09/17/2023 22:14

TSTE12 Design of Digital Systems, Lecture 9 2023-09-18 2

Agenda

e Practical issues

* Design process
- FPGA vs ASIC

* Code style

LINKOPING
II.“ UNIVERSITY

09/17/2023 22:14

TSTE12 Design of Digital Systems, Lecture 9 2023-09-18 3

TSTE12 Deadlines Y,D,ED

* Weekly meetings should have started
- Internal weekly meeting with transcript sent to supervisor

* Project completion
- Friday 20 October
- Presentation
- Project report

LINKOPING
II.“ UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 9 2023-09-18 4

TSTE12 Deadlines MELE, erasmus

* Design sketch, project plan, time plan
- What building blocks in the design (design sketch)
- Who and when should these be implemented (project plan,
time plan)
 Wednesday 20 September 21.00: Lab 2 soft deadline
- Lab 2 results will be checked after project completed

LINKOPING
II.“ UNIVERSITY

09/17/2023 22:14

TSTE12 Design of Digital Systems, Lecture 9 2023-09-18

Handin (homework), Individual!

* 1% handin deadline today Monday 18 September 23:30

* Use only plan text editor (emacs, vi, modelsim or similar) for code entry.
* Solve tasks INDIVIDUALLY

* Submit answers using Lisam assignment function

— 4 different submissions for code, one for each code task
— 1 submission for all theory question answers
* Use a special terminal window when working with handins

module load TSTE12 ; TSTE12handin

LINKOPING
II.“ UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 9 2023-09-18

Design process

* Best would be to write a direct synthesizable model direct
- Hard to do

» First create executable model
- Validate system (check for correct behavior)
- Use complex data types, real values
- Not synthesizable, may use full power of the VHDL language

6

LINKOPING
II.“ UNIVERSITY

09/17/2023 22:14

TSTE12 Design of Digital Systems, Lecture 9

Design process, cont.

* Often use an iterative
design flow

e First model is a
behavioral model

- Check against customer
requirements

- Not interested of synthesis,
use all available VHDL
language constructs

- Create a testbench

System
Specification

|

Creation of
Behavioral Model

(Model 1)

!

Model Validation
& Simulation

2023-09-18

7

Style

Correct ? Synthesis

A 4

Creation of
Synth. Style
Model
(Model 1A)

I

Validation of
Model 1 Vs,
Model 1A

LINKOPING
II.“ UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 9

Design process, cont.

2023-09-18 8

* Model 1A (after modification to match expected code style)

- Synthesizable

- Fixed point number systems

- Limited memory size

» Difference in behavior

- Noise like errors in signal processing systems

- Timing differences

- Need to know the effect of these errors on the overall behavior

- Need to know what can be and not be done in the model, i.e., application
area knowledge is needed, not only implementation in general (Karnough

maps, VHDL etc.)

LINKOPING
II.“ UNIVERSITY

09/17/2023 22:14

Application Specific vs Language

» Application specific
- Use description formats common in the application domain
- Models often simulated and/or translated to other computer languages
- Example representations
* Dataflow diagram, e.g., DSP
- Tools
e SPW, Simulink (Matlab), DSP station, DSP builder
- Only suitable for the application domain
* Demonstrate working algorithm in simulation

- Often supports statistical calculations to evaluate performance reduction due to limited
wordlength etc.

* Describe operations and how they communicate
- Not every block corresponds to a hardware block, only describes a function

LINKOPING
II.“ UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 9 2023-09-18 10

Language-Domain modeling

* Models described in a computer language instead of graphical
entry
- System-C, VHDL, Verilog, C++, Java

* Hierarchy important to reduce complexity of the description

* Application specific information must be added by the designer
- No/little help with application specific functions

* Support any application domain

LINKOPING
II.“ UNIVERSITY

09/17/2023 22:14

TSTE12 Design of Digital Systems, Lecture 9 2023-09-18 11

Comparison

» Application domain
+ Well defined, correct functionality. Fast and easy to verify functionality.

