09/25/2023 03:03

TSTE12 Design of Digital Systems, Lecture 10 2023-09-25 2

Agenda

* Code style
* Intellectual Property (IP)

* Alternatives to VHDL
- System-C
- SystemVerilog

II LINKOPING
[ UNIVERSITY




09/25/2023 03:03

TSTE12 Design of Digital Systems, Lecture 10 2023-09-25 3

TSTE12 Deadlines Y,D,ED

* Weekly meetings should have started
- Internal weekly meeting with transcript sent to supervisor

* Project completion
- Friday 20 October
- Presentation
- Project report

LINKOPING
II.“ UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 10 2023-09-25 4

TSTE12 Deadlines MELE, Erasmus

* Weekly meetings should have started
- Internal weekly meeting with transcript sent to supervisor

* Project completion
- Friday 27 October
- Presentation
- Project report

LINKOPING
II.“ UNIVERSITY



09/25/2023 03:03

TSTE12 Design of Digital Systems, Lecture 10 2023-09-25 5

TSTE12 Presentation/demonstration

* 15-20 minutes/group

 All group members should participate

 Available times will be announced later

» At least two groups at the same time (2 groups audience)
* Projector, computer and DE2-115 board available

« See web page for guidelines of presentation
- Want a selling presentation (but do not overdo this)
- Point out what is different from everyone else designs

* Present both technical and administrative results

LINKOPING
II.“ UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 10 2023-09-25 6

TSTE12 Project Documents

* Project report
— Use the general LIPS template document

* Afterstudy report
— Use the special afterstudy report template
= Fill in and submit individually

* Delivery

— Clean out unrelated stuff from the project directories
— Put a README.TXT at the top level of the project directory

* Describe where, what name, how to use designs

LINKOPING
II.“ UNIVERSITY



09/25/2023 03:03

TSTE12 Design of Digital Systems, Lecture 10 2023-09-25 7

Handins

Handin set 2 available today 25 September
— Deadline 2 October 23:30

Handin set 3
— Start 9 October, deadline 16 October 23:30

Handin set 4
— Start 23 October, deadline 30 October 23:30

— Not necessary if you got at least 9 correct theory and at least 9 correct coding
tasks

INDIVIDUAL work, no cooperation on handins

LINKOPING
II.“ UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 10 2023-09-25 8

Last lecture today for Y/D/ED

* Lecture 11
~— Microprogramming
- Lab 3

* Lecture 12

— Low level programming,
— Assembly language, C
— Computer Peripheral (I/0)

LINKOPING
II.“ UNIVERSITY



09/25/2023 03:03

TSTE12 Design of Digital Systems, Lecture 10 2023-09-25 15

Common rules/hints for synthesis

Do not assign initial values to signals and variables in
declarations

- Not supported for synthesis

- Use explicit reset instead

Counter design
- Use loadable down counters if not power of 2 counting
* Avoids comparison operation, use carry result instead

Always use limited number ranges
- May get 32 bit arithmetic if not limited

Allow synthesis tool to select state coding

LINKOPING
II.“ UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 10 2023-09-25 16

Storage elements

RAM block synthesis
- Ordinary array implementation (if not recognized as RAM): flip-flops!
- Altera Cyclone IV 2C115: 3.9 Mbit RAM

* Large number of available types
- single/multi port
- Synchronous/asynchronous

* RAM areas may be initialized (when FPGA is configured)

ROM areas sometimes implemented as initialized RAM Areas
- Described as case statements or array of constants

LINKOPING
II.“ UNIVERSITY



09/25/2023 03:03

TSTE12 Design of Digital Systems, Lecture 10 2023-09-25 17

Single port memory model

* Some hardware require clocking
architecture rtl of sync_ram_singleport is
type mem_type is array (2**addr_width-1 downto 0) of

library IEEE; std_logic_vector(data_width-1 downto 0);
use |IEEE.std_logic_1164.all; signal mem : mem_type;
use IEEE.numeric_std.all; signal addr_reg : std_logic_vector(addr_width-1 downto 0);
begin
entity sync_ram_singleport is singleport : process(clk)
generic (data_width : natural ;= 8; begin
addr_width : natural := 8); if rising_edge(clk) then
port( if (we ='1") then
clk :in std_logic; mem(conv_integer(addr)) <= data_in;
we :in std_logic; end if;
addr : in std_logic_vector(addr_width-1 downto 0); addr_reg <= addr;
data_in : in std_logic_vector(data_width-1 downto 0); end if;
data_out : out std_logic_vector(data_width-1 downto 0)); end process singleport;
end entity; data_out <= mem(conv_integer(addr_reg);
end rtl;
[T RE
TSTE12 Design of Digital Systems, Lecture 10 2023-09-25 18

If synthesis does not achieve the
optimization goals

* Rerun synthesis
- Optimization often based on probabilistic algorithms
- Different results in every run

* Try another optimization algorithm in the tool
- Usually possible to optimize for area or speed
- Combination of optimizations may give better results

* Change the state coding
Select different state coding algorithms

LINKOPING
II.“ UNIVERSITY



09/25/2023 03:03

TSTE12 Design of Digital Systems, Lecture 10

Achieving the optimization goals,
cont.

