

TSTE12 Design of Digital Systems
Lecture 9
Kent Palmkvist

2024-09-23TSTE12 Design of Digital Systems, Lecture 9 2

Agenda

• Practical issues

• Design process
– FPGA vs ASIC

• Code style

09/23/2024 01:08

2024-09-23TSTE12 Design of Digital Systems, Lecture 9 3

TSTE12 Deadlines Y,D,ED
• Weekly meetings should have started

– Internal weekly meeting with transcript sent to supervisor

• Project completion
– Thursday 24 October
– Presentation
– Project report

2024-09-23TSTE12 Design of Digital Systems, Lecture 9 4

TSTE12 Deadlines MELE, erasmus

• Design sketch, project plan, time plan
– What building blocks in the design (design sketch)
– Who and when should these be implemented (project plan,

time plan)

• Wednesday 25 September 21.00: Lab 2 soft deadline
– Lab 2 results will be checked after project completed

09/23/2024 01:08

2024-09-23TSTE12 Design of Digital Systems, Lecture 9 5

Handin (homework), Individual!
● 1st handin deadline today Monday 23 September 23:30

● Use only plan text editor (emacs, vi, modelsim or similar) for code entry.

● Solve tasks INDIVIDUALLY

● Submit answers using Lisam assignment function

– 4 different submissions for code, one for each code task
– 1 submission for all theory question answers

● Use a special terminal window when working with handins

module load TSTE12 ; TSTE12handin

2024-09-23TSTE12 Design of Digital Systems, Lecture 9 6

Design process

● Best would be to write a direct synthesizable model direct
– Hard to do

● First create executable model
– Validate system (check for correct behavior)
– Use complex data types, real values
– Not synthesizable, may use full power of the VHDL language

09/23/2024 01:08

2024-09-23TSTE12 Design of Digital Systems, Lecture 9 7

Design process, cont.

● Often use an iterative
design flow

● First model is a
behavioral model
– Check against customer

requirements
– Not interested of synthesis,

use all available VHDL
language constructs

– Create a testbench

2024-09-23TSTE12 Design of Digital Systems, Lecture 9 8

Design process, cont.

● Model 1A (after modification to match expected code style)
– Synthesizable
– Fixed point number systems
– Limited memory size

● Difference in behavior
– Noise like errors in signal processing systems
– Timing differences
– Need to know the effect of these errors on the overall behavior
– Need to know what can be and not be done in the model, i.e., application

area knowledge is needed, not only implementation in general (Karnough
maps, VHDL etc.)

09/23/2024 01:08

2024-09-23TSTE12 Design of Digital Systems, Lecture 9 9

Application Specific vs Language
● Application specific

– Use description formats common in the application domain
– Models often simulated and/or translated to other computer languages
– Example representations

● Dataflow diagram, e.g., DSP
– Tools

● SPW, Simulink (Matlab), DSP station, DSP builder
– Only suitable for the application domain

● Demonstrate working algorithm in simulation
– Often supports statistical calculations to evaluate performance reduction due to limited

wordlength etc.

● Describe operations and how they communicate
– Not every block corresponds to a hardware block, only describes a function

2024-09-23TSTE12 Design of Digital Systems, Lecture 9 10

Language-Domain modeling

● Models described in a computer language instead of graphical
entry
– System-C, VHDL, Verilog, C++, Java

● Hierarchy important to reduce complexity of the description

● Application specific information must be added by the designer
– No/little help with application specific functions

● Support any application domain

09/23/2024 01:08

2024-09-23TSTE12 Design of Digital Systems, Lecture 9 11

Comparison

● Application domain
+ Well defined, correct functionality. Fast and easy to verify functionality.
No need to understand language details
- Not very optimal/efficient if models not directly connected to the
intended application area. Covers only a limited set of applications

● Language domain
+ Can be used for any application domain
- Specific measures, tests or constructs common to a particual application
domain require explicit adding to the system

2024-09-23TSTE12 Design of Digital Systems, Lecture 9 12

Synthesis and simulation

● Synthesis style is tools dependent
– Something working in one tool may not work in another tool!
– Continuous development, new features added in each new release
– A standard also exist specifying a common set of expected synthesis

constructs
● Lower limit of features, tools may support other/additional language features

● Wordlength and data types: Real -> Integer -> bitvectors
– Real values must first be translated into integer computations
– Integer computations must be translated into bitvectors of limited length

09/23/2024 01:08

2024-09-23TSTE12 Design of Digital Systems, Lecture 9 13

ASIC design flow (standard cell)

● Behavoural model development

● Behavoural model validation
– testbench design

● Logic synthesis

● Post synthesis simulation
– gate delay, no wire delay alternatively only a coarse wire delay estimation

● System partitioning
– divide into chips or large blocks on chip
– I/O is limiting chip size and data speed

2024-09-23TSTE12 Design of Digital Systems, Lecture 9 14

ASIC design flow, cont.

