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Agenda

e Practical issues

* Design process
- FPGA vs ASIC

* Code style
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TSTE12 Deadlines Y,D,ED

* Weekly meetings should have started
- Internal weekly meeting with transcript sent to supervisor

* Project completion
- Friday 20 October
- Presentation
- Project report
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TSTE12 Deadlines MELE, erasmus

* Design sketch, project plan, time plan
- What building blocks in the design (design sketch)
- Who and when should these be implemented (project plan,
time plan)
 Wednesday 20 September 21.00: Lab 2 soft deadline
- Lab 2 results will be checked after project completed
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Handin (homework), Individual!

* 1% handin deadline today Monday 18 September 23:30

* Use only plan text editor (emacs, vi, modelsim or similar) for code entry.
* Solve tasks INDIVIDUALLY

* Submit answers using Lisam assignment function

— 4 different submissions for code, one for each code task
— 1 submission for all theory question answers
* Use a special terminal window when working with handins

module load TSTE12 ; TSTE12handin
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Design process

* Best would be to write a direct synthesizable model direct
- Hard to do

» First create executable model
- Validate system (check for correct behavior)
- Use complex data types, real values
- Not synthesizable, may use full power of the VHDL language

6
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Design process, cont.

* Often use an iterative
design flow

e First model is a
behavioral model

- Check against customer
requirements

- Not interested of synthesis,
use all available VHDL
language constructs

- Create a testbench

System
Specification

|

Creation of
Behavioral Model

(Model 1)

!

Model Validation
& Simulation

2023-09-18
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Style

Correct ? Synthesis

A 4

Creation of
Synth. Style
Model
(Model 1A)

I

Validation of
Model 1 Vs,
Model 1A
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Design process, cont.

2023-09-18 8

* Model 1A (after modification to match expected code style)

- Synthesizable

- Fixed point number systems

- Limited memory size

» Difference in behavior

- Noise like errors in signal processing systems

- Timing differences

- Need to know the effect of these errors on the overall behavior

- Need to know what can be and not be done in the model, i.e., application
area knowledge is needed, not only implementation in general (Karnough

maps, VHDL etc.)
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Application Specific vs Language

» Application specific
- Use description formats common in the application domain
- Models often simulated and/or translated to other computer languages
- Example representations
* Dataflow diagram, e.g., DSP
- Tools
e SPW, Simulink (Matlab), DSP station, DSP builder
- Only suitable for the application domain
* Demonstrate working algorithm in simulation

- Often supports statistical calculations to evaluate performance reduction due to limited
wordlength etc.

* Describe operations and how they communicate
- Not every block corresponds to a hardware block, only describes a function
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Language-Domain modeling

* Models described in a computer language instead of graphical
entry
- System-C, VHDL, Verilog, C++, Java

* Hierarchy important to reduce complexity of the description

* Application specific information must be added by the designer
- No/little help with application specific functions

* Support any application domain

LINKOPING
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Comparison

» Application domain
+ Well defined, correct functionality. Fast and easy to verify functionality.

No need to understand language details

- Not very optimal/efficient if models not directly connected to the
intended application area. Covers only a limited set of applications

 Language domain

+ Can be used for any application domain
- Specific measures, tests or constructs common to a particual application

domain require explicit adding to the system
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Synthesis and simulation

« Synthesis style is tools dependent
- Something working in one tool may not work in another tool!
- Continuous development, new features added in each new release
- A standard also exist specifying a common set of expected synthesis

constructs
* Lower limit of features, tools may support other/additional language features

* Wordlength and data types: Real -> Integer -> bitvectors
- Real values must first be translated into integer computations
- Integer computations must be translated into bitvectors of limited length
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ASIC design flow (standard cell)

* Behavoural model development

* Behavoural model validation
- testbench design
* Logic synthesis
* Post synthesis simulation
- gate delay, no wire delay alternatively only a coarse wire delay estimation
* System partitioning
- divide into chips or large blocks on chip
- [I/O is limiting chip size and data speed
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ASIC design flow, cont.

