.liu.se/edu/kurs/TSTE12/forelasning/mikroprogram.pdf

2023-10-02 30

TSTE12 Design of Digital Systems, Lecture 11

Next time

- Microprocessor structure
- Assembly level programming
- C-level hardware access

