
  

 

TSTE12 Design of Digital Systems
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Kent Palmkvist
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Agenda

• Practical issues

• Design process
– FPGA vs ASIC

• Code style
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TSTE12 Deadlines Y,D,ED
• Weekly meetings should have started 

– Internal weekly meeting with transcript sent to supervisor

• Project completion
– Thursday 24 October 
– Presentation
– Project report
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TSTE12 Deadlines MELE, erasmus

• Design sketch, project plan, time plan
– What building blocks in the design (design sketch)
– Who and when should these be implemented (project plan, 

time plan)

• Wednesday 25 September 21.00: Lab 2 soft deadline
– Lab 2 results will be checked after project completed
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Handin (homework), Individual!
● 1st handin deadline today Monday 23 September 23:30

● Use only plan text editor (emacs, vi, modelsim or similar) for code entry.

● Solve tasks INDIVIDUALLY

● Submit answers using Lisam assignment function

– 4 different submissions for code, one for each code task
– 1 submission for all theory question answers

● Use a special terminal window when working with handins

module load TSTE12 ; TSTE12handin
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Design process

● Best would be to write a direct synthesizable model direct
– Hard to do

● First create executable model
– Validate system (check for correct behavior)
– Use complex data types, real values
– Not synthesizable, may use full power of the VHDL language
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Design process, cont.

● Often use an iterative 
design flow

● First model is a 
behavioral model
– Check against customer 

requirements
– Not interested of synthesis,

use all available VHDL 
language constructs

– Create a testbench
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Design process, cont.

● Model 1A (after modification to match expected code style)
– Synthesizable
– Fixed point number systems
– Limited memory size

● Difference in behavior
– Noise like errors in signal processing systems
– Timing differences
– Need to know the effect of these errors on the overall behavior
– Need to know what can be and not be done in the model, i.e., application 

area knowledge is needed, not only implementation in general (Karnough 
maps, VHDL etc.)
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Application Specific vs Language
● Application specific

– Use description formats common in the application domain
– Models often simulated and/or translated to other computer languages
– Example representations

● Dataflow diagram, e.g., DSP
– Tools

● SPW, Simulink (Matlab), DSP station, DSP builder
– Only suitable for the application domain

● Demonstrate working algorithm in simulation
– Often supports statistical calculations to evaluate performance reduction due to limited 

wordlength etc.

● Describe operations and how they communicate
– Not every block corresponds to a hardware block, only describes a function
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Language-Domain modeling

● Models described in a computer language instead of graphical 
entry
– System-C, VHDL, Verilog, C++, Java

● Hierarchy important to reduce complexity of the description

● Application specific information must be added by the designer
– No/little help with application specific functions

● Support any application domain
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Comparison

● Application domain
+ Well defined, correct functionality. Fast and easy to verify functionality. 
No need to understand language details
- Not very optimal/efficient if models not directly connected to the 
intended application area. Covers only a limited set of applications

● Language domain
+ Can be used for any application domain
- Specific measures, tests or constructs common to a particual application 
domain require explicit adding to the system
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Synthesis and simulation

● Synthesis style is tools dependent
– Something working in one tool may not work in another tool!
– Continuous development, new features added in each new release
– A standard also exist specifying a common set of expected synthesis 

constructs
● Lower limit of features, tools may support other/additional language features

● Wordlength and data types: Real -> Integer -> bitvectors
– Real values must first be translated into integer computations
– Integer computations must be translated into bitvectors of limited length
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ASIC design flow (standard cell)

● Behavoural model development

● Behavoural model validation
– testbench design

● Logic synthesis

● Post synthesis simulation
– gate delay, no wire delay alternatively only a coarse wire delay estimation

● System partitioning
– divide into chips or large blocks on chip
– I/O is limiting chip size and data speed
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ASIC design flow, cont.

● Floor planning
– where to put modules/subsystems on chip

● Placement
– detailed description on where each cell is placed on the chip

● Routing
– connect cells with wires
– Clock tree, power routing

● Circuit extraction
– extract more detailed timing from circuit
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ASIC design flow, cont.

● Post layout simulation
– including wire capacitance, cross talk etc.
– Verify function for all combinations of manufacturer and environment 

tolerances (fast, slow, typical transistor speed, high/low voltage, high/low 
temperature, etc.)