● Floor planning
– where to put modules/subsystems on chip

● Placement
– detailed description on where each cell is placed on the chip

● Routing
– connect cells with wires
– Clock tree, power routing

● Circuit extraction
– extract more detailed timing from circuit

09/23/2024 01:08

2024-09-23TSTE12 Design of Digital Systems, Lecture 9 15

ASIC design flow, cont.

● Post layout simulation
– including wire capacitance, cross talk etc.
– Verify function for all combinations of manufacturer and environment

tolerances (fast, slow, typical transistor speed, high/low voltage, high/low
temperature, etc.)

● Send masks to manufacturer
– One or more masks for each type of layer on the chip (doping, metal, etc.)
– Turn around time at least 4 weeks, probably 1-3 month

● Evaluate recieved circuit

2024-09-23TSTE12 Design of Digital Systems, Lecture 9 16

FPGA design flow
● Behavoural model development

● Behavoural model validation (testbench)

● Logic synthesis
– Slightly different goal structure (lookup tables and flipflops) for FPGA

● Mapping to CLBs
– What logic and flipflop to combine into one unit

● Placement
– Select one of a large set of

● Routing
– Select wire segment in space between CLBs for connecting them together

● Circuit level extraction

● Post layout simulation

● Generation of a POF/SOF/BIT file

09/23/2024 01:08

2024-09-23TSTE12 Design of Digital Systems, Lecture 9 17

Design manager design flow (Xilinx)

● Translate: Convert to local database format. Some mapping into
technology dependent mappings (e.g., memories).

● Map: Allocate CLB, IOB, etc.

● Place & route: Place and route, timing limitations may be included.

● Timing: Extract timing. Performed through static timing analysis
(Sum contributing delays from flip-flop outputs to flip-flop inputs).

● Configure: Translate layout information into a POF/SOF (bit) file to
program the FPGA. May be stored in ROM or load through a
processor/PC.

2024-09-23TSTE12 Design of Digital Systems, Lecture 9 18

Synthesis design flow Precision logic
● Analyse

– Parse HDL
– Find libraries and cells
– Check dependencies
– Resolve generics

● Elaborate
– Translate into a generic RTL + black box operators
– Create hierarchy, infer flipflops & latches, memory, operators, FSM

● Pre-optimization
– Boundary optimization

● propagating constants, remove unused outputs, shared input signals
– Constant propagation
– Resource sharing

09/23/2024 01:08

2024-09-23TSTE12 Design of Digital Systems, Lecture 9 19

Synthesis design flow Precision logic,
cont.

● Operator implementation
– Adders, counters etc.

● Hierarchy manipulations
– Flatten

● Tristate handling

● DRC checking (Design Rule Checking)
– Short circuits, multiple output driving one node etc.

● Technology mapping

● Register retiming

2024-09-23TSTE12 Design of Digital Systems, Lecture 9 20

Control of the synthesis process

● Additional information required by synthesis
– Pin assignment
– Timing requirements
– General placement information
– Precompiled netlists

● VHDL attributes
– No standard yet

● Synthesis tool control scripts
– Tools dependent
– Optimization, hierarchy

09/23/2024 01:08

2024-09-23TSTE12 Design of Digital Systems, Lecture 9 21

Syntheis example

● Parallel to serial converter

● Shift out parallel input data from
PAR_IN onto SO once START = '1'

● Lower abstraction level, bit
datatypes Library ieee;

Use ieee.std_logic_1164.all;

entity PAR_TO_SER is
Port(
 START,SHCLK: in STD_LOGIC;
 PAR_IN: in STD_LOGIC_VECTOR(7 downto 0);
 SO: out STD_LOGIC);
end PAR_TO_SER;

