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Agenda

* Code style
* Intellectual Property (IP)

* Alternatives to VHDL
- System-C
- SystemVerilog
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TSTE12 Deadlines Y,D,ED

* Weekly meetings should have started
- Internal weekly meeting with transcript sent to supervisor

* Project completion
- Friday 20 October
- Presentation
- Project report
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TSTE12 Deadlines MELE, Erasmus

* Weekly meetings should have started
- Internal weekly meeting with transcript sent to supervisor

* Project completion
- Friday 27 October
- Presentation
- Project report
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TSTE12 Presentation/demonstration

* 15-20 minutes/group

 All group members should participate

 Available times will be announced later

» At least two groups at the same time (2 groups audience)
* Projector, computer and DE2-115 board available

« See web page for guidelines of presentation
- Want a selling presentation (but do not overdo this)
- Point out what is different from everyone else designs

* Present both technical and administrative results
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TSTE12 Project Documents

* Project report
— Use the general LIPS template document

* Afterstudy report
— Use the special afterstudy report template
= Fill in and submit individually

* Delivery

— Clean out unrelated stuff from the project directories
— Put a README.TXT at the top level of the project directory

* Describe where, what name, how to use designs
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Handins

Handin set 2 available today 25 September
— Deadline 2 October 23:30

Handin set 3
— Start 9 October, deadline 16 October 23:30

Handin set 4
— Start 23 October, deadline 30 October 23:30

— Not necessary if you got at least 9 correct theory and at least 9 correct coding
tasks

INDIVIDUAL work, no cooperation on handins
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Last lecture today for Y/D/ED

* Lecture 11
~— Microprogramming
- Lab 3

* Lecture 12

— Low level programming,
— Assembly language, C
— Computer Peripheral (I/0)
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Common rules/hints for synthesis

Do not assign initial values to signals and variables in
declarations

- Not supported for synthesis

- Use explicit reset instead

Counter design
- Use loadable down counters if not power of 2 counting
* Avoids comparison operation, use carry result instead

Always use limited number ranges
- May get 32 bit arithmetic if not limited

Allow synthesis tool to select state coding
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Storage elements

RAM block synthesis
- Ordinary array implementation (if not recognized as RAM): flip-flops!
- Altera Cyclone IV 2C115: 3.9 Mbit RAM

* Large number of available types
- single/multi port
- Synchronous/asynchronous

* RAM areas may be initialized (when FPGA is configured)

ROM areas sometimes implemented as initialized RAM Areas
- Described as case statements or array of constants
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Single port memory model

* Some hardware require clocking
architecture rtl of sync_ram_singleport is
type mem_type is array (2**addr_width-1 downto 0) of

library IEEE; std_logic_vector(data_width-1 downto 0);
use |IEEE.std_logic_1164.all; signal mem : mem_type;
use IEEE.numeric_std.all; signal addr_reg : std_logic_vector(addr_width-1 downto 0);
begin
entity sync_ram_singleport is singleport : process(clk)
generic (data_width : natural ;= 8; begin
addr_width : natural := 8); if rising_edge(clk) then
port( if (we ='1") then
clk :in std_logic; mem(conv_integer(addr)) <= data_in;
we :in std_logic; end if;
addr : in std_logic_vector(addr_width-1 downto 0); addr_reg <= addr;
data_in : in std_logic_vector(data_width-1 downto 0); end if;
data_out : out std_logic_vector(data_width-1 downto 0)); end process singleport;
end entity; data_out <= mem(conv_integer(addr_reg);
end rtl;
[T RE
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If synthesis does not achieve the
optimization goals

* Rerun synthesis
- Optimization often based on probabilistic algorithms
- Different results in every run

* Try another optimization algorithm in the tool
- Usually possible to optimize for area or speed
- Combination of optimizations may give better results

* Change the state coding
Select different state coding algorithms
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Achieving the optimization goals,
cont.

Rewrite the VHDL code
- Manually define the state coding
- Rewrite with same functionality
* Known as retiming
* Register balancing
» Ifvscase

Rewrite giving different functionality
- Pipelining

Rewrite operations manually

2023-09-25

- Supplied adder and multiplier structures may not be optimal in all

situations
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Achieving the optimization goals,
cont.

Increase the minimum power supply voltage
Reduce the temperature range
Change technology

Reduce error coverage
- Reduce ability to test manufactured chips

Change to a better synthesis tool
Optimize logic manually

Change optimization goals

2023-09-25
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IP-blocks (Intellectual Property)

IP-blocks are predesigned function blocks of different types

Soft cores
- synthesizable code, often technology independent
- E.g., HDL designer moduleware

Hard cores
- Pure layout for a specific technology/process

* Firm cores
- In the middle, for example parameterized gates
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How do they work

* May consist of a FA cell or gate up to a complete microprocessor
or dedicated systems such as a modem.

- Examples: microprocessors (ARM, powerpc etc.), memories, peripherals
(usb, ethernet, etc.)

* Requires a high-level model that can be used for behavoural
simulation (usually not possible to synthesize)

* Behavoural model is replaced with optimized netlist or layout at
synthesis (sometimes not available to the user!)
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Advantages of IP

Reuse of code and designs
Tested (hopefully)
Fast path to final design

Do not need to be an expert on every subsystem
- Example: fast multiplier structures
- Still get high performance designs
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Drawbacks with IP

Interface problems
- Clock rates, bus protocols, number systems, wordlengths, etc.