● Send masks to manufacturer
– One or more masks for each type of layer on the chip (doping, metal, etc.)
– Turn around time at least 4 weeks, probably 1-3 month

● Evaluate recieved circuit
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FPGA design flow
● Behavoural model development

● Behavoural model validation (testbench)

● Logic synthesis
– Slightly different goal structure (lookup tables and flipflops) for FPGA

● Mapping to CLBs
– What logic and flipflop to combine into one unit

● Placement
– Select one of a large set of 

● Routing
– Select wire segment in space between CLBs for connecting them together

● Circuit level extraction

● Post layout simulation

● Generation of a POF/SOF/BIT file
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Design manager design flow (Xilinx)

● Translate: Convert to local database format. Some mapping into 
technology dependent mappings (e.g., memories).

● Map: Allocate CLB, IOB, etc. 

● Place & route: Place and route, timing limitations may be included.

● Timing: Extract timing. Performed through static timing analysis 
(Sum contributing delays from flip-flop outputs to flip-flop inputs). 

● Configure: Translate layout information into a POF/SOF (bit) file to 
program the FPGA. May be stored in ROM or load through a 
processor/PC.
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Synthesis design flow Precision logic
● Analyse

– Parse HDL
– Find libraries and cells
– Check dependencies
– Resolve generics

● Elaborate
– Translate into a generic RTL + black box operators
– Create hierarchy, infer flipflops & latches, memory, operators, FSM

● Pre-optimization
– Boundary optimization

● propagating constants, remove unused outputs, shared input signals
– Constant propagation
– Resource sharing
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Synthesis design flow Precision logic, 
cont.

● Operator implementation
– Adders, counters etc.

● Hierarchy manipulations
– Flatten

● Tristate handling

● DRC checking (Design Rule Checking)
– Short circuits, multiple output driving one node etc.

● Technology mapping

● Register retiming
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Control of the synthesis process

● Additional information required by synthesis
– Pin assignment
– Timing requirements
– General placement information
– Precompiled netlists

● VHDL attributes
– No standard yet

● Synthesis tool control scripts
– Tools dependent
– Optimization, hierarchy
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Syntheis example

● Parallel to serial converter

● Shift out parallel input data from 
PAR_IN onto SO once START = '1'

● Lower abstraction level, bit 
datatypes Library ieee;

Use ieee.std_logic_1164.all;

entity PAR_TO_SER is
Port(
  START,SHCLK: in STD_LOGIC;
  PAR_IN: in STD_LOGIC_VECTOR(7 downto 0);
  SO: out STD_LOGIC);
end PAR_TO_SER;
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Hardware engineer view of the 
implementation

● Counter and multiplexer
Library ieee;
Use ieee.std_logic_1164.all;

entity PAR_TO_SER is
Port(
  START,SHCLK: in STD_LOGIC;
  PAR_IN: in STD_LOGIC_VECTOR(7 downto 0);
  SO: out STD_LOGIC);
end PAR_TO_SER;

architecture ALG1 of PAR_TO_SER is
 begin

P1:process(START,SHCLK)
   variable COUNT: INTEGER range 7 downto -1 := 0;
   variable DONE: BOOLEAN;
begin
   if  START = '1' then 
     COUNT := 7;
     DONE := FALSE;
   elsif SHCLK'EVENT and SHCLK = '1'  then 
     if DONE = FALSE then 
      SO <= PAR_IN(COUNT);
      COUNT := COUNT - 1;
     end if; 
     if COUNT < 0 then
      DONE := TRUE;
     else
      DONE  := FALSE;
     end if;
   end if;
end process;
end ALG1;
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Programmer implementation

● Uses waveform assignment 
with delay information

● Same behavior, less obvious 
how to implement

Library IEEE;
use IEEE.std_logic_1164.all;

entity PAR_TO_SER_SCHED is
generic(PERIOD: TIME);
Port(
  START: in STD_LOGIC; 
  PAR_IN: in STD_LOGIC_VECTOR(7 downto 0);
  SO: out STD_LOGIC);
end PAR_TO_SER_SCHED;

architecture ALG2 of PAR_TO_SER_SCHED is
begin
P1:process(START)
   variable COUNT: INTEGER;
begin
   if  START = '1' then 
     COUNT := 7;
     while COUNT >= 0 loop
     SO <= transport PAR_IN(COUNT) 
                         after (7-COUNT)*PERIOD;
     COUNT := COUNT - 1;
     end loop;
    end if;
end process;
end ALG2;
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Sensitivity list issues

● Used in simulation 
to trigger processes

● In synthesis it only 
indicates inputs, 
often without 
affecting the 
synthesis