Rewrite the VHDL code
- Manually define the state coding
- Rewrite with same functionality
* Known as retiming
* Register balancing
» Ifvscase

Rewrite giving different functionality
- Pipelining

Rewrite operations manually

2023-09-25

- Supplied adder and multiplier structures may not be optimal in all

situations

19

LINKOPING
II.“ UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 10

Achieving the optimization goals,
cont.

Increase the minimum power supply voltage
Reduce the temperature range
Change technology

Reduce error coverage
- Reduce ability to test manufactured chips

Change to a better synthesis tool
Optimize logic manually

Change optimization goals

2023-09-25

20

LINKOPING
II.“ UNIVERSITY



09/25/2023 03:03

TSTE12 Design of Digital Systems, Lecture 10 2023-09-25 21

IP-blocks (Intellectual Property)

IP-blocks are predesigned function blocks of different types

Soft cores
- synthesizable code, often technology independent
- E.g., HDL designer moduleware

Hard cores
- Pure layout for a specific technology/process

* Firm cores
- In the middle, for example parameterized gates

LINKOPING
II.“ UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 10 2023-09-25 22

How do they work

* May consist of a FA cell or gate up to a complete microprocessor
or dedicated systems such as a modem.

- Examples: microprocessors (ARM, powerpc etc.), memories, peripherals
(usb, ethernet, etc.)

* Requires a high-level model that can be used for behavoural
simulation (usually not possible to synthesize)

* Behavoural model is replaced with optimized netlist or layout at
synthesis (sometimes not available to the user!)

LINKOPING
II.“ UNIVERSITY



09/25/2023 03:03

TSTE12 Design of Digital Systems, Lecture 10 2023-09-25 23

Advantages of IP

Reuse of code and designs
Tested (hopefully)
Fast path to final design

Do not need to be an expert on every subsystem
- Example: fast multiplier structures
- Still get high performance designs

LINKOPING
II.“ UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 10 2023-09-25 24

Drawbacks with IP

Interface problems
- Clock rates, bus protocols, number systems, wordlengths, etc.

Risks at purchase
- Functionality
- Documentation

Support

Verification
- Require lot of testbenches
- Missing models

LINKOPING
II.“ UNIVERSITY



09/25/2023 03:03

TSTE12 Design of Digital Systems, Lecture 10 2023-09-25 25

Models at different abstraction levels

* Model type, development environment, need, usage

* [SA
- C,C++
- Microprocessor based designs, HW/SW
- High-speed simulation, application run

* Behavoural
- C,C++, HDL
- Non-microprocessor designs
- High-speed simulation, application run

LINKOPING
II.“ UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 10 2023-09-25 26

Models, cont.

* Bus functional
- C,C++, HDL
- System simulation, internal behavior of the core
- Simulation of bus protocols and transactions

* Fully functional
- HDL
- System verification
- Simulation of cycle-by-cycle behavior

LINKOPING
II.“ UNIVERSITY



09/25/2023 03:03

TSTE12 Design of Digital Systems, Lecture 10

Models, cont.

* Emulation

- Synthesized HDL

- High-speed system verification

- Simulation of cycle-by-cycle behavior
* Timing

- Stamp, Synopsis do, SDF

- Required by firm and hard cores

- Timing verification

2023-09-25

27

LINKOPING
II.“ UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 10

Models, cont.

* Floor plan/area
- LEF-format
- Required by hard cores only

- SoC-level integration and physical design

2023-09-25

28

LINKOPING
II.“ UNIVERSITY



09/25/2023 03:03

TSTE12 Design of Digital Systems, Lecture 10 2023-09-25 29

IP blocks

* Been around for a long time
- Standard cell libraries (hard IP)
- Produced by process vendors (chip manufacturers)
- Memory layouts

* Increasing number of 3rd party IP producers
- FPGA vendor specific tools to help integrate IP into design flow

LINKOPING
II.“ UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 10 2023-09-25 30

Design flow using IP

* Top-down design flow difficult
- Must get a match between subsystem and IP block

* Best to use a meet-in-the-middle approach
- Identify functionality to be put in IP
- Perform top-down partitioning until meet IP

LINKOPING
II.“ UNIVERSITY



09/25/2023 03:03

TSTE12 Design of Digital Systems, Lecture 10 2023-09-25 31

Soft CPU

« Common trend to include soft CPU support

* CPU structure defined as IP

* Peripherals added using configuration files / GUI
* Software drivers automatically included

* GNU based development systems

* Custom instruction support

LINKOPING
II.“ UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 10 2023-09-25 32

