

TSTE12 Design of Digital Systems
Lecture 10
Kent Palmkvist

2022-09-26TSTE12 Design of Digital Systems, Lecture 10 2

Agenda

• Code style

• Intellectual Property (IP)

• Alternatives to VHDL
– System-C
– SystemVerilog

2022-09-25 22:18

2022-09-26TSTE12 Design of Digital Systems, Lecture 10 3

TSTE12 Deadlines Y,D,ED
• Weekly meetings should have started

– Internal weekly meeting with transcript sent to supervisor

• Project completion
– Friday 14 October
– Presentation
– Project report

2022-09-26TSTE12 Design of Digital Systems, Lecture 10 4

TSTE12 Deadlines MELE, Erasmus
• Weekly meetings should have started

– Internal weekly meeting with transcript sent to supervisor

• Project completion
– Friday 28 October
– Presentation
– Project report

2022-09-25 22:18

2022-09-26TSTE12 Design of Digital Systems, Lecture 10 5

TSTE12 Presentation/demonstration
• 15-20 minutes/group

• All group members should participate

• Available times will be announced later

• At least two groups at the same time (2 groups audience)

• Projector, computer and DE2-115 board available

• See web page for guidelines of presentation
– Want a selling presentation (but do not overdo this)
– Point out what is different from everyone else designs

• Present both technical and administrative results

2022-09-26TSTE12 Design of Digital Systems, Lecture 10 6

TSTE12 Project Documents
● Project report

– Use the general LIPS template document

● Afterstudy report
– Use the special afterstudy report template
– Fill in and submit individually

● Delivery

– Clean out unrelated stuff from the project directories
– Put a README.TXT at the top level of the project directory

● Describe where, what name, how to use designs

2022-09-25 22:18

2022-09-26TSTE12 Design of Digital Systems, Lecture 10 7

Handins
● Handin set 2 available today 26 September

– Deadline 3 October 23:30

● Handin set 3
– Start 10 October, deadline 17 October 23:30

● Handin set 4
– Start 24 October, deadline 31 October 23:30
– Not necessary if you got atleast 9 correct theory and atleast 9 correct coding

tasks

● INDIVIDUAL work, no cooperation on handins

2022-09-26TSTE12 Design of Digital Systems, Lecture 10 8

Last lecture today for Y/D/ED
● Lecture 11

– Microprogramming
– Lab 3

● Lecture 12

– Low level programming,
– Assembly language, C
– Computer Peripheral (I/O)

2022-09-25 22:18

2022-09-26TSTE12 Design of Digital Systems, Lecture 10 9

Resource sharing

● Chose one of two sums
– Mux + add => 51 area, 8.47 delay
– Add + mux => 73 area, 7.09 delay

If sel=’1’ then
 sum <= a + b;
else
 sum <= c + d;

if sel=’1’ then
 tmp_1 := a;
 tmp_2 := b;
else
 tmp_1 := c;
 tmp_2 := d;
end if;
sum <= tmp_1 + tmp_2;

sum_1 := a + b;
sum_2 := c + d;
if sel=’1’ then
 sum <= sum_1;
else
 Sum <= sum_2;
end if;

2022-09-26TSTE12 Design of Digital Systems, Lecture 10 10

Resource sharing

● Chose one of two sums. May add both or chose inputs first
– Mux+add => 51 area, 8.47 delay
– Add+mux => 73 area, 7.09 delay

● Flattening and structure. (logic level, not hierarchy)

● Logic can be flattened to e.g., two levels instead of three.
Different results of area and logic

2022-09-25 22:18

2022-09-26TSTE12 Design of Digital Systems, Lecture 10 11

How is timing requirements defined?

● Often derived from a symbolic clock

● Signals are defined from edges of the clock
– Fix setup and hold time. Include clock skew

● Usually defined as maximum delay
– Expensive to guarantee minimum delay
– Delay pin to flipflop, flipflop to pin
– Time from flipflop to flipflop

● Possible to specify multi cycle delay

● False paths

2022-09-26TSTE12 Design of Digital Systems, Lecture 10 12

Results

● Time reports
– Generated by analysis of netlist/layout
– Critical path reports

● Area reports

● Resource reports
– Routing, flipflops, LUT, multipliers etc.