2024-09-23TSTE12 Design of Digital Systems, Lecture 9 22

Hardware engineer view of the
implementation

● Counter and multiplexer
Library ieee;
Use ieee.std_logic_1164.all;

entity PAR_TO_SER is
Port(
 START,SHCLK: in STD_LOGIC;
 PAR_IN: in STD_LOGIC_VECTOR(7 downto 0);
 SO: out STD_LOGIC);
end PAR_TO_SER;

architecture ALG1 of PAR_TO_SER is
 begin

P1:process(START,SHCLK)
 variable COUNT: INTEGER range 7 downto -1 := 0;
 variable DONE: BOOLEAN;
begin
 if START = '1' then
 COUNT := 7;
 DONE := FALSE;
 elsif SHCLK'EVENT and SHCLK = '1' then
 if DONE = FALSE then
 SO <= PAR_IN(COUNT);
 COUNT := COUNT - 1;
 end if;
 if COUNT < 0 then
 DONE := TRUE;
 else
 DONE := FALSE;
 end if;
 end if;
end process;
end ALG1;

09/23/2024 01:08

2024-09-23TSTE12 Design of Digital Systems, Lecture 9 23

Programmer implementation

● Uses waveform assignment
with delay information

● Same behavior, less obvious
how to implement

Library IEEE;
use IEEE.std_logic_1164.all;

entity PAR_TO_SER_SCHED is
generic(PERIOD: TIME);
Port(
 START: in STD_LOGIC;
 PAR_IN: in STD_LOGIC_VECTOR(7 downto 0);
 SO: out STD_LOGIC);
end PAR_TO_SER_SCHED;

architecture ALG2 of PAR_TO_SER_SCHED is
begin
P1:process(START)
 variable COUNT: INTEGER;
begin
 if START = '1' then
 COUNT := 7;
 while COUNT >= 0 loop
 SO <= transport PAR_IN(COUNT)
 after (7-COUNT)*PERIOD;
 COUNT := COUNT - 1;
 end loop;
 end if;
end process;
end ALG2;

2024-09-23TSTE12 Design of Digital Systems, Lecture 9 24

Sensitivity list issues

● Used in simulation
to trigger processes

● In synthesis it only
indicates inputs,
often without
affecting the
synthesis

● Example:
– Different simulation
– Same synthesis result

architecture ALG of T_FF is
signal Q: STD_LOGIC;
begin

process(RESET,T,CLK)
 begin
 if (RESET = '1') then
 Q <= '0';
 elsif (CLK'EVENT and CLK = '1') then
 if T = '1' then
 Q <= not Q ;
 end if;
 end if;
end process;

QOUT <= Q;
end ALG;

architecture ALG of T_FF2 is
signal Q: STD_LOGIC;
begin

process(RESET,T,CLK)
 begin
 if (RESET = '1') then
 Q <= '0';
 elsif (CLK'EVENT and CLK = '1') then
 if T = '1' then
 Q <= not Q ;
 end if;
 end if;
 QOUT <= Q;
end process;

end ALG;

09/23/2024 01:08

2024-09-23TSTE12 Design of Digital Systems, Lecture 9 25

Example T-flipflop

● Different behavior in the two models
– Output delayed in 2nd code due to missing

Q in sensitivity list

● Synthesis can generate the same
results
– Flipflop with exor gate in feedback

● Delay
– Can not use an assignment “after xx ns”,

only wait for an event (on a clock)
– Wait statements for fixed delay does not

make sense

2024-09-23TSTE12 Design of Digital Systems, Lecture 9 26

Data types

● Std_logic is prefered
– Helps finding reset issues and similar

● Bit works, but the synthesized model will use std_logic
– Testbenches require changes to support run of synthesis netlist

09/23/2024 01:08

2024-09-23TSTE12 Design of Digital Systems, Lecture 9 27

Clock detection

● CLK'EVENT AND CLK='1'
– Do not use additional enable signals in the clock edge detection

● Exists also 'RISING_EDGE and 'FALLING_EDGE
– Handles also L, H, and Z in the expected way (H->1 no edge, 0->H edge!)