Risks at purchase
- Functionality
- Documentation

Support

Verification
- Require lot of testbenches
- Missing models
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Models at different abstraction levels

* Model type, development environment, need, usage

* [SA
- C,C++
- Microprocessor based designs, HW/SW
- High-speed simulation, application run

* Behavoural
- C,C++, HDL
- Non-microprocessor designs
- High-speed simulation, application run

LINKOPING
II.“ UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 10 2023-09-25 26

Models, cont.

* Bus functional
- C,C++, HDL
- System simulation, internal behavior of the core
- Simulation of bus protocols and transactions

* Fully functional
- HDL
- System verification
- Simulation of cycle-by-cycle behavior
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Models, cont.

* Emulation

- Synthesized HDL

- High-speed system verification

- Simulation of cycle-by-cycle behavior
* Timing

- Stamp, Synopsis do, SDF

- Required by firm and hard cores

- Timing verification

2023-09-25
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Models, cont.

* Floor plan/area
- LEF-format
- Required by hard cores only

- SoC-level integration and physical design

2023-09-25
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IP blocks

* Been around for a long time
- Standard cell libraries (hard IP)
- Produced by process vendors (chip manufacturers)
- Memory layouts

* Increasing number of 3rd party IP producers
- FPGA vendor specific tools to help integrate IP into design flow
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Design flow using IP

* Top-down design flow difficult
- Must get a match between subsystem and IP block

* Best to use a meet-in-the-middle approach
- Identify functionality to be put in IP
- Perform top-down partitioning until meet IP
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Soft CPU

« Common trend to include soft CPU support

* CPU structure defined as IP

* Peripherals added using configuration files / GUI
* Software drivers automatically included

* GNU based development systems

* Custom instruction support
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Alternative HDL languages

Verilog
- IEEE standard 1995, revised 2001, merged into Systemverilog

* Systemverilog
- IEEE standard 2005

* System-C
- IEEE standard 2005

* Handel-C, Catapult C
* Mobius, JHDL (Java HDL)
* Chisel
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Verilog language background

» First designed 1985
* Designed for logic simulation (not synthesis)

* Owned by Cadence until 1990
- Released to public 1990

« IEEE standard 1995
* Inspired by C

* Possible to mix simulation of blocks in Verilog and VHDL
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Verilog, general aspects

C-like syntax

- Operators

- Dbitfields

* (Case sensitive identifiers

Include files (.h)

- Corresponds to VHDL packages
- Share common definitions

Not strongly typed

No pointers and access types
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General structure

* Module

- Corresponds to VHDL entity
- Specifies interface and function

module small block (a, b, c, 01, 02);
input a, b, c;
output o1, 02;

wire s;

assignol =s|| c;

assigns = a && b ;

assigno2 =s ~ c;
endmodule

2023-09-25

35

LINKOPING
II.“ UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 10

Data types

* Signal values [0 1 x Z]
- Predefined

* Values specifies bitwidth

- 334 32 bits wide decimal number
- 3'bl1 3 bits wide binary number (ie, 011)
- 20’h’f ffff 20 bits wide hexadecimal number

- 10'bZ 10 bits wide all tri-state

2023-09-25
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Nets and registers

Multiple Net types

- wire, tri, wor, wand, supplyO, supplyl

Net use
- Corresponds to a signal connecting elements

- Only possible to assign using continuous assignments (not in always
blocks)

* Reg

- Store a value

Reg and nets can be bitvectors and arrays
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Process equivelent construct

 Initial block
- Only run once

« Always block
- corresponds to process statement
- Sensitivity list
- Sequential and/or parallel code inside
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Examples: latch and reqister

* Sensitivity list is a boolean expression

input input_foo, ena ;
reg output_foo ; input input_foo, clk ;
reg output_foo ;
always @ (ena or input_foo)
if (ena) always @ (posedge clk)

output_foo = input_foo ; output_foo = input_foo ;
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Generic template for clocked circuit
with asynchronous and synchronous

always @(<edge of clock> or <edge_of_asynchronous_signals> )
if (<asynchronous_signal>)
<asynchronous signal_assignments>
else if (<asynchronous_signal>)

<asynchronous signal_assignments>

else

<synchronous signal_assignments>
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* Specify a minimum time resolution
- Not completely separated from “standard time”
- Possible to define delay of assignment
* #1 test = a; // assign test after 1 time unit

* May have a data slip
- Always @(posedge clk) Q1 = D;
- Always @(posedge clk) Q2 = Q1; // Data slip

* Data slip solved by added delay
- Always @(posedge clk) Q1 = #1 D;
- Always @(posedge clk) Q2 = #1 Q1;

41
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Dynamic processes

* Support named events
- Declare an event: event event7;
- Trigger event: -> event7;
- Code triggered by event:

@ (event7) begin
<Some procedural code>
end

* Support fork/join

- Difficult to translate to hardware

42

LINKOPING
II.“ UNIVERSITY



09/25/2023 03:03

TSTE12 Design of Digital Systems, Lecture 10 2023-09-25 43

SystemC

www.systemc.org
- Possible to download C++ library (free)

Language based on standard C++

Initially used for system level simulation and verification
- Include IP block functionality
- Add timing and hardware limitations

Same timing model as VHDL (macro and micro timing)
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SystemVerilog

* The following presentation found at

- http://compas.cs.stonybrook.edu/~nhonarmand/courses/sp15/cse502/
res/date04 systemverilog.pdf

- Presented at Design Automation Conference (DATE) in 2004
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Short summary

« VHDL

* Use of VHDL
- High Abstraction Level
- RTL
- Gate Level

* Synthesis
- RTL -> Gate

2023-09-25
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