No need to understand language details

- Not very optimal/efficient if models not directly connected to the
intended application area. Covers only a limited set of applications

 Language domain

+ Can be used for any application domain
- Specific measures, tests or constructs common to a particual application

domain require explicit adding to the system

LINKOPING
II.“ UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 9 2023-09-18 12

Synthesis and simulation

« Synthesis style is tools dependent
- Something working in one tool may not work in another tool!
- Continuous development, new features added in each new release
- A standard also exist specifying a common set of expected synthesis

constructs
* Lower limit of features, tools may support other/additional language features

* Wordlength and data types: Real -> Integer -> bitvectors
- Real values must first be translated into integer computations
- Integer computations must be translated into bitvectors of limited length

LINKOPING
II.“ UNIVERSITY

09/17/2023 22:14

TSTE12 Design of Digital Systems, Lecture 9 2023-09-18 13

ASIC design flow (standard cell)

* Behavoural model development

* Behavoural model validation
- testbench design
* Logic synthesis
* Post synthesis simulation
- gate delay, no wire delay alternatively only a coarse wire delay estimation
* System partitioning
- divide into chips or large blocks on chip
- [I/O is limiting chip size and data speed

LINKOPING
II.“ UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 9 2023-09-18 14

ASIC design flow, cont.

Floor planning
- where to put modules/subsystems on chip

Placement
- detailed description on where each cell is placed on the chip

Routing
- connect cells with wires
- Clock tree, power routing

Circuit extraction
- extract more detailed timing from circuit

LINKOPING
II.“ UNIVERSITY

09/17/2023 22:14

TSTE12 Design of Digital Systems, Lecture 9 2023-09-18 15

ASIC design flow, cont.

* Post layout simulation
- including wire capacitance, cross talk etc.

- Verify function for all combinations of manufacturer and environment
tolerances (fast, slow, typical transistor speed, high/low voltage, high/low
temperature, etc.)

* Send masks to manufacturer
- One or more masks for each type of layer on the chip (doping, metal, etc.)
- Turn around time at least 4 weeks, probably 1-3 month

* Evaluate recieved circuit

LINKOPING
II.“ UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 9 2023-09-18 16

FPGA design flow

+ Behavoural model development
* Behavoural model validation (testbench)

* Logic synthesis
- Slightly different goal structure (lookup tables and flipflops) for FPGA

+ Mapping to CLBs

- What logic and flipflop to combine into one unit

* Placement
- Select one of a large set of

* Routing
- Select wire segment in space between CLBs for connecting them together

* Circuit level extraction
* Post layout simulation
« Generation of a POF/SOF/BIT file

LINKOPING
II.“ UNIVERSITY

09/17/2023 22:14

TSTE12 Design of Digital Systems, Lecture 9 2023-09-18 17

Design manager design flow (Xilinx)

« Translate: Convert to local database format. Some mapping into
technology dependent mappings (e.g., memories).

» Map: Allocate CLB, IOB, etc.
» Place & route: Place and route, timing limitations may be included.

« Timing: Extract timing. Performed through static timing analysis
(Sum contributing delays from flip-flop outputs to flip-flop inputs).

» Configure: Translate layout information into a POF/SOF (bit) file to
program the FPGA. May be stored in ROM or load through a
processor/PC.

LINKOPING
II.“ UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 9 2023-09-18 18

Synthesis design flow Precision logic

* Analyse
- Parse HDL
- Find libraries and cells
- Check dependencies
- Resolve generics

* Elaborate
- Translate into a generic RTL + black box operators
- Create hierarchy, infer flipflops & latches, memory, operators, FSM

* Pre-optimization
- Boundary optimization
* propagating constants, remove unused outputs, shared input signals
- Constant propagation
- Resource sharing

LINKOPING
II.“ UNIVERSITY

09/17/2023 22:14

TSTE12 Design of Digital Systems, Lecture 9 2023-09-18 19

Synthesis design flow Precision logic,
cont.

* Operator implementation
- Adders, counters etc.