● Synchronous/asynchronous reset/set
IF asyncexpression THEN
 -- async reset & init
elsif clockdetection
 -- sync expressions
end if;

2024-09-23TSTE12 Design of Digital Systems, Lecture 9 28

Gated clocks

● Generally not a good idea
– Glitch in control signal may produce glitch on clock!
– Wrong timing on control signal may give errornous trigger
– Clock buffers may introduce large delays

● Less time left for the calculation of the control signal value

● Do not combine clock edge detection with logic in the same
expression

if clk'event and clk='1' and enable = '1' then

● Some hardware supports gated clocks
– Special forms of flipflops

if clk’event and clk = ’1’ then
 if enable = ’1’ then

09/23/2024 01:08

2024-09-23TSTE12 Design of Digital Systems, Lecture 9 29

Reset of internal states

● What to do if no asynchronous reset?
– Initial data must be clocked in using a

control signal

● Code example without reset
– Works in simulation due to initialisation

of TEQDET

● Simulation of synthesis error due to
initialisation to 'U'

entity EQDET is
Port(
 I,CLK: in STD_LOGIC;
 TEQDET: inout STD_LOGIC :='0');
end EQDET;

architecture ALG of EQDET is
 begin
 process
 variable EQ,IBK1,IBK2: STD_LOGIC;
 begin
 wait until (CLK'EVENT and CLK = '1');
 if(IBK1 =IBK2) and (IBK2 = I) then
 EQ := '1';
 else
 EQ := '0';
 end if;
 TEQDET <= (EQ xor TEQDET);
 IBK2 := IBK1;
 IBK1 := I;
 end process;
end ALG;

2024-09-23TSTE12 Design of Digital Systems, Lecture 9 30

Using explicit reset

● Asynchronous reset

● Possible to use synchronous
reset instead

entity EQDET is
Port(
 RESET,I,CLK: in STD_LOGIC;
 TEQDET: inout STD_LOGIC);
end EQDET;

architecture ALG of EQDET is
 begin
 process(RESET,CLK)
 variable EQ,IBK1,IBK2: STD_LOGIC;
 begin
 if (RESET = '1') then
 IBK1 := '0';
 IBK2 := '0';
 TEQDET <= '0';
 elsif (CLK'EVENT and CLK = '1') then
 if (IBK1 = I) and (IBK1 = IBK2) then
 EQ := '1';
 else
 EQ := '0';
 end if;
 TEQDET <= (EQ xor TEQDET);
 IBK2 := IBK1;
 IBK1 := I;
 end if;
 end process;
end ALG;

09/23/2024 01:08

2024-09-23TSTE12 Design of Digital Systems, Lecture 9 31

Simulation and Synthesis results

● Order of IBK1 and IBK2 updates are
important if variables are used

● Update order not important if signals
are used
– EQ still a variable!

● Both descriptions give same synthesis
result

architecture ALG of EQDET is
 signal IBK1,IBK2: STD_LOGIC;
 begin
 process(RESET,CLK)
 variable EQ: STD_LOGIC;
 begin
 if (RESET = '1') then
 IBK1 <= '0';
 IBK2 <= '0';
 TEQDET <= '0';
 elsif (CLK'EVENT and CLK = '1') then
 if (IBK1 = I) and (IBK1 = IBK2) then
 EQ := '1';
 else
 EQ := '0';
 end if;
 TEQDET <= (EQ xor TEQDET);
 IBK1 <= I;
 IBK2 <= IBK1;
 end if;
 end process;
end ALG;

2024-09-23TSTE12 Design of Digital Systems, Lecture 9 32

Arithmetic operations

● Add, sub supported
– Translates into full adder before simplified
– Operands are not extended

● Multiplication
– Translated into combinational expressions
– Multiple possible structures: Wallace, Carry Save array.
– Constant values usually produces add and shift implementations

(simplified multiplications)

● Division usually not supported

09/23/2024 01:08

2024-09-23TSTE12 Design of Digital Systems, Lecture 9 33

Hierarchical arithmetic: BCD to
binary conversion

● Want to implement a 4 digit BCD to binary converter
– describe decimal number using 4 bits for each digit

● Use Horners rule: d3x103 + d2x102+d1x10+d0=
(d3x10+d2)x10+d1)x10+d0, i.e., by arbitrary length converter can
be built by repeated multiplication by 10 and addition

