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Agenda

• Practical issues

• Hardware description
– FPGA

• HDL based design

09/12/2023 10:58



  

 

2023-09-14TSTE12 Design of Digital Systems, Lecture 8 3

TSTE12 Deadlines Y,D,ED
• Final version of design sketch and project plan this week

– Show implementation ideas, show sequence of 
implementation and task partitioning between group 
members

• Weekly meetings should start 
– Internal weekly meeting with transcript sent to supervisor

• Lab 2 results will be checked after the project ends
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TSTE12 Deadlines MELE, erasmus

• Final requirement specification this week

• Wednesday 20 September 21.00: Lab 2 soft deadline
– Lab 2 results will be checked after project completed
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Handin (homework), Individual!
● 1st handin deadline Monday 18 September 23:30

● Use only plan text editor (emacs, vi, modelsim or similar) for code entry.

● Solve tasks INDIVIDUALLY

● Submit answers using Lisam assignment function

– 4 different submissions for code, one for each code task
– 1 submission for all theory question answers

● Use a special terminal window when working with handins

module load TSTE12 ; TSTE12handin

2023-09-14TSTE12 Design of Digital Systems, Lecture 8 6

Hardware overview

● Detailed description of Hardware

● Standard parts
– TTL (SSI, MSI LSI)
– Memories, microprocessors, I/O

● ASIC (Application Specific Integrated Circuit)
– Integrated circuit that has been produced for a specific application and 

(often) produced in small numbers
– Memories and microprocessors are general application devices
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ASIC technologies

● May use different technologies for ASIC: PLD, Gate array, FPGA, 
Standard cell, custom. ASIC is however limited to Standard cell 
and gate array. Custom design is also used.

● CMOS switch. Power consumption: P ~ CV2f
– Use low power supply, reduce clock, reduce area

● Transistor channel length (old measure of chip manufacturing 
process) shorter than 0.01 um (so called 5 nm used today, e.g. 
TSMC N5 process in Ryzen 7000 series CPUs, 4 nm in Apple 
A16 Bionic in Iphone 14)
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Gate array, mask programmable

● Predefined pattern of transistors
– Add interconnect metal for each 

design
– Fast manufacture (weeks)
– No transistor sizing

● Example shows inverter design

● Combined with library of existing 
cells
– Basic gates, flipflops etc.
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Standard cell

● Transistor placement and 
metal layers unique for 
each design, needs to be 
manufactured

● Limited number of layout 
cell types (Cell library)

● Cells already 
characterized

● Slow manufacture 
(month)
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Full custom layout

● Full custom
– Individual placement and scaling of transistors
– Full control of wires and connections
– Maximum control, maximum effort

● Complete freedom to place and route transistors
– Not limited to existing logic style/library
– Slow manufacture (months)
– Higher performance than standard cells

● Requires more testing (simulation)  
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Programmable devices: PLD

● Input variables forming 
AND-OR arrays, flipflops 
at the outputs.
– Crosspoint can connect to 

create products

● Inputs and outputs on 
chip edge

● Only small circuit 
designs
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Programmable devices: CPLD

● Combine PLD structure 
with additional onchip 
interconnect
– Support larger designs
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FPGA structure

● Field Programmable Gate 
Array

● Cells in an array, special I/O 
blocks around the edges.

● Between cells (CLBs or LEs) 
are routing wires located 
(interconnect)
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FPGA building blocks

● CLB/Logic Element
– Different name in different manufacturers designs
– In many cases are they based on lookup tables (i.e., no simple gates, 

instead more advanced functions) => less need for routing channels (that 
are expensive). Lookup table can be viewed as a small RAM or a MUX 
with fixed inputs.

– Trade off between big lookup tables and utilization. Optimal around 4-6 
bits address. 