● VHDL simulation models
– Post synthesis, post layout

● Layout possible to modify (edit at bit level)

2022-09-25 22:18

2022-09-26TSTE12 Design of Digital Systems, Lecture 10 13

Synthesis operation

● Synthesis is based on different types of pattern matching
– Support most constructs
– Behavour may still be different
– Often adds complicated patterns that are then simplified

● E.g., full flipflop with asynchronous reset and set with fixed inputs.

● Example: Generally generates a single flipflop,
but timing of Qinvers differs between simulation
of VHDL and synthesized design.

Process dflipflop(clk)
begin
 if rising_edge(clk) then
 Q <= D;
 end if;
 Qinvers <= not Q;
end process

2022-09-26TSTE12 Design of Digital Systems, Lecture 10 14

Recommended patterns

● Style guide exists (patterns)
– Specific to the synthesis tools

● Specify patterns that are allowed and recommended
– Important to produce efficient implementations
– Example units: counters, memories, tristate buffers

● These manuals are available online

2022-09-25 22:18

2022-09-26TSTE12 Design of Digital Systems, Lecture 10 15

Common rules/hints for synthesis

● Do not assign initial values to signals and variables in
declarations
– Not supported for synthesis
– Use explicit reset instead

● Counter design
– Use loadable down counters if not power of 2 counting

● Avoids comparison operation, use carry result instead

● Always use limited number ranges
– May get 32 bit arithmetic if not limited

● Allow synthesis tool to select state coding

2022-09-26TSTE12 Design of Digital Systems, Lecture 10 16

Storage elements

● RAM block synthesis
– Ordinary array implementation (if not recognized as RAM): flip-flops!
– Altera Cyclone IV 2C115: 3.9 Mbit RAM

● Large number of available types
– single/multi port
– Synchronous/asynchronous

● RAM areas may be initialized (when FPGA is configured)

● ROM areas sometimes implemented as initialized RAM Areas
– Described as case statements or array of constants

2022-09-25 22:18

2022-09-26TSTE12 Design of Digital Systems, Lecture 10 17

Single port memory model

● Some hardware require clocking

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;

entity sync_ram_singleport is
 generic (data_width : natural := 8;
 addr_width : natural := 8);
 port(
 clk : in std_logic;
 we : in std_logic;
 addr : in std_logic_vector(addr_width-1 downto 0);
 data_in : in std_logic_vector(data_width-1 downto 0);
 data_out : out std_logic_vector(data_width-1 downto 0));
end entity;

architecture rtl of sync_ram_singleport is
 type mem_type is array (2**addr_width-1 downto 0) of
 std_logic_vector(data_width-1 downto 0);
 signal mem : mem_type;
 signal addr_reg : std_logic_vector(addr_width-1 downto 0);
begin
 singleport : process(clk)
 begin
 if rising_edge(clk) then
 if (we = ’1’) then
 mem(conv_integer(addr)) <= data_in;
 end if;
 addr_reg <= addr;
 end if;
 end process singleport;
 data_out <= mem(conv_integer(addr_reg);
end rtl;

2022-09-26TSTE12 Design of Digital Systems, Lecture 10 18

If synthesis does not achieve the
optimization goals

● Rerun synthesis
– Optimization often based on probabilistic algorithms
– Different results in every run

● Try another optimization algorithm in the tool
– Usually possible to optimize for area or speed
– Combination of optimizations may give better results

● Change the state coding
Select different state coding algorithms

2022-09-25 22:18

2022-09-26TSTE12 Design of Digital Systems, Lecture 10 19

Achieving the optimization goals,
cont.

● Rewrite the VHDL code
– Manually define the state coding
– Rewrite with same functionality

● Known as retiming
● Register balancing
● If vs case

● Rewrite giving different functionality
– Pipelining

● Rewrite operations manually
– Supplied adder and multiplier structures may not be optimal in all

situations

2022-09-26TSTE12 Design of Digital Systems, Lecture 10 20

Achieving the optimization goals,
cont.