● Example:
– Different simulation
– Same synthesis result

architecture ALG of T_FF is
signal Q: STD_LOGIC;
begin

process(RESET,T,CLK)
 begin
   if (RESET = '1') then
      Q  <= '0';
   elsif (CLK'EVENT and CLK = '1') then 
      if T = '1' then
      Q  <=  not Q ;
      end if; 
   end if;
end process;

QOUT <= Q;
end ALG;

architecture ALG of T_FF2 is
signal Q: STD_LOGIC;
begin

process(RESET,T,CLK)
 begin
   if (RESET = '1') then
      Q  <= '0';
   elsif (CLK'EVENT and CLK = '1') then 
      if T = '1' then
      Q  <=  not Q ;
      end if; 
   end if;
   QOUT <= Q;
end process;

end ALG;
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Example T-flipflop

● Different behavior in the two models
– Output delayed in 2nd code due to missing 

Q in sensitivity list

● Synthesis can generate the same 
results
– Flipflop with exor gate in feedback

● Delay
– Can not use an assignment “after xx ns”, 

only wait for an event (on a clock)
– Wait statements for fixed delay does not 

make sense
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Data types

● Std_logic is prefered
– Helps finding reset issues and similar

● Bit works, but the synthesized model will use std_logic
– Testbenches require changes to support run of synthesis netlist

09/23/2024 01:08



  

 

2024-09-23TSTE12 Design of Digital Systems, Lecture 9 27

Clock detection

● CLK'EVENT AND CLK='1'
– Do not use additional enable signals in the clock edge detection

● Exists also 'RISING_EDGE and 'FALLING_EDGE
– Handles also L, H, and Z in the expected way (H->1 no edge, 0->H edge!)

● Synchronous/asynchronous reset/set
IF asyncexpression THEN
  -- async reset & init
elsif clockdetection
  -- sync expressions
end if;
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Gated clocks

● Generally not a good idea
– Glitch in control signal may produce glitch on clock!
– Wrong timing on control signal may give errornous trigger
– Clock buffers may introduce large delays

● Less time left for the calculation of the control signal value

● Do not combine clock edge detection with logic in the same 
expression

if clk'event and clk='1' and enable = '1' then

● Some hardware supports gated clocks
– Special forms of flipflops

if clk’event and clk = ’1’ then
  if enable = ’1’ then
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Reset of internal states

● What to do if no asynchronous reset?
– Initial data must be clocked in using a 

control signal

● Code example without reset
– Works in simulation due to initialisation 

of TEQDET

● Simulation of synthesis error due to 
initialisation to 'U'

entity EQDET is
Port(
  I,CLK: in STD_LOGIC;
  TEQDET: inout STD_LOGIC :='0'); 
end EQDET;

architecture ALG of EQDET is
  begin
  process
    variable  EQ,IBK1,IBK2: STD_LOGIC;
    begin
    wait until (CLK'EVENT and CLK = '1');
      if(IBK1 =IBK2) and (IBK2 = I) then 
        EQ := '1';
       else
        EQ := '0';
      end if;
      TEQDET <= (EQ xor TEQDET);
      IBK2 := IBK1;
      IBK1 := I;
  end process;
end ALG;
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Using explicit reset

● Asynchronous reset

● Possible to use synchronous 
reset instead

entity EQDET is
Port(
  RESET,I,CLK: in STD_LOGIC;
  TEQDET: inout STD_LOGIC);
end EQDET;

architecture ALG of EQDET is
  begin
  process(RESET,CLK)
    variable  EQ,IBK1,IBK2: STD_LOGIC;
    begin
      if (RESET = '1') then
        IBK1 :=  '0';
        IBK2 :=  '0';
        TEQDET <= '0';
      elsif (CLK'EVENT and CLK = '1') then
        if (IBK1 = I) and (IBK1 = IBK2) then 
          EQ := '1';
        else
          EQ := '0';
        end if;
        TEQDET <= (EQ xor TEQDET);
        IBK2 := IBK1;
        IBK1 := I;
      end if;
  end process;
end ALG;
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Simulation and Synthesis results

● Order of IBK1 and IBK2 updates are 
important if variables are used

● Update order not important if signals 
are used
– EQ still a variable!