* Hierarchy manipulations
- Flatten

* Tristate handling
* DRC checking (Design Rule Checking)

- Short circuits, multiple output driving one node etc.
» Technology mapping

* Register retiming

LINKOPING
II.“ UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 9 2023-09-18 20

Control of the synthesis process

* Additional information required by synthesis
- Pin assignment
- Timing requirements
- General placement information
- Precompiled netlists

 VHDL attributes
- No standard yet

* Synthesis tool control scripts
- Tools dependent
- Optimization, hierarchy

LINKOPING
II.“ UNIVERSITY

09/17/2023 22:14

TSTE12 Design of Digital Systems, Lecture 9 2023-09-18 21

Syntheis example

» Parallel to serial converter

« Shift out parallel input data from
PAR IN onto SO once START = '1'

« Lower abstraction level, bit
datatypes

Library ieee;
Use ieee.std_logic_1164.all;

entity PAR_TO_SER is

Port(
START,SHCLK: in STD_LOGIC;
PAR_IN: in STD_LOGIC_VECTOR(7 downto 0);
SO: out STD_LOGIC);

end PAR_TO_SER;

LINKOPING
II.“ UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 9 2023-09-18 22

Hardware engineer view of the
Implementation

architecture ALG1 of PAR_TO_SER is
begin

* Counter and multiplexer

Library ieee;
Use ieee.std_logic_1164.all;

entity PAR_TO_SER is

Port(
START,SHCLK: in STD_LOGIC;
PAR_IN: in STD_LOGIC_VECTOR(7 downto 0);
SO: out STD_LOGIC);

end PAR_TO_SER;

START
SHCLK——» COUNTER
COUNT
PAR_IN P MUX — SO

P1:process(START,SHCLK)
variable COUNT: INTEGER range 7 downto -1 := 0;
variable DONE: BOOLEAN,;

begin
if START ="1"then
COUNT :=7;

DONE := FALSE;
elsif SHCLK'EVENT and SHCLK ='1' then
if DONE = FALSE then
SO <= PAR_IN(COUNT);
COUNT := COUNT - 1;
end if;
if COUNT < 0 then
DONE := TRUE;
else
DONE := FALSE;
end if;
end if;
end process;
end ALG1;

LINKOPING
II.“ UNIVERSITY

09/17/2023 22:14

TSTE12 Design of Digital Systems, Lecture 9 2023-09-18 23

Programmer implementation

* Uses waveform assignment

with delay information architecture ALG2 of PAR_TO_SER_SCHED is
begin
* Same behavior, less obvious P1:process(START)
how to implement bev;:]lable COUNT: INTEGER;
Library IEEE; if START ="'1"then
use IEEE.std_logic_1164.all; COUNT =7,
while COUNT >= 0 loop
entity PAR_TO_SER_SCHED is SO <= transport PAR_IN(COUNT)
generic(PERIOD: TIME); after (7-COUNT)*PERIOD;
Port(COUNT := COUNT - 1;
START: in STD_LOGIC; end loop;
PAR_IN: in STD_LOGIC_VECTOR(7 downto 0); end if;
SO: out STD_LOGIC); end process;
end PAR_TO_SER_SCHED; end ALG2;
vz
TSTE12 Design of Digital Systems, Lecture 9 2023-09-18 24

Sensitivity list issues

 Used in simulation

i architecture ALG of T_FF is architecture ALG of T_FF2 is
to trlgger Processes signal Q: STD_LOGIC; signal Q: STD_LOGIC;
.. begi begi
« In synthesis it only egmn eom
indicates inputs process(RESET,T,CLK) process(RESET,T,CLK)
. ! begin begin
often without if (RESET = '1') then if (RESET = '1') then
i Q <='0 Q <=0,
affeCtmg the elsif (CLK'EVENT and CLK ='1) then elsif (CLK'EVENT and CLK = '1') then
synthesis if T="1"then if T="1" then
Q <=notQ; Q <=notQ;
. . end if; end if;
Example.) end if; end if;
- Different simulation end process; QOUT <= Q;
. d ;
- Same synthesis result 5oyt <= 0. end process

end ALG; end ALG;