– Often a flip-flop included in the CLB/LE
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CLB Example: Xilinx (AMD) Spartan II

● Choose positive or negative 
clock edge

● May combine lookup tables

● CLB may be rearranged into 
a memory or shift register
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Xilinx Spartan II I/O logic

● Support multiple 
I/O standards
– 3.3V, 1.8V, 1.2V etc.
– Differential

● Flipflops located 
close to pin
– Reduce delays due 

to routing signal to 
pin

● Different drive 
strength
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Other FPGA example: Altera (intel) 
Cyclone

● Same basic structure
– Logic Array
– Separate I/O blocks
– Dedicated memory
– PLL for internal clock 

generation

E P 1 C 3

P L L

M 4 K  R A M  
B l o c k

L o g i c  A r r a y

I O E s

2023-09-14TSTE12 Design of Digital Systems, Lecture 8 18

Altera (Intel) Cyclone 

● Logic element structure
– More detailed description
– One Lookup table +

one flipflop
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Alternative FPGA structure: Actel 
(Microsemi)

● Smaller functions

● Separate register from 
combination logic
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Programming of FPGA

● Two types: reprogrammable or 
one-time programmable

● Control a CMOS-switch using a 
RAM/EPROM/EEPROM-cell. The 
CMOS switch is slow (compared 
to the alternative)

● The alternative is fuse/Antifuse 
(burn together two wires by 
using high voltage)
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Important aspects

● Speed of the switched (impedance, capacitans). Many switches 
in series ruins the performance

● Reprogrammable? Needs any design changes to be done?

● Volatile designs? What happens at power failure? How is the 
design put into the chip? How long delay from power on to 
working design?

● Area of the switches? Needs many switches?
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Technology comparison table

● Most common
– SRAM
– EEPROM/FLASH

● Xilinx/Altera
– SRAM/EEPROM

● Actel
– Antifuse
– Do also create classic FPGA (SRAM/EEPROM based)

● SRAM based FPGA usually support automatic configuration from 
serial flash memory at power-on

SRAM Antifuse EPROM EEPROM/FLASH
Volatile yes no no no
Re-programmable yes no yes yes
Chip area large small small average
R (routing nets) large small large large
C large small large large
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How to configure the FPGA

● Non-volatile technology
– FLASH, EEPROM, PROM, etc.

● External programmer
– Software on PC to program device

● External ROM/FLASH
– Standard FLASH
– Serial FLASH

● Embedded microcontroller
– Boot application configures FPGA
– Not possible if flash needed for CPU operation
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FPGA configuration, cont.

● Large volumes may use non-programmable devices based on 
FPGA
– Resynthesize: may give different behavior
– Strip FPGA: Remove configuration logic
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FPGA hardware options

● Multipliers

● DSP blocks
– Multiply-ackumulate
– Common operation in DSP
– High precision (> 20 bits)

● Optimized I/O support
– Differential signaling
– Low swing/current steering
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FPGA hardware options, cont.

● Clock circuits
– Phase locked loops (PLL), Delay locked loops (DLL)
– Clock tree distribution

● Serializer/deserializer
– Support modern PC bus standards such as PCI Express
– Dedicated block to send/recieve high speed (> Gbit/s) serial data 
– Reduce number of I/O pins
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FPGA hardware options, cont.

● A/D and D/A converters

● Memory units

● CPU
– e.g., physical powerpc or ARM core inside FPGA
– Usually combined with external memory interfaces and CPU-based I/O 

support (e.g. wired ethernet, SD-card reader etc.)

● Alternative to dedicated CPU hardware: soft cpu
– VHDL design of a processor
– Allows for modification of processor structure
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ASIC vs FPGA

● ASIC have a large NRE cost
– Non-Recurring Engineering cost, price of 1st unit

● FPGA have large per unit cost

● Selection of technology depend on
– Performance requirements
– Number of units
– Time to market 
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HDL based design

● Structured design using HDL

● FSM descriptions
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Example: Combination logic

● Binary comparison. Compare two two-bit words
– GE: Greater or equal 
– LE: Less or equal
– E: Equal
– G: Greater
– L: Less

entity COM is
  generic (D:time);
  port (N1, N0, M1, M0: in BIT;
        GE, LE, E, G, L: out BIT);
end COM;