● Increase the minimum power supply voltage

● Reduce the temperature range

● Change technology

● Reduce error coverage
– Reduce ability to test manufactured chips

● Change to a better synthesis tool

● Optimize logic manually

● Change optimization goals

2022-09-25 22:18

2022-09-26TSTE12 Design of Digital Systems, Lecture 10 21

IP-blocks (Intellectual Property)

● IP-blocks are predesigned function blocks of different types

● Soft cores
– synthesizable code, often technology independent
– E.g., HDL designer moduleware

● Hard cores
– Pure layout for a specific technology/process

● Firm cores
– In the middle, for example parameterized gates

2022-09-26TSTE12 Design of Digital Systems, Lecture 10 22

How do they work

● May consist of a FA cell or gate up to a complete microprocessor
or dedicated systems such as a modem.
– Examples: microprocessors (ARM, powerpc etc.), memories, peripherals

(usb, ethernet, etc.)

● Requires a high-level model that can be used for behavoural
simulation (usually not possible to synthesize)

● Behavoural model is replaced with optimized netlist or layout at
synthesis (sometimes not available to the user!)

2022-09-25 22:18

2022-09-26TSTE12 Design of Digital Systems, Lecture 10 23

Advantages of IP

● Reuse of code and designs

● Tested (hopefully)

● Fast path to final design

● Do not need to be an expert on every subsystem
– Example: fast multiplier structures
– Still get high performance designs

2022-09-26TSTE12 Design of Digital Systems, Lecture 10 24

Drawbacks with IP

● Interface problems
– Clock rates, bus protocols, number systems, wordlengths, etc.

● Risks at purchase
– Functionality
– Documentation

● Support

● Verification
– Require lot of testbenches
– Missing models

2022-09-25 22:18

2022-09-26TSTE12 Design of Digital Systems, Lecture 10 25

Models at different abstraction levels

● Model type, development environment, need, usage

● ISA
– C,C++
– Microprocessor based designs, HW/SW
– High-speed simulation, application run

● Behavoural
– C, C++, HDL
– Non-microprocessor designs
– High-speed simulation, application run

2022-09-26TSTE12 Design of Digital Systems, Lecture 10 26

Models, cont.

● Bus functional
– C, C++, HDL
– System simulation, internal behavior of the core
– Simulation of bus protocols and transactions

● Fully functional
– HDL
– System verification
– Simulation of cycle-by-cycle behavior

2022-09-25 22:18

2022-09-26TSTE12 Design of Digital Systems, Lecture 10 27

Models, cont.

● Emulation
– Synthesized HDL
– High-speed system verification
– Simulation of cycle-by-cycle behavior

● Timing
– Stamp, Synopsis do, SDF
– Required by firm and hard cores
– Timing verification

2022-09-26TSTE12 Design of Digital Systems, Lecture 10 28

Models, cont.

● Floor plan/area
– LEF-format
– Required by hard cores only
– SoC-level integration and physical design

2022-09-25 22:18

2022-09-26TSTE12 Design of Digital Systems, Lecture 10 29

IP blocks

● Been around for a long time
– Standard cell libraries (hard IP)
– Produced by process vendors (chip manufacturers)
– Memory layouts

● Increasing number of 3rd party IP producers
– FPGA vendor specific tools to help integrate IP into design flow

2022-09-26TSTE12 Design of Digital Systems, Lecture 10 30

Design flow using IP

● Top-down design flow difficult
– Must get a match between subsystem and IP block

● Best to use a meet-in-the-middle approach
– Identify functionality to be put in IP
– Perform top-down partitioning until meet IP

2022-09-25 22:18

2022-09-26TSTE12 Design of Digital Systems, Lecture 10 31

Soft CPU

● Common trend to include soft CPU support

● CPU structure defined as IP

● Peripherals added using configuration files / GUI

● Software drivers automatically included

● GNU based development systems

● Custom instruction support

2022-09-26TSTE12 Design of Digital Systems, Lecture 10 32

Alternative HDL languages

● Verilog
– IEEE standard 1995, revised 2001, merged into Systemverilog

● Systemverilog
– IEEE standard 2005

● System-C
– IEEE standard 2005

● Handel-C, Catapult C

● Mobius, JHDL (Java HDL)

● Chisel

2022-09-25 22:18

2022-09-26TSTE12 Design of Digital Systems, Lecture 10 33

Verilog language background

● First designed 1985

● Designed for logic simulation (not synthesis)