● Both descriptions give same synthesis 
result

architecture ALG of EQDET is
  signal IBK1,IBK2: STD_LOGIC;
  begin
  process(RESET,CLK)
    variable  EQ: STD_LOGIC;
    begin
       if (RESET = '1') then
        IBK1 <=  '0';
        IBK2  <=  '0';
          TEQDET <= '0';
       elsif (CLK'EVENT and CLK = '1') then
        if (IBK1 = I) and (IBK1 = IBK2) then 
         EQ := '1';
        else
         EQ := '0';
        end if;
        TEQDET <= (EQ xor TEQDET);
        IBK1 <= I;
        IBK2  <= IBK1;
       end if;
  end process;
end ALG;
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Arithmetic operations

● Add, sub supported
– Translates into full adder before simplified
– Operands are not extended

● Multiplication
– Translated into combinational expressions
– Multiple possible structures: Wallace, Carry Save array. 
– Constant values usually produces add and shift implementations 

(simplified multiplications)

● Division usually not supported 
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Hierarchical arithmetic: BCD to 
binary conversion

● Want to implement a 4 digit BCD to binary converter
– describe decimal number using 4 bits for each digit

● Use Horners rule: d3x103 + d2x102+d1x10+d0= 
(d3x10+d2)x10+d1)x10+d0, i.e., by arbitrary length converter can 
be built by repeated multiplication by 10 and addition

● Implement the multiply add
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Multiply and add operators

● Use unsigned datatype

Library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.NUMERIC_STD.all;
entity SIMP_ADD is
port(A,B: in STD_LOGIC_VECTOR(3 downto 0);
     CIN: in STD_LOGIC;
     C: out STD_LOGIC_VECTOR(3 downto 0);
     CAR_OUT: out STD_LOGIC);
end SIMP_ADD;
architecture ALG of SIMP_ADD is
  begin
  P1:process(A,B,CIN)
    variable  PADDED_CIN: STD_LOGIC_VECTOR(3 downto 0);
    variable A_UNSIGNED: UNSIGNED(3 downto 0);
    variable C_UNSIGNED: UNSIGNED(4 downto 0);
  begin
     A_UNSIGNED := UNSIGNED(A);
     PADDED_CIN  :="000"&CIN;
     C_UNSIGNED  := (A_UNSIGNED(3) & A_UNSIGNED,5) + 
                   UNSIGNED(B) +  UNSIGNED(PADDED_CIN);
     C  <= STD_LOGIC_VECTOR(C_UNSIGNED(3 downto 0));
     CAR_OUT  <= C_UNSIGNED(4);
   end process;
end ALG;

library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.NUMERIC_STD.all;

entity MULT10 is
port(DATA_IN: in STD_LOGIC_VECTOR(3 downto 0); 
     PRODUCT: out STD_LOGIC_VECTOR(7 downto 0));
end MULT10;

architecture ALG of MULT10 is
  begin
  process(DATA_IN)
    variable PROD_US: UNSIGNED(7 downto 0);
  begin
    PROD_US := 
             UNSIGNED(DATA_IN)*10;
    PRODUCT <= STD_LOGIC_VECTOR(PROD_US);
  end process;
end ALG;
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Combined add and mult

● Varying word length
library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.NUMERIC_STD.all;

entity MADD is
generic(IN_WIDTH: NATURAL := 4);
port(DI: in STD_LOGIC_VECTOR(IN_WIDTH-1 downto 0); 
     DJ: in STD_LOGIC_VECTOR(3 downto 0);
     MSUM: out STD_LOGIC_VECTOR(IN_WIDTH+3 downto 0));
end MADD;

architecture ALG of MADD is
  begin
  P1: process(DI,DJ)
    variable MSUM_US: UNSIGNED(IN_WIDTH+3 downto 0);
    variable PROD:UNSIGNED(2*IN_WIDTH-1 downto 0);
  begin
    PROD :=  UNSIGNED(DI)*to_unsigned(10,IN_WIDTH);
    MSUM_US := PROD(IN_WIDTH+3 downto 0)+ UNSIGNED(DJ);
    MSUM <= STD_LOGIC_VECTOR(MSUM_US);
  end process;
end ALG;

library IEEE;
use IEEE.STD_LOGIC_1164.all;
entity BCDCONV is
port(D0,D1,D2,D3: in STD_LOGIC_VECTOR(3 downto 0);
      BIN_OUT: out STD_LOGIC_VECTOR(15 downto 0));
end BCDCONV;