09/12/2023 10:58



  

 

2023-09-14TSTE12 Design of Digital Systems, Lecture 8 31

Descriptions

● ROM
– Table lookup

use work.TRUTH4x5.all;
architecture TABLE of COM is
begin
  process (N1,N0,M1,M0)
    variable INDEX: INTEGER;
    variable WOUT: WORD;
  begin
    INDEX := INTVAL (N1&N0&M1&M0);
    WOUT := TRUTH (INDEX);
    GE <= WOUT(4) after D;
    LE <= WOUT(3) after D;
    E  <= WOUT(2) after D;
    G  <= WOUT(1) after D;
    L  <= WOUT(0) after D;
  end process;
end TABLE;

package TRUTH4x5 is
  constant NUM_OUTPUTS: INTEGER:=5;
  constant NUM_INPUTS: INTEGER:=4;
  constant NUM_ROWS: INTEGER:= 2 ** NUM_INPUTS;
  type WORD is array(NUM_OUTPUTS-1 downto 0) of BIT;
  type ADDR is array(NUM_INPUTS-1 downto 0) of BIT;
  type MEM is array (0 to NUM_ROWS-1) of WORD;
  constant TRUTH: MEM :=
                ("11100", "01001", "01001", "01001",
                 "10010", "11100", "01001", "01001",
                 "10010", "10010", "11100", "01001",
                 "10010", "10010", "10010", "11100");
  function INTVAL(VAL:ADDR) return INTEGER;
end TRUTH4x5;

package body TRUTH4x5 is
  function INTVAL(VAL: ADDR) return INTEGER is
    variable SUM: INTEGER:=0;
  begin
    for N in VAL'LOW to VAL'HIGH loop
      if VAL(N) = '1' then
        SUM := SUM + (2 ** N);
      end if;
    end loop;
    return SUM;
  end INTVAL;
end TRUTH4x5;
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Descriptions, CASE statement

● One multiplexer
for each output

architecture MUX of COM is
begin
  process(N1,N0,M1,M0)
  begin
    case N1&N0&M1&M0 is
      when "0000" => GE <= '1' after D; LE <= '1' after D;
        E <= '1' after D; G <= '0' after D; L <= '0' after D;
      when "0001" => GE <= '0' after D; LE <= '1' after D;
        E <= '0' after D; G <= '0' after D; L <= '1' after D;
      when "0010" => GE <= '0' after D; LE <= '1' after D;
        E <= '0' after D; G <= '0' after D; L <= '1' after D;
      when "0011" => GE <= '0' after D; LE <= '1' after D;
        E <= '0' after D; G <= '0' after D; L <= '1' after D;
      when "0100" => GE <= '1' after D; LE <= '0' after D;
        E <= '0' after D; G <= '1' after D; L <= '0' after D;
      when "0101" => GE <= '1' after D; LE <= '1' after D;
        E <= '1' after D; G <= '0' after D; L <= '0' after D;
      when "0110" => GE <= '0' after D; LE <= '1' after D;
        E <= '0' after D; G <= '0' after D; L <= '1' after D;
      when "0111" => GE <= '0' after D; LE <= '1' after D;
        E <= '0' after D; G <= '0' after D; L <= '1' after D;

      when "1000" => GE <= '1' after D; LE <= '0' after D;
        E <= '0' after D; G <= '1' after D; L <= '0' after D;
      when "1001" => GE <= '1' after D; LE <= '0' after D;
        E <= '0' after D; G <= '1' after D; L <= '0' after D;
      when "1010" => GE <= '1' after D; LE <= '1' after D;
        E <= '1' after D; G <= '0' after D; L <= '0' after D;
      when "1011" => GE <= '0' after D; LE <= '1' after D;
        E <= '0' after D; G <= '0' after D; L <= '1' after D;
      when "1100" => GE <= '1' after D; LE <= '0' after D;
        E <= '0' after D; G <= '1' after D; L <= '0' after D;
      when "1101" => GE <= '1' after D; LE <= '0' after D;
        E <= '0' after D; G <= '1' after D; L <= '0' after D;
      when "1110" => GE <= '1' after D; LE <= '0' after D;
        E <= '0' after D; G <= '1' after D; L <= '0' after D;
      when "1111" => GE <= '1' after D; LE <= '1' after D;
        E <= '1' after D; G <= '0' after D; L <= '0' after D;
    end case;
  end process;
end MUX;
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Descriptions, improved CASE