● Implement the multiply add

2024-09-23TSTE12 Design of Digital Systems, Lecture 9 34

Multiply and add operators

● Use unsigned datatype

Library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.NUMERIC_STD.all;
entity SIMP_ADD is
port(A,B: in STD_LOGIC_VECTOR(3 downto 0);
 CIN: in STD_LOGIC;
 C: out STD_LOGIC_VECTOR(3 downto 0);
 CAR_OUT: out STD_LOGIC);
end SIMP_ADD;
architecture ALG of SIMP_ADD is
 begin
 P1:process(A,B,CIN)
 variable PADDED_CIN: STD_LOGIC_VECTOR(3 downto 0);
 variable A_UNSIGNED: UNSIGNED(3 downto 0);
 variable C_UNSIGNED: UNSIGNED(4 downto 0);
 begin
 A_UNSIGNED := UNSIGNED(A);
 PADDED_CIN :="000"&CIN;
 C_UNSIGNED := (A_UNSIGNED(3) & A_UNSIGNED,5) +
 UNSIGNED(B) + UNSIGNED(PADDED_CIN);
 C <= STD_LOGIC_VECTOR(C_UNSIGNED(3 downto 0));
 CAR_OUT <= C_UNSIGNED(4);
 end process;
end ALG;

library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.NUMERIC_STD.all;

entity MULT10 is
port(DATA_IN: in STD_LOGIC_VECTOR(3 downto 0);
 PRODUCT: out STD_LOGIC_VECTOR(7 downto 0));
end MULT10;

architecture ALG of MULT10 is
 begin
 process(DATA_IN)
 variable PROD_US: UNSIGNED(7 downto 0);
 begin
 PROD_US :=
 UNSIGNED(DATA_IN)*10;
 PRODUCT <= STD_LOGIC_VECTOR(PROD_US);
 end process;
end ALG;

09/23/2024 01:08

2024-09-23TSTE12 Design of Digital Systems, Lecture 9 35

Combined add and mult

● Varying word length
library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.NUMERIC_STD.all;

entity MADD is
generic(IN_WIDTH: NATURAL := 4);
port(DI: in STD_LOGIC_VECTOR(IN_WIDTH-1 downto 0);
 DJ: in STD_LOGIC_VECTOR(3 downto 0);
 MSUM: out STD_LOGIC_VECTOR(IN_WIDTH+3 downto 0));
end MADD;

architecture ALG of MADD is
 begin
 P1: process(DI,DJ)
 variable MSUM_US: UNSIGNED(IN_WIDTH+3 downto 0);
 variable PROD:UNSIGNED(2*IN_WIDTH-1 downto 0);
 begin
 PROD := UNSIGNED(DI)*to_unsigned(10,IN_WIDTH);
 MSUM_US := PROD(IN_WIDTH+3 downto 0)+ UNSIGNED(DJ);
 MSUM <= STD_LOGIC_VECTOR(MSUM_US);
 end process;
end ALG;

library IEEE;
use IEEE.STD_LOGIC_1164.all;
entity BCDCONV is
port(D0,D1,D2,D3: in STD_LOGIC_VECTOR(3 downto 0);
 BIN_OUT: out STD_LOGIC_VECTOR(15 downto 0));
end BCDCONV;

architecture STRUCTURAL of BCDCONV is
component MADD
generic(IN_WIDTH: NATURAL := 4);
port(DI: in STD_LOGIC_VECTOR(IN_WIDTH-1 downto 0);
 DJ: in STD_LOGIC_VECTOR(3 downto 0);
 MSUM: out STD_LOGIC_VECTOR(IN_WIDTH+3 downto 0));
end component;
signal MSUM2: STD_LOGIC_VECTOR(7 downto 0);
signal MSUM1: STD_LOGIC_VECTOR(11 downto 0);
begin
C1: MADD
 generic map(4)
 port map(D3,D2,MSUM2);
C2: MADD
 generic map(8)
 port map(MSUM2,D1,MSUM1);
C3: MADD
 generic map(12)
 port map(MSUM1,D0,BIN_OUT);
end STRUCTURAL;

2024-09-23TSTE12 Design of Digital Systems, Lecture 9 36

Hierarchical circuit synthesis

● Ungrouping
– remove artificial boarders between blocks
– Allows optimize common subcalculation
– Improves synthesis results
– Example BCD: 342 -> 309 cells and 30.34 ->30.11 ns delay.