LINKOPING
II.“ UNIVERSITY

09/17/2023 22:14

Example T-flipflop

» Different behavior in the two models
- Output delayed in 2nd code due to missing
Q in sensitivity list
* Synthesis can generate the same
results
- Flipflop with exor gate in feedback

* Delay

- Can not use an assignment “after xx ns”,
only wait for an event (on a clock)

- Wait statements for fixed delay does not
make sense

2023-09-18 25

FD2

a>—P o

RESE

LINKOPING
II.“ UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 9

Data types

» Std logic is prefered
- Helps finding reset issues and similar

2023-09-18 26

* Bit works, but the synthesized model will use std logic
- Testbenches require changes to support run of synthesis netlist

LINKOPING
II.“ UNIVERSITY

09/17/2023 22:14

TSTE12 Design of Digital Systems, Lecture 9 2023-09-18 27

Clock detection

« CLK'EVENT AND CLK="1"

- Do not use additional enable signals in the clock edge detection

» Exists also 'RISING_EDGE and 'FALLING EDGE
- Handles also L, H, and Z in the expected way (H->1 no edge, 0->H edge!)

* Synchronous/asynchronous reset/set
IF asyncexpression THEN
-- async reset & init
elsif clockdetection
-- Sync expressions
end if;

LINKOPING
II.“ UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 9 2023-09-18 28

Gated clocks

* Generally not a good idea
- Glitch in control signal may produce glitch on clock!
- Wrong timing on control signal may give errornous trigger
- Clock buffers may introduce large delays
* Less time left for the calculation of the control signal value

* Must not combine clock edge detection with logic

if clk’'event and clk =1’ then
« Some hardware supports gated clocks if enable ="1"then
- Special forms of flipflops

LINKOPING
II.“ UNIVERSITY

09/17/2023 22:14

TSTE12 Design of Digital Systems, Lecture 9

Reset of internal states

 What to do if no asynchronous reset?

- Initial data must be clocked in using a
control signal

* Code example without reset
- Works in simulation due to initialisation

2023-09-18 29

entity EQDET is
Port(

I,CLK: in STD_LOGIC;

TEQDET: inout STD_LOGIC :='0%;
end EQDET,

architecture ALG of EQDET is
begin
process
variable EQ,IBK1,IBK2: STD_LOGIC;
begin
wait until (CLK'EVENT and CLK ="'1";

of TEQDET if(IBK1 =IBK2) and (IBK2 =) then
. . . EQ :: Il';
« Simulation of synthesis error due to eE'Sbe o
initialisation to 'U" endif:
TEQDET <= (EQ xor TEQDET);
IBK2 := IBK1;
IBK1 :=1,
end process;
end ALG;

LINKOPING
II.“ UNIVERSITY

Using explicit reset

» Asynchronous reset

* Possible to use synchronous
reset instead

entity EQDET is
Port(
RESET,I,CLK: in STD_LOGIC;
TEQDET: inout STD_LOGIC);
end EQDET;

2023-09-18 30

architecture ALG of EQDET is
begin
process(RESET,CLK)
variable EQ,IBK1,IBK2: STD_LOGIC;
begin
if (RESET ='1") then

IBK1 := "0
IBK2 := "0
TEQDET <="0";

elsif (CLK'EVENT and CLK ='1") then
if (IBK1 =1) and (IBK1 = IBK2) then
EQ ="1"
else
EQ =0
end if;
TEQDET <= (EQ xor TEQDET);
IBK2 := IBK1;
IBK1 :=1;
end if;
end process;
end ALG;

LINKOPING
II.“ UNIVERSITY

09/17/2023 22:14

TSTE12 Design of Digital Systems, Lecture 9

2023-09-18 31

Simulation and Synthesis results

* Order of IBK1 and IBK2 updates are
important if variables are used

* Update order not important if signals
are used

- EQ still a variable!