● Remove one variable in the 
selection of the case 
statement

● Use the removed variable 
as output value or its 
inverse

● More variables can be 
removed
– Increase logic in front of 

multiplexer

architecture MUX3 of COM is
begin
 process (N1, N0, M1, M0)
 begin
  case N1&N0&M1 is
   when "000" => GE <= not M0 after D; LE <= '1' after D;
    E <= not M0 after D; G <= '0' after D; L <= M0 after D;
   when "001" => GE <= '0' after D; LE <= '1' after D;
    E <= '0' after D; G <= '0' after D; L <= '1' after D;
   when "010" => GE <= '1' after D; LE <= M0 after D;
    E <= M0 after D; G <= not M0 after D; L <= '0' after D;
   when "011" => GE <= '0' after D; LE <= '1' after D;
    E <= '0' after D; G <= '0' after D; L <= '1' after D;
   when "100" => GE <= '1' after D; LE <= '0' after D;
    E <= '0' after D; G <= '1' after D; L <= '0' after D;
   when "101" => GE <= not M0 after D; LE <= '1' after D;
    E <= not M0 after D; G <= '0' after D; L <= M0 after D;
   when "110" => GE <= '1' after D; LE <= '0' after D;
    E <= '0' after D; G <= '1' after D; L <= '0' after D;
   when "111" => GE <= '1' after D; LE <= M0 after D;
    E <= M0 after D; G <= not M0 after D; L <= '0' after D;
  end case;
 end process;
end MUX3;
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Hardware, improved Case statement

● One mux plus inverter

● Every output have its own 
multiplexer (same as for non-
improved case statement)
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Partitioning

● Rewrite expressions, sharing common subexpression
– E= GE AND LE
– G = GE AND NOT LE
– L = LE AND NOT GE

● That is, two expressions followed by simple generation of E, G, 
and L

● Designer makes logic synthesis instead of tool
– Synthesis tool may still modify description
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Two-level logic

● Many different choices

● Can be described as structure

architecture POSDF of COM is
  signal Z1,Z0: BIT;
begin
  Z1 <= (not N0 or M1 or M0) and (not N1 or M1) and
        (not N1 or not N0 or M0);
  Z0 <= (N1 or N0 or not M0) and (N1 or not M1) and
        (N0 or not M1 or not M0);
  LE <= Z1 after D;
  GE <= Z0 after D;
   E <= Z1 and Z0 after D;
   G <= Z0 and not Z1 after D;
   L <= Z1 and not Z0 after D;
end POSDF;
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Structural description
architecture TWO_LEVEL_OR_AND of COM is
  signal Z10,Z11,Z12,Z00,Z01,Z02: BIT;
  signal N0BAR,N1BAR,M0BAR,M1BAR: BIT;
  signal Z0,Z1,Z0NOT,Z1NOT: BIT;
  component NOT2G
    generic (D: TIME);
    port (I: in BIT; O: out BIT);
  end component;
  for all: NOT2G use entity NOT2(BEHAVIOR);
  component AND2G
    generic (D: TIME);
    port (I1, I2: in BIT; O: out BIT);
  end component;
  for all: AND2G use entity AND2(BEHAVIOR);
  component AND3G
    generic (D: TIME);
    port(I1,I2,I3: in BIT; O: out BIT);
  end component;
  for all: AND3G use entity AND3(BEHAVIOR);
  component OR2G
    generic (D: TIME);
    port(I1,I2: in BIT; O: out BIT);
  end component;
  for all: OR2G use entity OR2(BEHAVIOR);
  component OR3G
    generic (D: TIME);
    port (I1,I2,I3: in BIT; O: out BIT);
  end component;
  for all: OR3G use entity OR3(BEHAVIOR);
  component WIREG
    port (I: in BIT; O: out BIT);
    end component;
  for all: WIREG use entity WIRE(BEHAVIOR);