● Uniquify
– Create different instances different implementations by repeating netlists
– Allows different optimization of different parts

09/23/2024 01:08

2024-09-23TSTE12 Design of Digital Systems, Lecture 9 37

Hierarchical Approach

● Bottom up
– uniquify
– Build each sub block, then combine
– Requires good estimate of timing requirement

● Top down
– Synthesize all to get initial requirements
– Resynthesize parts not meeting requirements

● Golden instance
– Synthesize one block, reuse

2024-09-23TSTE12 Design of Digital Systems, Lecture 9 38

Example: 12 bit adder register

● Design based on the 4-bit adder

● Different requirement on sum and carry speed

09/23/2024 01:08

2024-09-23TSTE12 Design of Digital Systems, Lecture 9 39

Example: 12 bit adder register, cont.

● Top-down
– Area 255, 8.84 ns
– Difficult to know which part require more propagation time

● Bottom-up
– Area 277, 8.38 ns
– Some circuit overdesigned, hard to know before full circuit

● Golden instance
– Area 254, 11.19 ns
– One size does not fit all...

2024-09-23TSTE12 Design of Digital Systems, Lecture 9 40

Inferred latches and don’t cares

● Synthesis may find that latches are needed

● Example: incomplete if

 PROCESS(a,b,c,d)
 BEGIN
 IF (a = ‘1’) THEN
 out_sig <= x;
 ELSIF (b = ‘1’) THEN
 out_sig <= y;
 ENDIF;
 END PROCESS;

● out_sig not defined if a and b = 0! Require latch!

09/23/2024 01:08

2024-09-23TSTE12 Design of Digital Systems, Lecture 9 41

Latch and undefined examples
(SEL=11 not expected)

entity INFERRED is
port(IN_DAT,IN_EN: in STD_LOGIC; SEL: in STD_LOGIC_VECTOR(1 downto 0);
 A_LATCHED,A_COMB,B_LATCHED,B_COMB_0,B_COMB_1,B_COMB_2: out STD_LOGIC);
--pragma dc_script_begin
--set_flatten true
--pragma dc_script_end

end INFERRED;

architecture ALG of INFERRED is
begin

P_A_LATCHED: process(IN_DAT,IN_EN)
 begin
 if IN_EN = '1' then
 A_LATCHED <= IN_DAT;
 end if;
end process;
P_A_COMB: process(IN_DAT,IN_EN)
 begin
 if IN_EN = '1' then
 A_COMB <= IN_DAT;
 else
 A_COMB <= '0';
 end if;
end process;

P_B_LATCHED: process(IN_DAT,SEL)
begin
 case (SEL) is
 when "00" => B_LATCHED <= IN_DAT;
 when "01" => B_LATCHED <= not
IN_DAT;
 when "10" => B_LATCHED <= '0';
 when "11" => null;
 when others => null;
 end case;
end process;
P_B_COMB_0: process(IN_DAT,SEL)
begin
 case (SEL) is
 when "00" => B_COMB_0 <= IN_DAT;
 when "01" => B_COMB_0 <= not IN_DAT;
 when "10" => B_COMB_0 <= '0';
 when "11" => B_COMB_0 <= '1';
 when others => null;
 end case;
end process;

 P_B_COMB_1: process(IN_DAT,SEL)
 begin
 B_COMB_1 <= '1';
 case (SEL) is
 when "00" => B_COMB_1 <= IN_DAT;
 when "01" => B_COMB_1 <= not IN_DAT;
 when "10" => B_COMB_1 <= '0';
 when "11" => null;
 when others => null;
 end case;
end process;
P_B_COMB_2: process(IN_DAT,SEL)
 begin
 case (SEL) is
 when "00" => B_COMB_2 <= IN_DAT;
 when "01" => B_COMB_2 <= not IN_DAT;
 when "10" => B_COMB_2 <= '0';
 when "11" => B_COMB_2 <= '-';
 when others => null;
 end case;
 end process;
end ALG;

2024-09-23TSTE12 Design of Digital Systems, Lecture 9 42

Synthesis results

● Synthesis sometimes generate latches

09/23/2024 01:08

2024-09-23TSTE12 Design of Digital Systems, Lecture 9 43

Latch problem examples

● Latches can be fixed by
– Add an assignment in all choices of a case
– Add a default assignment before case
– Use don't care symbol '-' to indicate non-important value

● Using a fixed value may use a non-efficient one
– Use don’t care instead
– Better let the tool know about unknown
– Help reduce area and speed up synthesis