Floor planning
- where to put modules/subsystems on chip

Placement
- detailed description on where each cell is placed on the chip

Routing
- connect cells with wires
- Clock tree, power routing

Circuit extraction
- extract more detailed timing from circuit

LINKOPING
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ASIC design flow, cont.

* Post layout simulation
- including wire capacitance, cross talk etc.

- Verify function for all combinations of manufacturer and environment
tolerances (fast, slow, typical transistor speed, high/low voltage, high/low
temperature, etc.)

* Send masks to manufacturer
- One or more masks for each type of layer on the chip (doping, metal, etc.)
- Turn around time at least 4 weeks, probably 1-3 month

* Evaluate recieved circuit

LINKOPING
II.“ UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 9 2023-09-18 16

FPGA design flow

+ Behavoural model development
* Behavoural model validation (testbench)

* Logic synthesis
- Slightly different goal structure (lookup tables and flipflops) for FPGA

+ Mapping to CLBs

- What logic and flipflop to combine into one unit

* Placement
- Select one of a large set of

* Routing
- Select wire segment in space between CLBs for connecting them together

* Circuit level extraction
* Post layout simulation
« Generation of a POF/SOF/BIT file

LINKOPING
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Design manager design flow (Xilinx)

« Translate: Convert to local database format. Some mapping into
technology dependent mappings (e.g., memories).

» Map: Allocate CLB, IOB, etc.
» Place & route: Place and route, timing limitations may be included.

« Timing: Extract timing. Performed through static timing analysis
(Sum contributing delays from flip-flop outputs to flip-flop inputs).

» Configure: Translate layout information into a POF/SOF (bit) file to
program the FPGA. May be stored in ROM or load through a
processor/PC.
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Synthesis design flow Precision logic

* Analyse
- Parse HDL
- Find libraries and cells
- Check dependencies
- Resolve generics

* Elaborate
- Translate into a generic RTL + black box operators
- Create hierarchy, infer flipflops & latches, memory, operators, FSM

* Pre-optimization
- Boundary optimization
* propagating constants, remove unused outputs, shared input signals
- Constant propagation
- Resource sharing

LINKOPING
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Synthesis design flow Precision logic,
cont.

* Operator implementation
- Adders, counters etc.

* Hierarchy manipulations
- Flatten

* Tristate handling
* DRC checking (Design Rule Checking)

- Short circuits, multiple output driving one node etc.
» Technology mapping

* Register retiming

LINKOPING
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Control of the synthesis process

* Additional information required by synthesis
- Pin assignment
- Timing requirements
- General placement information
- Precompiled netlists

 VHDL attributes
- No standard yet

* Synthesis tool control scripts
- Tools dependent
- Optimization, hierarchy

LINKOPING
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Syntheis example

» Parallel to serial converter

« Shift out parallel input data from
PAR IN onto SO once START = '1'

« Lower abstraction level, bit
datatypes

Library ieee;
Use ieee.std_logic_1164.all;

entity PAR_TO_SER is

Port(
START,SHCLK: in STD_LOGIC;
PAR_IN: in STD_LOGIC_VECTOR(7 downto 0);
SO: out STD_LOGIC);

end PAR_TO_SER;

LINKOPING
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Hardware engineer view of the
Implementation

architecture ALG1 of PAR_TO_SER is
begin

* Counter and multiplexer

Library ieee;
Use ieee.std_logic_1164.all;

entity PAR_TO_SER is

Port(
START,SHCLK: in STD_LOGIC;
PAR_IN: in STD_LOGIC_VECTOR(7 downto 0);
SO: out STD_LOGIC);

end PAR_TO_SER;