begin
C1: NOT2G
     generic map (2 ns)
     port map (N0, N0BAR);
 C2: NOT2G
     generic map (2 ns)
     port map (N1, N1BAR);
 C3: NOT2G
     generic map (2 ns)
     port map (M0, M0BAR);
 C4: NOT2G
     generic map (2 ns)
     port map (M1, M1BAR);
 C5: OR3G
     generic map (2 ns)
     port map (N0BAR, M1, M0, Z10);
 C6: OR2G
     generic map (2 ns)
     port map (N1BAR, M1, Z11);
 C7: OR3G
     generic map (2 ns)
     port map (N1BAR, N0BAR, M0, Z12);
 C8: AND3G
     generic map (2 ns)
     port map (Z10, Z11, Z12, Z1);
 C9: OR3G
     generic map (2 ns)
     port map (N1, N0, M0BAR, Z00);

 C10:OR2G
     generic map (2 ns)
     port map (N1, M1BAR, Z01);
 C11:OR3G
     generic map (2 ns)
     port map (N0, M1BAR, M0BAR, Z02);
 C12:AND3G
     generic map (2 ns)
     port map (Z00, Z01, Z02, Z0);
 C13:NOT2G
     generic map (2 ns)
     port map (Z1, Z1NOT);
 C14:NOT2G
     generic map (2 ns)
     port map (Z0, Z0NOT);
 C15:AND2G
     generic map (2 ns)
     port map (Z0, Z1, E);
 C16:AND2G
     generic map (2 ns)
     port map (Z0, Z1NOT, G);
 C17:AND2G
     generic map (2 ns)
     port map (Z1, Z0NOT, L);
 C18:WIREG
     port map (Z0, GE);
C19: WIREG
     port map (Z1, LE);
end TWO_LEVEL_OR_AND;
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Finite state machines (FSM)

● Example: serial/parallel converter
– A indicates start of data
– Output Z only during one clock cycle

entity STOP is
  port (R, A, D, CLK: in BIT;
        Z: out BIT_VECTOR(3 downto 0);
        DONE: out BIT);
end STOP;
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FSM design, cont.

● First: Select type of state machine (Moore, Mealy)
– Moore machine have stable output after a few gate delays
– Moore machine can not produce output dependent on current input 

values
– Moore machine may require more states than Mealy machines
– Mealy machine may sometimes be required due to direct respons from 

FSM on input signal change
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FSM Design, cont.

● Second: Create a state diagram. Good start is reset-state S0. 
– S1: First data on D, Done=0, Z unspecified
– S2: Second data on D, Done =0, Z unspecified
– S3: Third data on D, Done = 0, Z unspecified
– S4: Fourth data on D, Done = 0, Z unspecified
– S5: Output on Z, Done= 1
– In S5 can A also be 1 (indicating new data)

● Next clock cycle must take care data, i.e., use S1 without passing through S0
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FSM state diagram

● Some tools can translate state diagram automatically to VHDL 
(e.g., HDL Designer)
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Alternate desription

● Transition list

– Textual description of the FSM
– Useful for large state diagrams
– Graphs become hard to understand when number of states increase
– Possible to cope with complexity by use of hierarchy

Current Transition Next Data Output
State Expression State Transfers

S0 R+A S0 None DONE=0, Z unspecified
S0 R & A S1

S1 R S2 Store bit 1 DONE=0, Z unspecified
S1 R S0
: : : :   :

S5 R & A S1 None DONE=1, Z=parallel data out
S5 R + A S0
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FSM description in VHDL
architecture FSM_RTL of STOP is
  type STATE_TYPE is (S0, S1, S2, S3, S4, S5);
  signal STATE: STATE_TYPE;
  signal SHIFT_REG: BIT_VECTOR (3 downto 0);
begin