Alternative HDL languages

Verilog
- IEEE standard 1995, revised 2001, merged into Systemverilog

* Systemverilog
- IEEE standard 2005

* System-C
- IEEE standard 2005

* Handel-C, Catapult C
* Mobius, JHDL (Java HDL)
* Chisel

LINKOPING
II.“ UNIVERSITY



09/25/2023 03:03

TSTE12 Design of Digital Systems, Lecture 10 2023-09-25 33

Verilog language background

» First designed 1985
* Designed for logic simulation (not synthesis)

* Owned by Cadence until 1990
- Released to public 1990

« IEEE standard 1995
* Inspired by C

* Possible to mix simulation of blocks in Verilog and VHDL

LINKOPING
II.“ UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 10 2023-09-25 34

Verilog, general aspects

C-like syntax

- Operators

- Dbitfields

* (Case sensitive identifiers

Include files (.h)

- Corresponds to VHDL packages
- Share common definitions

Not strongly typed

No pointers and access types

LINKOPING
II.“ UNIVERSITY



09/25/2023 03:03

TSTE12 Design of Digital Systems, Lecture 10

General structure

* Module

- Corresponds to VHDL entity
- Specifies interface and function

module small block (a, b, c, 01, 02);
input a, b, c;
output o1, 02;

wire s;

assignol =s|| c;

assigns = a && b ;

assigno2 =s ~ c;
endmodule

2023-09-25

35

LINKOPING
II.“ UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 10

Data types

* Signal values [0 1 x Z]
- Predefined

* Values specifies bitwidth

- 334 32 bits wide decimal number
- 3'bl1 3 bits wide binary number (ie, 011)
- 20’h’f ffff 20 bits wide hexadecimal number

- 10'bZ 10 bits wide all tri-state

2023-09-25

36

LINKOPING
II.“ UNIVERSITY



09/25/2023 03:03

TSTE12 Design of Digital Systems, Lecture 10 2023-09-25 37

Nets and registers

Multiple Net types

- wire, tri, wor, wand, supplyO, supplyl

Net use
- Corresponds to a signal connecting elements

- Only possible to assign using continuous assignments (not in always
blocks)

* Reg

- Store a value

Reg and nets can be bitvectors and arrays

LINKOPING
II.“ UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 10 2023-09-25 38

Process equivelent construct

 Initial block
- Only run once

« Always block
- corresponds to process statement
- Sensitivity list
- Sequential and/or parallel code inside

LINKOPING
II.“ UNIVERSITY



09/25/2023 03:03

TSTE12 Design of Digital Systems, Lecture 10 2023-09-25 39

Examples: latch and reqister

* Sensitivity list is a boolean expression

input input_foo, ena ;
reg output_foo ; input input_foo, clk ;
reg output_foo ;
always @ (ena or input_foo)
if (ena) always @ (posedge clk)

output_foo = input_foo ; output_foo = input_foo ;

LINKOPING
II.“ UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 10 2023-09-25 40

Generic template for clocked circuit
with asynchronous and synchronous

always @(<edge of clock> or <edge_of_asynchronous_signals> )
if (<asynchronous_signal>)
<asynchronous signal_assignments>
else if (<asynchronous_signal>)

<asynchronous signal_assignments>

else

<synchronous signal_assignments>

LINKOPING
II.“ UNIVERSITY



09/25/2023 03:03

TSTE12 Design of Digital Systems, Lecture 10 2023-09-25
Tl | | I I

* Specify a minimum time resolution
- Not completely separated from “standard time”
- Possible to define delay of assignment
* #1 test = a; // assign test after 1 time unit

* May have a data slip
- Always @(posedge clk) Q1 = D;
- Always @(posedge clk) Q2 = Q1; // Data slip

* Data slip solved by added delay
- Always @(posedge clk) Q1 = #1 D;
- Always @(posedge clk) Q2 = #1 Q1;

41

LINKOPING
II.“ UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 10 2023-09-25

Dynamic processes

* Support named events
- Declare an event: event event7;
- Trigger event: -> event7;
- Code triggered by event:

@ (event7) begin
<Some procedural code>
end

* Support fork/join

- Difficult to translate to hardware

42

LINKOPING
II.“ UNIVERSITY



09/25/2023 03:03

TSTE12 Design of Digital Systems, Lecture 10 2023-09-25 43

SystemC

www.systemc.org
- Possible to download C++ library (free)

Language based on standard C++

Initially used for system level simulation and verification
- Include IP block functionality
- Add timing and hardware limitations

Same timing model as VHDL (macro and micro timing)

LINKOPING
II.“ UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 10 2023-09-25 44

SystemVerilog

* The following presentation found at

- http://compas.cs.stonybrook.edu/~nhonarmand/courses/sp15/cse502/
res/date04 systemverilog.pdf

- Presented at Design Automation Conference (DATE) in 2004

LINKOPING
II.“ UNIVERSITY



09/25/2023 03:03

TSTE12 Design of Digital Systems, Lecture 10

Short summary

« VHDL

* Use of VHDL
- High Abstraction Level
- RTL
- Gate Level

* Synthesis
- RTL -> Gate

2023-09-25

45

LINKOPING
UNIVERSITY