START
SHCLK——» COUNTER
COUNT
PAR_IN P MUX — SO

P1:process(START,SHCLK)
variable COUNT: INTEGER range 7 downto -1 := 0;
variable DONE: BOOLEAN,;

begin
if START ="1"then
COUNT :=7;

DONE := FALSE;
elsif SHCLK'EVENT and SHCLK ='1' then
if DONE = FALSE then
SO <= PAR_IN(COUNT);
COUNT := COUNT - 1;
end if;
if COUNT < 0 then
DONE := TRUE;
else
DONE := FALSE;
end if;
end if;
end process;
end ALG1;

LINKOPING
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Programmer implementation

* Uses waveform assignment

with delay information architecture ALG2 of PAR_TO_SER_SCHED is
begin
* Same behavior, less obvious P1:process(START)
how to implement bev;:]lable COUNT: INTEGER;
Library IEEE; if START ="'1"then
use IEEE.std_logic_1164.all; COUNT =7,
while COUNT >= 0 loop
entity PAR_TO_SER_SCHED is SO <= transport PAR_IN(COUNT)
generic(PERIOD: TIME); after (7-COUNT)*PERIOD;
Port( COUNT := COUNT - 1;
START: in STD_LOGIC; end loop;
PAR_IN: in STD_LOGIC_VECTOR(7 downto 0); end if;
SO: out STD_LOGIC); end process;
end PAR_TO_SER_SCHED; end ALG2;
vz
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Sensitivity list issues

 Used in simulation

i architecture ALG of T_FF is architecture ALG of T_FF2 is
to trlgger Processes signal Q: STD_LOGIC; signal Q: STD_LOGIC;
.. begi begi
« In synthesis it only egmn eom
indicates inputs process(RESET,T,CLK) process(RESET,T,CLK)
. ! begin begin
often without if (RESET = '1') then if (RESET = '1') then
i Q <='0 Q <=0,
affeCtmg the elsif (CLK'EVENT and CLK ='1) then elsif (CLK'EVENT and CLK = '1') then
synthesis if T="1"then if T="1" then
Q <=notQ; Q <=notQ;
. . end if; end if;
Example. ) end if; end if;
- Different simulation end process; QOUT <= Q;
. d ;
- Same synthesis result 5oyt <= 0. end process

end ALG; end ALG;
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Example T-flipflop

» Different behavior in the two models
- Output delayed in 2nd code due to missing
Q in sensitivity list
* Synthesis can generate the same
results
- Flipflop with exor gate in feedback

* Delay

- Can not use an assignment “after xx ns”,
only wait for an event (on a clock)

- Wait statements for fixed delay does not
make sense

2023-09-18 25
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Data types

» Std logic is prefered
- Helps finding reset issues and similar

2023-09-18 26

* Bit works, but the synthesized model will use std logic
- Testbenches require changes to support run of synthesis netlist
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Clock detection

« CLK'EVENT AND CLK="1"

- Do not use additional enable signals in the clock edge detection

» Exists also 'RISING_EDGE and 'FALLING EDGE
- Handles also L, H, and Z in the expected way (H->1 no edge, 0->H edge!)

* Synchronous/asynchronous reset/set
IF asyncexpression THEN
-- async reset & init
elsif clockdetection
-- Sync expressions
end if;
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Gated clocks

* Generally not a good idea
- Glitch in control signal may produce glitch on clock!
- Wrong timing on control signal may give errornous trigger
- Clock buffers may introduce large delays
* Less time left for the calculation of the control signal value

* Must not combine clock edge detection with logic

if clk’'event and clk =1’ then
« Some hardware supports gated clocks if enable ="1"then
- Special forms of flipflops

LINKOPING
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Reset of internal states

 What to do if no asynchronous reset?