STATE: process (CLK)
  begin
    if CLK='1' then
      case STATE is
        when S0 =>
          -- Data Section
          -- Control Section
            if R='1' or A='0' then
              STATE <= S0;
            elsif R='0' and A='1' then
              STATE <= S1;
            end if;
        when S1 =>
          -- Data Section
            SHIFT_REG <= D & SHIFT_REG(3 downto 1);
          -- Control Section
            if R='0' then
              STATE <= S2;
            elsif R='1' then
              STATE <= S0;
            end if;

        when S2 =>
          -- Data Section
            SHIFT_REG <= D & SHIFT_REG(3 downto 1);
          -- Control Section
             if R='0' then
               STATE <= S3;
             elsif R='1' then
               STATE <= S0;
             end if;
        when S3 =>
          -- Data Section
          -- Shift in the third bit
            SHIFT_REG <= D & SHIFT_REG(3 downto 1);
          -- Control Section
            if R='0' then
              STATE <= S4;
            elsif R='1' then
              STATE <= S0;
            end if;
        when S4 =>
          -- Data Section
          -- Shift in the fourth bit
            SHIFT_REG <= D & SHIFT_REG(3 downto 1);
          -- Control Section
            if R='0' then
              STATE <= S5;
            elsif R='1' then
              STATE <= S0;
            end if;

        when S5 =>
          -- Data Section
          -- Control Section
            if R='0' and A='1' then
              STATE <= S1;
            elsif R='1' or A='0' then
              STATE <= S0;
            end if;
      end case;
    end if;
  end process STATE;

  OUTPUT: process (STATE)
  begin
    case STATE is
      when S0 to S4 =>
        DONE <= '0';
      when S5 =>
        DONE <= '1';
        Z <= SHIFT_REG;
    end case;
  end process OUTPUT;
end FSM_RTL;
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State machine partitioning

● State machines partitioned into multiple processes
– Updating (clocked), i.e., the state register
– Next state calculation
– Output calculation

● May find different combinations of these
– Single process
– Two processes (nextstate + output, state update)
– Three processes (nextstate, output, state update)

● Multiple processes to avoid creating Mealy instead of Moore 
machine
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State assignment

● States are not coded in VHDL
– Use enumeration

● Allows synthesis tools do a better work
– Powerful computer algorithms usually find better state assignment
– Possible to control state minimisation and assignment in synthesis tool

● E.g. one-hot encoding may be more suitable in same cases
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Alternative description: table based

● Small statemachine, one input X and one output Z

● Code the state table as an array with nextstate and output

entity TWO_CONSECUTIVE is
  port(CLK,R,X: in BIT; Z: out BIT);
end TWO_CONSECUTIVE;
--
architecture FSM of TWO_CONSECUTIVE is
  type STATE is (S0,S1,S2);
  signal FSM_STATE: STATE := S0;
  type TRANSITION is record
    OUTPUT: BIT;
    NEXT_STATE: STATE;
  end record;
  type TRANSITION_MATRIX is array(STATE,BIT) of TRANSITION;
  constant STATE_TRANS: TRANSITION_MATRIX :=
    (S0 => ('0' => ('0',S1), '1' => ('0',S2)),
     S1 => ('0' => ('1',S1), '1' => ('0',S2)),
     S2 => ('0' => ('0',S1), '1' => ('1',S2)));

begin
  process(R,X,CLK,FSM_STATE)
  begin
    if R = '0' then -- Reset
      FSM_STATE <= S0;
    elsif CLK'EVENT and CLK ='1' then -- Clock event
      FSM_STATE <= STATE_TRANS(FSM_STATE,X).NEXT_STATE;
    end if;
    if FSM_STATE'EVENT or X'EVENT then -- Output Function
      Z <= STATE_TRANS(FSM_STATE,X).OUTPUT;
    end if;
  end process;
end FSM;
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