* Both descriptions give same synthesis
result

architecture ALG of EQDET is
signal IBK1,IBK2: STD_LOGIC;
begin
process(RESET,CLK)
variable EQ: STD_LOGIC;
begin
if (RESET ='1") then
IBK1 <= "0
IBK2 <= "0,
TEQDET <='0";
elsif (CLK'EVENT and CLK ='1") then
if (IBK1 =1) and (IBK1 = IBK2) then
EQ :='1
else
EQ :='0,
end if;
TEQDET <= (EQ xor TEQDET);
IBK1 <=1;
IBK2 <= IBKI1;
end if;
end process;
end ALG;

LINKOPING
II.“ UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 9

Arithmetic operations

* Add, sub supported

- Translates into full adder before simplified

- Operands are not extended

* Multiplication

- Translated into combinational expressions

2023-09-18 32

- Multiple possible structures: Wallace, Carry Save array.
- Constant values usually produces add and shift implementations

(simplified multiplications)

* Division usually not supported

LINKOPING
II.“ UNIVERSITY

09/17/2023 22:14

TSTE12 Design of Digital Systems, Lecture 9

2023-09-18 33

Hierarchical arithmetic: BCD to
binary conversion

+ Want to implement a 4 digit BCD to binary converter
- describe decimal number using 4 bits for each digit

« Use Horners rule: d;x103 + d,x1024+d,x10+d,=
(d;x10+d,)x10+d,)x10+d,, i.e., by arbitrary length converter can
be built by repeated multiplication by 10 and addition

* Implement the multiply add

D3—pDi

A\ 4

MSUM

D2—pDj MSUM

DI/

v

MSUM[—

LINKOPING
II.“ UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 9

Multiply and add

* Use unsigned datatype

library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.NUMERIC_STD.all;

entity MULT10 is

port(DATA_IN: in STD_LOGIC_VECTOR(3 downto 0);
PRODUCT: out STD_LOGIC_VECTOR(7 downto 0));

end MULT10;

architecture ALG of MULT10 is
begin
process(DATA_IN)
variable PROD_US: UNSIGNED(7 downto 0);
begin
PROD_US :=
UNSIGNED(DATA_IN)*10;
PRODUCT <= STD_LOGIC_VECTOR(PROD_US);
end process;
end ALG;

2023-09-18 34

operators

Library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.NUMERIC_STD.all;
entity SIMP_ADD is
port(A,B: in STD_LOGIC_VECTOR(3 downto 0);
CIN: in STD_LOGIC;
C: out STD_LOGIC_VECTOR(3 downto 0);
CAR_OUT: out STD_LOGIC);
end SIMP_ADD;
architecture ALG of SIMP_ADD is
begin
P1:process(A,B,CIN)
variable PADDED_CIN: STD_LOGIC_VECTOR(3 downto 0);
variable A_UNSIGNED: UNSIGNED(3 downto 0);
variable C_UNSIGNED: UNSIGNED(4 downto 0);
begin
A_UNSIGNED := UNSIGNED(A);
PADDED_CIN :="000"&CIN;
C_UNSIGNED := (A_UNSIGNED(3) & A_UNSIGNED,5) +
UNSIGNED(B) + UNSIGNED(PADDED_CIN);
C <=STD_LOGIC_VECTOR(C_UNSIGNED(3 downto 0));
CAR_OUT <= C_UNSIGNED(4);
end process;
end ALG;