- Initial data must be clocked in using a
control signal

* Code example without reset
- Works in simulation due to initialisation

2023-09-18 29

entity EQDET is
Port(

I,CLK: in STD_LOGIC;

TEQDET: inout STD_LOGIC :='0%;
end EQDET,

architecture ALG of EQDET is
begin
process
variable EQ,IBK1,IBK2: STD_LOGIC;
begin
wait until (CLK'EVENT and CLK ="'1";

of TEQDET if(IBK1 =IBK2) and (IBK2 = ) then
. . . EQ :: Il';
« Simulation of synthesis error due to eE'Sbe o
initialisation to 'U" endif:
TEQDET <= (EQ xor TEQDET);
IBK2 := IBK1;
IBK1 :=1,
end process;
end ALG;

LINKOPING
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Using explicit reset

» Asynchronous reset

* Possible to use synchronous
reset instead

entity EQDET is
Port(
RESET,I,CLK: in STD_LOGIC;
TEQDET: inout STD_LOGIC);
end EQDET;

2023-09-18 30

architecture ALG of EQDET is
begin
process(RESET,CLK)
variable EQ,IBK1,IBK2: STD_LOGIC;
begin
if (RESET ='1") then

IBK1 := "0
IBK2 := "0
TEQDET <="0";

elsif (CLK'EVENT and CLK ='1") then
if (IBK1 =1) and (IBK1 = IBK2) then
EQ ="1"
else
EQ =0
end if;
TEQDET <= (EQ xor TEQDET);
IBK2 := IBK1;
IBK1 :=1;
end if;
end process;
end ALG;

LINKOPING
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Simulation and Synthesis results

* Order of IBK1 and IBK2 updates are
important if variables are used

* Update order not important if signals
are used

- EQ still a variable!

* Both descriptions give same synthesis
result

architecture ALG of EQDET is
signal IBK1,IBK2: STD_LOGIC;
begin
process(RESET,CLK)
variable EQ: STD_LOGIC;
begin
if (RESET ='1") then
IBK1 <= "0
IBK2 <= "0,
TEQDET <='0";
elsif (CLK'EVENT and CLK ='1") then
if (IBK1 =1) and (IBK1 = IBK2) then
EQ :='1
else
EQ :='0,
end if;
TEQDET <= (EQ xor TEQDET);
IBK1 <=1;
IBK2 <= IBKI1;
end if;
end process;
end ALG;
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Arithmetic operations

* Add, sub supported

- Translates into full adder before simplified

- Operands are not extended

* Multiplication

- Translated into combinational expressions

2023-09-18 32

- Multiple possible structures: Wallace, Carry Save array.
- Constant values usually produces add and shift implementations

(simplified multiplications)

* Division usually not supported

LINKOPING
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Hierarchical arithmetic: BCD to
binary conversion

+ Want to implement a 4 digit BCD to binary converter
- describe decimal number using 4 bits for each digit

« Use Horners rule: d;x103 + d,x1024+d,x10+d,=
(d;x10+d,)x10+d,)x10+d,, i.e., by arbitrary length converter can
be built by repeated multiplication by 10 and addition

* Implement the multiply add

D3—pDi

A\ 4

MSUM

D2—pDj MSUM

DI/

v

MSUM[—
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Multiply and add

* Use unsigned datatype

library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.NUMERIC_STD.all;

entity MULT10 is

port(DATA_IN: in STD_LOGIC_VECTOR(3 downto 0);
PRODUCT: out STD_LOGIC_VECTOR(7 downto 0));

end MULT10;

architecture ALG of MULT10 is
begin
process(DATA_IN)
variable PROD_US: UNSIGNED(7 downto 0);
begin
PROD_US :=
UNSIGNED(DATA_IN)*10;
PRODUCT <= STD_LOGIC_VECTOR(PROD_US);
end process;
end ALG;