architecture STRUCTURAL of BCDCONV is
component MADD 
generic(IN_WIDTH: NATURAL := 4);
port(DI: in STD_LOGIC_VECTOR(IN_WIDTH-1 downto 0); 
     DJ: in STD_LOGIC_VECTOR(3 downto 0);
     MSUM: out STD_LOGIC_VECTOR(IN_WIDTH+3 downto 0));
end component;
signal MSUM2: STD_LOGIC_VECTOR(7 downto 0);
signal MSUM1:  STD_LOGIC_VECTOR(11 downto 0);
begin
C1: MADD
  generic map(4)
  port map(D3,D2,MSUM2);
C2: MADD
  generic map(8)
  port map(MSUM2,D1,MSUM1);
C3: MADD
  generic map(12)
  port map(MSUM1,D0,BIN_OUT);
end STRUCTURAL;
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Hierarchical circuit synthesis

● Ungrouping
– remove artificial boarders between blocks
– Allows optimize common subcalculation
– Improves synthesis results
– Example BCD: 342 -> 309 cells and 30.34 ->30.11 ns delay.

● Uniquify
– Create different instances different implementations by repeating netlists
– Allows different optimization of different parts
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Hierarchical Approach

● Bottom up
– uniquify
– Build each sub block, then combine
– Requires good estimate of timing requirement 

● Top down
– Synthesize all to get initial requirements
– Resynthesize parts not meeting requirements

● Golden instance
– Synthesize one block, reuse
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Example: 12 bit adder register

● Design based on the 4-bit adder

● Different requirement on sum and carry speed
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Example: 12 bit adder register, cont.

● Top-down
– Area 255, 8.84 ns
– Difficult to know which part require more propagation time

● Bottom-up
– Area 277, 8.38 ns
– Some circuit overdesigned, hard to know before full circuit

● Golden instance
– Area 254, 11.19 ns
– One size does not fit all...

2024-09-23TSTE12 Design of Digital Systems, Lecture 9 40

Inferred latches and don’t cares

● Synthesis may find that latches are needed

● Example: incomplete if

                        PROCESS(a,b,c,d)
                          BEGIN
                            IF (a = ‘1’) THEN
                              out_sig <= x;
                            ELSIF (b = ‘1’) THEN
                              out_sig <= y;
                            ENDIF;
                          END PROCESS;

● out_sig not defined if a and b = 0! Require latch!
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Latch and undefined examples 
(SEL=11 not expected)

entity INFERRED is
port(IN_DAT,IN_EN: in STD_LOGIC; SEL: in STD_LOGIC_VECTOR(1 downto 0); 
    A_LATCHED,A_COMB,B_LATCHED,B_COMB_0,B_COMB_1,B_COMB_2: out STD_LOGIC);
--pragma dc_script_begin
--set_flatten true
--pragma dc_script_end

end INFERRED;

architecture ALG of INFERRED is
begin

P_A_LATCHED: process(IN_DAT,IN_EN)
 begin
  if IN_EN = '1' then
    A_LATCHED <= IN_DAT;
  end if;
end process;
P_A_COMB: process(IN_DAT,IN_EN)
 begin
  if IN_EN = '1' then
    A_COMB <= IN_DAT;
  else
    A_COMB <= '0'; 
  end if;
end process;

P_B_LATCHED: process(IN_DAT,SEL)
begin
  case (SEL) is
    when "00" => B_LATCHED <= IN_DAT;
    when "01" => B_LATCHED <= not 
IN_DAT;
    when  "10" => B_LATCHED <= '0';
    when  "11" =>  null;
    when others => null;
  end case;
end process;
P_B_COMB_0: process(IN_DAT,SEL)
begin
  case (SEL) is
    when "00" => B_COMB_0 <= IN_DAT;
    when "01" => B_COMB_0 <= not IN_DAT;
    when  "10" => B_COMB_0 <= '0';
    when  "11" => B_COMB_0 <= '1';
    when others => null;
  end case; 
end process; 

  P_B_COMB_1: process(IN_DAT,SEL)
  begin
  B_COMB_1 <= '1';
  case (SEL) is
    when "00" => B_COMB_1 <= IN_DAT;
    when "01" => B_COMB_1 <= not IN_DAT;
    when  "10" => B_COMB_1 <= '0';
    when  "11" => null;
    when others => null;
  end case;
end process;
P_B_COMB_2: process(IN_DAT,SEL)
  begin
   case (SEL) is
    when "00" => B_COMB_2 <= IN_DAT;
    when "01" => B_COMB_2 <= not IN_DAT;
    when "10" => B_COMB_2 <= '0';
    when "11" => B_COMB_2 <= '-';
    when others => null;
  end case;
 end process;
end ALG;  
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Synthesis results