LINKOPING
II.“ UNIVERSITY

09/17/2023 22:14

TSTE12 Design of Digital Systems, Lecture 9 2023-09-18 35
Combined add and mult
library IEEE;
use IEEE.STD_LOGIC_1164.all;
. entity BCDCONYV is
o Va]_"y']_ng WO]_"d_]_ength port(D0,D1,D2,D3: in STD_LOGIC_VECTOR(3 downto 0);
BIN_OUT: out STD_LOGIC_VECTOR(15 downto 0));
library IEEE; end BCDCONYV;
use IEEE.STD_LOGIC_1164.all;
use [EEE.NUMERIC_STD.all; architecture STRUCTURAL of BCDCONV is
component MADD
entity MADD is generic(IN_WIDTH: NATURAL := 4);
generic(IN_WIDTH: NATURAL := 4); port(Dl: in STD_LOGIC_VECTOR(IN_WIDTH-1 downto 0);
port(DI: in STD_LOGIC_VECTOR(IN_WIDTH-1 downto 0); DJ: in STD_LOGIC_VECTOR(3 downto 0);
DJ: in STD_LOGIC_VECTOR(3 downto 0); MSUM: out STD_LOGIC_VECTOR(IN_WIDTH+3 downto 0));
MSUM: out STD_LOGIC_VECTOR(IN_WIDTH+3 downto 0)); end component;
end MADD; signal MSUM2: STD_LOGIC_VECTOR(7 downto 0);
signal MSUM1: STD_LOGIC_VECTOR(11 downto 0);
architecture ALG of MADD is begin
begin C1: MADD
P1: process(DI,DJ) generic map(4)
variable MSUM_US: UNSIGNED(IN_WIDTH+3 downto 0); port map(D3,D2,MSUM2);
variable PROD:UNSIGNED(2*IN_WIDTH-1 downto 0); C2: MADD
begin generic map(8)
PROD := UNSIGNED(DI)*to_unsigned(10,IN_WIDTH); port map(MSUM2,D1,MSUM1);
MSUM_US := PROD(IN_WIDTH+3 downto 0)+ UNSIGNED(DJ); C3: MADD
MSUM <= STD_LOGIC_VECTOR(MSUM_US); generic map(12)
end process; port map(MSUM1,D0,BIN_OUT);
end ALG; end STRUCTURAL;
LINKOPING
II.“ UNIVERSITY
TSTE12 Design of Digital Systems, Lecture 9 2023-09-18 36

Hierarchical circuit synthesis

* Ungrouping

Improves synthesis results

* Uniquify

remove artificial boarders between blocks
Allows optimize common subcalculation

Example BCD: 342 -> 309 cells and 30.34 ->30.11 ns delay.

- Create different instances different implementations by repeating netlists
- Allows different optimization of different parts

LINKOPING
UNIVERSITY

09/17/2023 22:14

TSTE12 Design of Digital Systems, Lecture 9

Hierarchical Approach

* Bottom up
- uniquify
- Build each sub block, then combine
- Requires good estimate of timing requirement

* Top down
- Synthesize all to get initial requirements
- Resynthesize parts not meeting requirements

* Golden instance
- Synthesize one block, reuse

2023-09-18

37

LINKOPING
II.“ UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 9

Example: 12 bit adder register

* Design based on the 4-bit adder

» Different requirement on sum and carry speed

P PE P

CARRY
OUT < F/Fj[4— 4-Bit Adder [#—| 4-Bit Adder [4.Bit Adder '¢— CARRY
4 4 4
e e P
CLK) 1 ,
CLK —P| 12-Bit Register
fﬁ
SUM

2023-09-18

38

LINKOPING
II.“ UNIVERSITY

09/17/2023 22:14

TSTE12 Design of Digital Systems, Lecture 9 2023-09-18 39

Example: 12 bit adder register, cont.

* Top-down
- Area 255, 8.84 ns
- Difficult to know which part require more propagation time

* Bottom-up
- Area 277, 8.38 ns
- Some circuit overdesigned, hard to know before full circuit

e Golden instance
- Area 254, 11.19 ns
- One size does not fit all...

LINKOPING
II.“ UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 9 2023-09-18 40

Inferred latches and don’t cares

* Synthesis may find that latches are needed

« Example: incomplete if

PROCESS(a,b,c,d)
BEGIN
IF (a = ‘'1’) THEN
out sig <= x;
ELSIF (b = ‘1’) THEN
out sig <=1y;
ENDIF;
END PROCESS;

* out sig not defined if a and b = 0! Require latch!