2023-09-18 34

operators

Library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.NUMERIC_STD.all;
entity SIMP_ADD is
port(A,B: in STD_LOGIC_VECTOR(3 downto 0);
CIN: in STD_LOGIC;
C: out STD_LOGIC_VECTOR(3 downto 0);
CAR_OUT: out STD_LOGIC);
end SIMP_ADD;
architecture ALG of SIMP_ADD is
begin
P1:process(A,B,CIN)
variable PADDED_CIN: STD_LOGIC_VECTOR(3 downto 0);
variable A_UNSIGNED: UNSIGNED(3 downto 0);
variable C_UNSIGNED: UNSIGNED(4 downto 0);
begin
A_UNSIGNED := UNSIGNED(A);
PADDED_CIN :="000"&CIN;
C_UNSIGNED := (A_UNSIGNED(3) & A_UNSIGNED,5) +
UNSIGNED(B) + UNSIGNED(PADDED_CIN);
C <=STD_LOGIC_VECTOR(C_UNSIGNED(3 downto 0));
CAR_OUT <= C_UNSIGNED(4);
end process;
end ALG;
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Combined add and mult
library IEEE;
use IEEE.STD_LOGIC_1164.all;
. entity BCDCONYV is
o Va]_"y']_ng WO]_"d_ ]_ength port(D0,D1,D2,D3: in STD_LOGIC_VECTOR(3 downto 0);
BIN_OUT: out STD_LOGIC_VECTOR(15 downto 0));
library IEEE; end BCDCONYV;
use IEEE.STD_LOGIC_1164.all;
use [EEE.NUMERIC_STD.all; architecture STRUCTURAL of BCDCONV is
component MADD
entity MADD is generic(IN_WIDTH: NATURAL := 4);
generic(IN_WIDTH: NATURAL := 4); port(Dl: in STD_LOGIC_VECTOR(IN_WIDTH-1 downto 0);
port(DI: in STD_LOGIC_VECTOR(IN_WIDTH-1 downto 0); DJ: in STD_LOGIC_VECTOR(3 downto 0);
DJ: in STD_LOGIC_VECTOR(3 downto 0); MSUM: out STD_LOGIC_VECTOR(IN_WIDTH+3 downto 0));
MSUM: out STD_LOGIC_VECTOR(IN_WIDTH+3 downto 0)); end component;
end MADD; signal MSUM2: STD_LOGIC_VECTOR(7 downto 0);
signal MSUM1: STD_LOGIC_VECTOR(11 downto 0);
architecture ALG of MADD is begin
begin C1: MADD
P1: process(DI,DJ) generic map(4)
variable MSUM_US: UNSIGNED(IN_WIDTH+3 downto 0); port map(D3,D2,MSUM2);
variable PROD:UNSIGNED(2*IN_WIDTH-1 downto 0); C2: MADD
begin generic map(8)
PROD := UNSIGNED(DI)*to_unsigned(10,IN_WIDTH); port map(MSUM2,D1,MSUM1);
MSUM_US := PROD(IN_WIDTH+3 downto 0)+ UNSIGNED(DJ); C3: MADD
MSUM <= STD_LOGIC_VECTOR(MSUM_US); generic map(12)
end process; port map(MSUM1,D0,BIN_OUT);
end ALG; end STRUCTURAL;
LINKOPING
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Hierarchical circuit synthesis

* Ungrouping

Improves synthesis results

* Uniquify

remove artificial boarders between blocks
Allows optimize common subcalculation

Example BCD: 342 -> 309 cells and 30.34 ->30.11 ns delay.

- Create different instances different implementations by repeating netlists
- Allows different optimization of different parts

LINKOPING
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Hierarchical Approach

* Bottom up
- uniquify
- Build each sub block, then combine
- Requires good estimate of timing requirement

* Top down
- Synthesize all to get initial requirements
- Resynthesize parts not meeting requirements

* Golden instance
- Synthesize one block, reuse

2023-09-18
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Example: 12 bit adder register

* Design based on the 4-bit adder

» Different requirement on sum and carry speed

P PE P

CARRY
OUT < F/Fj[4— 4-Bit Adder [#—| 4-Bit Adder [ 4.Bit Adder '¢— CARRY
4 4 4
e e P
CLK ) 1 ,
CLK —P| 12-Bit Register
fﬁ
SUM
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Example: 12 bit adder register, cont.