● Owned by Cadence until 1990
– Released to public 1990

● IEEE standard 1995

● Inspired by C

● Possible to mix simulation of blocks in Verilog and VHDL

2022-09-26TSTE12 Design of Digital Systems, Lecture 10 34

Verilog, general aspects

● C-like syntax
– Operators
– bitfields

● Case sensitive identifiers

● Include files (.h)
– Corresponds to VHDL packages
– Share common definitions

● Not strongly typed

● No pointers and access types

2022-09-25 22:18

2022-09-26TSTE12 Design of Digital Systems, Lecture 10 35

General structure

● Module
– Corresponds to VHDL entity
– Specifies interface and function

module small_block (a, b, c, o1, o2);
 input a, b, c;
 output o1, o2;

 wire s;
 assign o1 = s || c ;
 assign s = a && b ;
 assign o2 = s ^ c ;
endmodule

2022-09-26TSTE12 Design of Digital Systems, Lecture 10 36

Data types

● Signal values [0 1 x z]
– Predefined

● Values specifies bitwidth
– 334 32 bits wide decimal number
– 3’b11 3 bits wide binary number (ie, 011)
– 20’h’f_ffff 20 bits wide hexadecimal number
– 10’bZ 10 bits wide all tri-state

2022-09-25 22:18

2022-09-26TSTE12 Design of Digital Systems, Lecture 10 37

Nets and registers

● Multiple Net types
– wire, tri, wor, wand, supply0, supply1

● Net use
– Corresponds to a signal connecting elements
– Only possible to assign using continuous assignments (not in always

blocks)

● Reg
– Store a value

● Reg and nets can be bitvectors and arrays

2022-09-26TSTE12 Design of Digital Systems, Lecture 10 38

Process equivelent construct

● Initial block
– Only run once

● Always block
– corresponds to process statement
– Sensitivity list
– Sequential and/or parallel code inside

2022-09-25 22:18

2022-09-26TSTE12 Design of Digital Systems, Lecture 10 39

Examples: latch and register

● Sensitivity list is a boolean expression

...

input input_foo, ena ;

reg output_foo ;

...

always @ (ena or input_foo)

 if (ena)

 output_foo = input_foo ;

...

....

input input_foo, clk ;

reg output_foo ;

....

always @ (posedge clk)

 output_foo = input_foo ;

....

2022-09-26TSTE12 Design of Digital Systems, Lecture 10 40

Generic template for clocked circuit
with asynchronous and synchronous

always @(<edge of clock> or <edge_of_asynchronous_signals>)

 if (<asynchronous_signal>)

 <asynchronous signal_assignments>

 else if (<asynchronous_signal>)

 <asynchronous signal_assignments>

 ...

 else

 <synchronous signal_assignments>

2022-09-25 22:18

2022-09-26TSTE12 Design of Digital Systems, Lecture 10 41

Timing model

● Specify a minimum time resolution
– Not completely separated from “standard time”
– Possible to define delay of assignment

● #1 test = a; // assign test after 1 time unit

● May have a data slip
– Always @(posedge clk) Q1 = D;
– Always @(posedge clk) Q2 = Q1; // Data slip

● Data slip solved by added delay
– Always @(posedge clk) Q1 = #1 D;
– Always @(posedge clk) Q2 = #1 Q1;

2022-09-26TSTE12 Design of Digital Systems, Lecture 10 42

Dynamic processes

● Support named events
– Declare an event: event event7;
– Trigger event: -> event7;
– Code triggered by event:

@ (event7) begin
 <Some procedural code>

end

● Support fork/join
– Difficult to translate to hardware

2022-09-25 22:18

2022-09-26TSTE12 Design of Digital Systems, Lecture 10 43

SystemC

● www.systemc.org
– Possible to download C++ library (free)

● Language based on standard C++

● Initially used for system level simulation and verification
– Include IP block functionality
– Add timing and hardware limitations

● Same timing model as VHDL (macro and micro timing)

2022-09-26TSTE12 Design of Digital Systems, Lecture 10 44

SystemVerilog

● The following presentation found at
– http://compas.cs.stonybrook.edu/~nhonarmand/courses/sp15/cse502/

res/date04_systemverilog.pdf
– Presented at Design Automation Conference (DATE) in 2004

2022-09-25 22:18

2022-09-26TSTE12 Design of Digital Systems, Lecture 10 45

Short summary

● VHDL

● Use of VHDL
– High Abstraction Level
– RTL
– Gate Level

● Synthesis
– RTL -> Gate

2022-09-25 22:18