LINKOPING
II.“ UNIVERSITY

09/17/2023 22:14

TSTE12 Design of Digital Systems, Lecture 9 2023-09-18 41

Latch and undefined examples
(SEL=11 not expected)

entity INFERRED is
port(IN_DAT,IN_EN: in STD_LOGIC; SEL: in STD_LOGIC_VECTOR(1 downto 0);
A_LATCHED,A_COMB,B_LATCHED,B_COMB_0,B_COMB_1,B_COMB_2: out STD_LOGIC);

—pragma de. script begin P_B_COMB_1: process(IN_DAT,SEL)

P_B_LATCHED: process(IN_DAT,SEL) begin
--set_flatten true begin B_COMB_1 <=1’
--pragma dc_script_end case (SEL) is case (SEL) is
end INFERRED; when "00" => B_LATCHED <= IN_DAT; when "00" =>B_COMB_1 <= IN_DAT,
o _ "1 = <= .

architecture ALG of INFERRED is INWSz% 01" =>B_LATCHED <= not aﬂ:g '(')llO" :>EI;3__%%'\II\I/I?3__11 cqg.t; IN_DAT,
begin when "10" => B_LATCHED <= '0; when "11" => null;
P_A_LATCHED: process(IN_DAT,IN_EN) when "11" => null; when others => null;

begin when others => null; end case;

if IN_EN ="1"then end case; end process;

A_LATCHED <= IN_DAT; end process; P_B_'COMB_Z: process(IN_DAT,SEL)

end if; P_B_COMB_O: process(IN_DAT,SEL) begin .
end process; begin case (SEL) is
P_A_COMB: process(IN_DAT,IN_EN) case (SEL) is when "00" => B_COMB_2 <= IN_DAT;
begin when "00" => B_COMB_0 <= IN_DAT; when "01" => B_COMB_2 <= not IN_DAT;

if IN_EN =1’ then
A_COMB <= IN_DAT:

when "01" => B_COMB_0 <= not IN_DAT;
when "10" =>B_COMB_0 <=0}

when "10" => B_COMB_2 <="'0";
when "11" => B_COMB_2 <= "',

else when "11"=>B_COMB_0 <=1}, when others => null;
A_COMB <='04 when others => null; end case;
end if; end case; end process;
end process; end process; end ALG;

LINKOPING
II.“ UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 9 2023-09-18 42

Synthesis results

* Synthesis sometimes generate latches

. A_COMB
IN_DAT ‘D———D

=
A_LATCHED
> INEN b
¥
DL B_COMB_2
o >0 —
SEL *‘DC -
B_LATCHED

LINKOPING
II.“ UNIVERSITY

09/17/2023 22:14

TSTE12 Design of Digital Systems, Lecture 9 2023-09-18 43

Latch problem examples

* Latches can be fixed by
- Add an assignment in all choices of a case
- Add a default assignment before case
- Use don't care symbol '-' to indicate non-important value

« Using a fixed value may use a non-efficient one
- Use don’t care instead
- Better let the tool know about unknown
- Help reduce area and speed up synthesis

LINKOPING
II.“ UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 9 2023-09-18 44

ROM-structure with don’t care

library IEEE;

use |IEEE.std_logic_1164.all;

use |IEEE.std_logic_unsigned.all;

entity FUNCS is

port(X: in STD_LOGIC_VECTOR(2 downto 0); Z1,Z2: out STD_LOGIC);
end FUNCS;

architecture ROM of FUNCS is

type ROM_1D is array(0 to 7) of STD_LOGIC;
begin
FULLY_SPECIFIED: process(X)

Z2

¥

A
constant ROM1: ROM_1D:= "01101000"; D
begin :
Z1 <=ROM1(CONV_INTEGER(X)); <218
end process; x<2 10> NQ
PARTIALLY_SPECIFIED: process(X) V L
constant ROM2: ROM_1D:= "01101--0"; |] 02
begin s OR Z1
Z2 <=ROM2(CONV_INTEGER(X)); Dﬁ i
end process; 1
end ROM;

LINKOPING
II.“ UNIVERSITY

09/17/2023 22:14

TSTE12 Design of Digital Systems, Lecture 9 2023-09-18 45

Reset problem

* Counter with delay that should
set count old to zero while
being reset?