* Top-down
- Area 255, 8.84 ns
- Difficult to know which part require more propagation time

* Bottom-up
- Area 277, 8.38 ns
- Some circuit overdesigned, hard to know before full circuit

e Golden instance
- Area 254, 11.19 ns
- One size does not fit all...

LINKOPING
II.“ UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 9 2023-09-18 40

Inferred latches and don’t cares

* Synthesis may find that latches are needed

« Example: incomplete if

PROCESS(a,b,c,d)
BEGIN
IF (a = ‘'1’) THEN
out sig <= x;
ELSIF (b = ‘1’) THEN
out sig <=1y;
ENDIF;
END PROCESS;

* out sig not defined if a and b = 0! Require latch!

LINKOPING
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Latch and undefined examples
(SEL=11 not expected)

entity INFERRED is
port(IN_DAT,IN_EN: in STD_LOGIC; SEL: in STD_LOGIC_VECTOR(1 downto 0);
A_LATCHED,A_COMB,B_LATCHED,B_COMB_0,B_COMB_1,B_COMB_2: out STD_LOGIC);

—pragma de. script begin P_B_COMB_1: process(IN_DAT,SEL)

P_B_LATCHED: process(IN_DAT,SEL) begin
--set_flatten true begin B_COMB_1 <=1’
--pragma dc_script_end case (SEL) is case (SEL) is
end INFERRED; when "00" => B_LATCHED <= IN_DAT; when "00" =>B_COMB_1 <= IN_DAT,
o _ "1 = <= .

architecture ALG of INFERRED is INWSz% 01" =>B_LATCHED <= not aﬂ:g '(')llO" :>EI;3__%%'\II\I/I?3__11 cqg.t; IN_DAT,
begin when "10" => B_LATCHED <= '0; when "11" => null;
P_A_LATCHED: process(IN_DAT,IN_EN) when "11" => null; when others => null;

begin when others => null; end case;

if IN_EN ="1"then end case; end process;

A_LATCHED <= IN_DAT; end process; P_B_'COMB_Z: process(IN_DAT,SEL)

end if; P_B_COMB_O: process(IN_DAT,SEL) begin .
end process; begin case (SEL) is
P_A_COMB: process(IN_DAT,IN_EN) case (SEL) is when "00" => B_COMB_2 <= IN_DAT;
begin when "00" => B_COMB_0 <= IN_DAT; when "01" => B_COMB_2 <= not IN_DAT;

if IN_EN =1’ then
A_COMB <= IN_DAT:

when "01" => B_COMB_0 <= not IN_DAT;
when "10" =>B_COMB_0 <=0}

when "10" => B_COMB_2 <="'0";
when "11" => B_COMB_2 <= "',

else when "11"=>B_COMB_0 <=1}, when others => null;
A_COMB <='04 when others => null; end case;
end if; end case; end process;
end process; end process; end ALG;
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Synthesis results

* Synthesis sometimes generate latches

. A_COMB
IN_DAT ‘D———D

=
A_LATCHED
> INEN b
¥
DL B_COMB_2
o >0 —
SEL *‘DC -
B_LATCHED
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Latch problem examples

* Latches can be fixed by
- Add an assignment in all choices of a case
- Add a default assignment before case
- Use don't care symbol '-' to indicate non-important value

« Using a fixed value may use a non-efficient one
- Use don’t care instead
- Better let the tool know about unknown
- Help reduce area and speed up synthesis