2024-09-23TSTE12 Design of Digital Systems, Lecture 9 44

ROM-structure with don’t care
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;
entity FUNCS is
port(X: in STD_LOGIC_VECTOR(2 downto 0); Z1,Z2: out STD_LOGIC);
end FUNCS;

architecture ROM of FUNCS is
type ROM_1D is array(0 to 7) of STD_LOGIC;
begin
FULLY_SPECIFIED: process(X)
 constant ROM1: ROM_1D:= "01101000";
 begin
 Z1 <=ROM1(CONV_INTEGER(X));
end process;
PARTIALLY_SPECIFIED: process(X)
 constant ROM2: ROM_1D:= "01101--0";
 begin
 Z2 <=ROM2(CONV_INTEGER(X));
end process;
end ROM;

09/23/2024 01:08

2024-09-23TSTE12 Design of Digital Systems, Lecture 9 45

Reset problem

● Counter with delay that should
set count_old to zero while
being reset?

PROCESS (clk, reset);
BEGIN
 if (reset = ‘0’) then
 count <= 0;
 elsif rising_edge(clk) then
 count_old <= count;
 count <= count + 1;
 end if;
end process;

Count_old not reset!

2024-09-23TSTE12 Design of Digital Systems, Lecture 9 46

Tristate gates

● Some technologies does not
support tristate internally in
the design

● Floating wires may produce
high power consumption due
to short circuit current in
inputs

● Possible to change a tristate
version into a multiplexer
based version (done
automatically by some tools)

PROCB: process(B,ENB)
 begin
 if (ENB = '1') then
 BUS_SIG <= B;
 else
 BUS_SIG <= 'Z';
 end if;
end process;
end ALG;

library IEEE;
use IEEE.STD_LOGIC_1164.all;
entity TRISTATE is
port(A,B,ENA,ENB: in STD_LOGIC;
 BUS_SIG: out STD_LOGIC);
end TRISTATE;

architecture ALG of TRISTATE is
 begin
PROCA: process(A,ENA)
 begin
 if (ENA = '1') then
 BUS_SIG <= A;
 else
 BUS_SIG <= 'Z';
 end if;
end process;

09/23/2024 01:08

2024-09-23TSTE12 Design of Digital Systems, Lecture 9 47

Clock buffers and other aspects
● Attributes used to indicate clock signals

– Information used to select special layout methods or hardware resources to
reduce clock skew

– Automatically detected in general

● High fanout signals
– Buffer cells will be added

● Logic duplications
– Allow larger fan-out without adding separate buffers

● Retiming/pipelining
– Switch order between calculation and storage

● Multipliers/DSP blocks

2024-09-23TSTE12 Design of Digital Systems, Lecture 9 48

Resource sharing

● Chose one of two sums. May add both or chose inputs first
– Mux+add => 51 area, 8.47 delay
– Add+mux => 73 area, 7.09 delay

● Flattening and structure. (logic level, not hierarchy)

● Logic can be flattened to e.g., two levels instead of three.
Different results of area and logic

09/23/2024 01:08

2024-09-23TSTE12 Design of Digital Systems, Lecture 9 49

How is timing requirements defined?

● Often derived from a symbolic clock

● Signals are defined from edges of the clock
– Fix setup and hold time. Include clock skew

● Usually defined as maximum delay
– Expensive to guarantee minimum delay
– Delay pin to flipflop, flipflop to pin
– Time from flipflop to flipflop

● Possible to specify multi cycle delay

● False paths

2024-09-23TSTE12 Design of Digital Systems, Lecture 9 50

Results

● Time reports
– Generated by analysis of netlist/layout
– Critical path reports

● Area reports

● Resource reports
– Routing, flipflops, LUT, multipliers etc.

● VHDL simulation models
– Post synthesis, post layout

● Layout possible to modify (edit at bit level)

09/23/2024 01:08

2024-09-23TSTE12 Design of Digital Systems, Lecture 9 51

Synthesis operation

● Synthesis is based on different types of pattern matching
– Support most constructs
– Behavour may still be different
– Often adds complicated patterns that are then simplified

● Example: D flip flop with Qinvers output, but without Q in the
sensitivity list. Generally generates a single flipflop, but timing
of Qinvers differs between simulation of VHDL and synthesized
design.

2024-09-23TSTE12 Design of Digital Systems, Lecture 9 52

Recommended patterns

● Style guide exists (patterns)
– Specific to the synthesis tools

● Specify patterns that are allowed and recommended
– Important to produce efficient implementations
– Example units: counters, memories, tristate buffers

● These manuals are available online

09/23/2024 01:08

09/23/2024 01:08