● Synthesis sometimes generate latches
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Latch problem examples

● Latches can be fixed by 
– Add an assignment in all choices of a case
– Add a default assignment before case
– Use don't care symbol '-' to indicate non-important value

● Using a fixed value may use a non-efficient one
– Use don’t care instead
– Better let the tool know about unknown
– Help reduce area and speed up synthesis

2024-09-23TSTE12 Design of Digital Systems, Lecture 9 44

ROM-structure with don’t care
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;
entity FUNCS is
port(X: in STD_LOGIC_VECTOR(2 downto 0); Z1,Z2: out STD_LOGIC);
end FUNCS;

architecture ROM of FUNCS is
type ROM_1D is array(0 to 7) of STD_LOGIC;
begin
FULLY_SPECIFIED: process(X)
  constant ROM1: ROM_1D:= "01101000";
  begin
    Z1 <=ROM1(CONV_INTEGER(X));
end process; 
PARTIALLY_SPECIFIED: process(X)
  constant ROM2: ROM_1D:= "01101--0";
  begin
    Z2 <=ROM2(CONV_INTEGER(X));
end process;
end ROM;
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Reset problem

● Counter with delay that should 
set count_old to zero while 
being reset?

PROCESS (clk, reset);
BEGIN
  if (reset = ‘0’) then
    count <= 0;
  elsif rising_edge(clk) then
    count_old <= count;
    count <= count + 1;
  end if;
end process;

Count_old not reset!
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Tristate gates

● Some technologies does not 
support tristate internally in 
the design

● Floating wires may produce 
high power consumption due 
to short circuit current in 
inputs

● Possible to change a tristate 
version into a multiplexer 
based version (done 
automatically by some tools)

PROCB: process(B,ENB)
  begin
  if (ENB = '1') then
     BUS_SIG <= B;
  else 
     BUS_SIG <= 'Z';
  end if;
end process;
end   ALG;

library IEEE;
use IEEE.STD_LOGIC_1164.all;
entity TRISTATE is
port(A,B,ENA,ENB: in STD_LOGIC;
       BUS_SIG: out STD_LOGIC);
end TRISTATE;

architecture   ALG of  TRISTATE is
  begin
PROCA: process(A,ENA)
  begin
  if (ENA = '1') then
     BUS_SIG <= A;
  else 
     BUS_SIG <= 'Z';
  end if;
end process;
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Clock buffers and other aspects
● Attributes used to indicate clock signals

– Information used to select special layout methods or hardware resources to 
reduce clock skew

– Automatically detected in general

● High fanout signals
– Buffer cells will be added

● Logic duplications
– Allow larger fan-out without adding separate buffers

● Retiming/pipelining
– Switch order between calculation and storage

● Multipliers/DSP blocks
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Resource sharing

● Chose one of two sums. May add both or chose inputs first 
– Mux+add => 51 area, 8.47 delay
– Add+mux => 73 area, 7.09 delay

● Flattening and structure. (logic level, not hierarchy)

● Logic can be flattened to e.g., two levels instead of three. 
Different results of area and logic

09/23/2024 01:08



  

 

2024-09-23TSTE12 Design of Digital Systems, Lecture 9 49

How is timing requirements defined?

● Often derived from a symbolic clock

● Signals are defined from edges of the clock
– Fix setup and hold time. Include clock skew

● Usually defined as maximum delay
– Expensive to guarantee minimum delay
– Delay pin to flipflop, flipflop to pin
– Time from flipflop to flipflop

● Possible to specify multi cycle delay

● False paths
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Results

● Time reports
– Generated by analysis of netlist/layout
– Critical path reports

● Area reports

● Resource reports
– Routing, flipflops, LUT, multipliers etc.

● VHDL simulation models
– Post synthesis, post layout

● Layout possible to modify (edit at bit level)
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Synthesis operation

● Synthesis is based on different types of pattern matching
– Support most constructs
– Behavour may still be different
– Often adds complicated patterns that are then simplified

● Example: D flip flop with Qinvers output, but without Q in the 
sensitivity list. Generally generates a single flipflop, but timing 
of Qinvers differs between simulation of VHDL and synthesized 
design.
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Recommended patterns

● Style guide exists (patterns)
– Specific to the synthesis tools

● Specify patterns that are allowed and recommended
– Important to produce efficient implementations
– Example units: counters, memories, tristate buffers

● These manuals are available online
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