LINKOPING
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ROM-structure with don’t care

library IEEE;

use |IEEE.std_logic_1164.all;

use |IEEE.std_logic_unsigned.all;

entity FUNCS is

port(X: in STD_LOGIC_VECTOR(2 downto 0); Z1,Z2: out STD_LOGIC);
end FUNCS;

architecture ROM of FUNCS is

type ROM_1D is array(0 to 7) of STD_LOGIC;
begin
FULLY_SPECIFIED: process(X)

Z2

¥

A
constant ROM1: ROM_1D:= "01101000"; D
begin :
Z1 <=ROM1(CONV_INTEGER(X)); <218
end process; x<2 10> NQ
PARTIALLY_SPECIFIED: process(X) V L
constant ROM2: ROM_1D:= "01101--0"; | ] 02
begin s OR Z1
Z2 <=ROM2(CONV_INTEGER(X)); Dﬁ i
end process; 1
end ROM;
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Reset problem

* Counter with delay that should
set count old to zero while
being reset?

Count_old not reset!
PROCESS (clk, reset);

BEGIN . . .
if (reset = ‘0) then DESIRED RESULT ACTUAL RESULT

count <=0; .
elsif rising_edge(clk) then " " P
count_old <= count; T L ’—P
o> b—1 1

count <= count + 1, [ o L Count_old

end if; - — i

end process; Resct ) Clock_| I
’ Reset
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Tristate gates

» Some technologies does not

support tristate internally in =~ BeEE, oo, g )
the deSlgn SQ:II%ATEIS?:ESI\-II—I{\HI—EFT\IE in STD_LOGIC; " (EISEL'J\ISl:?’_;I(]“;)<TEBn
BUS_SIG: out STD_LOGIC); else
« Floating wires may produce end TRISTATE: S
hlgh po%\/'er COHSUIS;III))UOH dU_e architecture ALG of TRISTATE is eﬁgdp:'fécess;
begin end ALG;
to short circuit current in Thogn |
inputs Uit ENB y
. . eISBeUS_SIG <='Z'; B * BUS_STG
» Possible to change a tristate end i -
. . . en rocess;
version into a multiplexer P ENA y
based version (done R .

automatically by some tools)
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Clock buffers and other aspects

Attributes used to indicate clock signals

- Information used to select special layout methods or hardware resources to
reduce clock skew

- Automatically detected in general

High fanout signals
- Buffer cells will be added

Logic duplications
- Allow larger fan-out without adding separate buffers

Retiming/pipelining
- Switch order between calculation and storage

Multipliers/DSP blocks
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Resource sharing

* Chose one of two sums. May add both or chose inputs first
- Mux+add => 51 area, 8.47 delay
- Add+mux => 73 area, 7.09 delay

* Flattening and structure. (logic level, not hierarchy)

* Logic can be flattened to e.g., two levels instead of three.
Different results of area and logic
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How is timing requirements defined?

* Often derived from a symbolic clock

* Signals are defined from edges of the clock
- Fix setup and hold time. Include clock skew

* Usually defined as maximum delay
- Expensive to guarantee minimum delay
- Delay pin to flipflop, flipflop to pin
- Time from flipflop to flipflop

* Possible to specify multi cycle delay
* False paths
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Results

* Time reports
- Generated by analysis of netlist/layout
- Critical path reports

* Area reports

Resource reports
- Routing, flipflops, LUT, multipliers etc.

VHDL simulation models
- Post synthesis, post layout

Layout possible to modify (edit at bit level)
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Synthesis operation

» Synthesis is based on different types of pattern matching
- Support most constructs
- Behavour may still be different
- Often adds complicated patterns that are then simplified

+ Example: D flip flop with Qinvers output, but without Q in the
sensitivity list. Generally generates a single flipflop, but timing
of Qinvers differs between simulation of VHDL and synthesized
design.

51
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Recommended patterns

* Style guide exists (patterns)
- Specific to the synthesis tools

* Specify patterns that are allowed and recommended
- Important to produce efficient implementations
- Example units: counters, memories, tristate buffers

» These manuals are available online

52
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