Count_old not reset!
PROCESS (clk, reset);

BEGIN . . .
if (reset = ‘0) then DESIRED RESULT ACTUAL RESULT

count <=0; .
elsif rising_edge(clk) then " " P
count_old <= count; T L ’—P
o> b—1 1

count <= count + 1, [o L Count_old

end if; - — i

end process; Resct) Clock_| I
’ Reset

LINKOPING
II.“ UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 9 2023-09-18 46

Tristate gates

» Some technologies does not

support tristate internally in =~ BeEE, oo, g)
the deSlgn SQ:II%ATEIS?:ESI\-II—I{\HI—EFT\IE in STD_LOGIC; " (EISEL'J\ISl:?’_;I(]“;)<TEBn
BUS_SIG: out STD_LOGIC); else
« Floating wires may produce end TRISTATE: S
hlgh po%\/'er COHSUIS;III))UOH dU_e architecture ALG of TRISTATE is eﬁgdp:'fécess;
begin end ALG;
to short circuit current in Thogn |
inputs Uit ENB y
. . eISBeUS_SIG <='Z'; B * BUS_STG
» Possible to change a tristate end i -
. . . en rocess;
version into a multiplexer P ENA y
based version (done R .

automatically by some tools)

LINKOPING
II.“ UNIVERSITY

09/17/2023 22:14

TSTE12 Design of Digital Systems, Lecture 9 2023-09-18 47

Clock buffers and other aspects

Attributes used to indicate clock signals

- Information used to select special layout methods or hardware resources to
reduce clock skew

- Automatically detected in general

High fanout signals
- Buffer cells will be added

Logic duplications
- Allow larger fan-out without adding separate buffers

Retiming/pipelining
- Switch order between calculation and storage

Multipliers/DSP blocks

LINKOPING
II.“ UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 9 2023-09-18 48

Resource sharing

* Chose one of two sums. May add both or chose inputs first
- Mux+add => 51 area, 8.47 delay
- Add+mux => 73 area, 7.09 delay

* Flattening and structure. (logic level, not hierarchy)

* Logic can be flattened to e.g., two levels instead of three.
Different results of area and logic

LINKOPING
II.“ UNIVERSITY

09/17/2023 22:14

TSTE12 Design of Digital Systems, Lecture 9 2023-09-18 49

How is timing requirements defined?

* Often derived from a symbolic clock

* Signals are defined from edges of the clock
- Fix setup and hold time. Include clock skew

* Usually defined as maximum delay
- Expensive to guarantee minimum delay
- Delay pin to flipflop, flipflop to pin
- Time from flipflop to flipflop

* Possible to specify multi cycle delay
* False paths

LINKOPING
II.“ UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 9 2023-09-18 50

Results

* Time reports
- Generated by analysis of netlist/layout
- Critical path reports

* Area reports

Resource reports
- Routing, flipflops, LUT, multipliers etc.

VHDL simulation models
- Post synthesis, post layout

Layout possible to modify (edit at bit level)

LINKOPING
II.“ UNIVERSITY

09/17/2023 22:14

TSTE12 Design of Digital Systems, Lecture 9 2023-09-18

Synthesis operation

» Synthesis is based on different types of pattern matching
- Support most constructs
- Behavour may still be different
- Often adds complicated patterns that are then simplified

+ Example: D flip flop with Qinvers output, but without Q in the
sensitivity list. Generally generates a single flipflop, but timing
of Qinvers differs between simulation of VHDL and synthesized
design.

51

LINKOPING
II.“ UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 9 2023-09-18

Recommended patterns

* Style guide exists (patterns)
- Specific to the synthesis tools

* Specify patterns that are allowed and recommended
- Important to produce efficient implementations
- Example units: counters, memories, tristate buffers

» These manuals are available online

52

LINKOPING
II.“ UNIVERSITY

09/17/2023 22:14

