

TSTE12 Design of Digital Systems
Lecture 8
Kent Palmkvist

2023-09-14TSTE12 Design of Digital Systems, Lecture 8 2

Agenda

• Practical issues

• Hardware description
– FPGA

• HDL based design

09/12/2023 10:58

2023-09-14TSTE12 Design of Digital Systems, Lecture 8 3

TSTE12 Deadlines Y,D,ED
• Final version of design sketch and project plan this week

– Show implementation ideas, show sequence of
implementation and task partitioning between group
members

• Weekly meetings should start
– Internal weekly meeting with transcript sent to supervisor

• Lab 2 results will be checked after the project ends

2023-09-14TSTE12 Design of Digital Systems, Lecture 8 4

TSTE12 Deadlines MELE, erasmus

• Final requirement specification this week

• Wednesday 20 September 21.00: Lab 2 soft deadline
– Lab 2 results will be checked after project completed

09/12/2023 10:58

2023-09-14TSTE12 Design of Digital Systems, Lecture 8 5

Handin (homework), Individual!
● 1st handin deadline Monday 18 September 23:30

● Use only plan text editor (emacs, vi, modelsim or similar) for code entry.

● Solve tasks INDIVIDUALLY

● Submit answers using Lisam assignment function

– 4 different submissions for code, one for each code task
– 1 submission for all theory question answers

● Use a special terminal window when working with handins

module load TSTE12 ; TSTE12handin

2023-09-14TSTE12 Design of Digital Systems, Lecture 8 6

Hardware overview

● Detailed description of Hardware

● Standard parts
– TTL (SSI, MSI LSI)
– Memories, microprocessors, I/O

● ASIC (Application Specific Integrated Circuit)
– Integrated circuit that has been produced for a specific application and

(often) produced in small numbers
– Memories and microprocessors are general application devices

09/12/2023 10:58

2023-09-14TSTE12 Design of Digital Systems, Lecture 8 7

ASIC technologies

● May use different technologies for ASIC: PLD, Gate array, FPGA,
Standard cell, custom. ASIC is however limited to Standard cell
and gate array. Custom design is also used.

● CMOS switch. Power consumption: P ~ CV2f
– Use low power supply, reduce clock, reduce area

● Transistor channel length (old measure of chip manufacturing
process) shorter than 0.01 um (so called 5 nm used today, e.g.
TSMC N5 process in Ryzen 7000 series CPUs, 4 nm in Apple
A16 Bionic in Iphone 14)

2023-09-14TSTE12 Design of Digital Systems, Lecture 8 8

Gate array, mask programmable

● Predefined pattern of transistors
– Add interconnect metal for each

design
– Fast manufacture (weeks)
– No transistor sizing

● Example shows inverter design

● Combined with library of existing
cells
– Basic gates, flipflops etc.

09/12/2023 10:58

2023-09-14TSTE12 Design of Digital Systems, Lecture 8 9

Standard cell

● Transistor placement and
metal layers unique for
each design, needs to be
manufactured

● Limited number of layout
cell types (Cell library)

● Cells already
characterized

● Slow manufacture
(month)

2023-09-14TSTE12 Design of Digital Systems, Lecture 8 10

Full custom layout

● Full custom
– Individual placement and scaling of transistors
– Full control of wires and connections
– Maximum control, maximum effort

● Complete freedom to place and route transistors
– Not limited to existing logic style/library
– Slow manufacture (months)
– Higher performance than standard cells

● Requires more testing (simulation)

09/12/2023 10:58

2023-09-14TSTE12 Design of Digital Systems, Lecture 8 11

Programmable devices: PLD

● Input variables forming
AND-OR arrays, flipflops
at the outputs.
– Crosspoint can connect to

create products

● Inputs and outputs on
chip edge

● Only small circuit
designs

2023-09-14TSTE12 Design of Digital Systems, Lecture 8 12

Programmable devices: CPLD

● Combine PLD structure
with additional onchip
interconnect
– Support larger designs

09/12/2023 10:58

2023-09-14TSTE12 Design of Digital Systems, Lecture 8 13

FPGA structure

● Field Programmable Gate
Array

● Cells in an array, special I/O
blocks around the edges.

● Between cells (CLBs or LEs)
are routing wires located
(interconnect)

2023-09-14TSTE12 Design of Digital Systems, Lecture 8 14

FPGA building blocks

● CLB/Logic Element
– Different name in different manufacturers designs
– In many cases are they based on lookup tables (i.e., no simple gates,

instead more advanced functions) => less need for routing channels (that
are expensive). Lookup table can be viewed as a small RAM or a MUX
with fixed inputs.

– Trade off between big lookup tables and utilization. Optimal around 4-6
bits address.

– Often a flip-flop included in the CLB/LE

09/12/2023 10:58

2023-09-14TSTE12 Design of Digital Systems, Lecture 8 15

CLB Example: Xilinx (AMD) Spartan II

● Choose positive or negative
clock edge

● May combine lookup tables

● CLB may be rearranged into
a memory or shift register

2023-09-14TSTE12 Design of Digital Systems, Lecture 8 16

Xilinx Spartan II I/O logic

● Support multiple
I/O standards
– 3.3V, 1.8V, 1.2V etc.
– Differential

● Flipflops located
close to pin
– Reduce delays due

to routing signal to
pin

● Different drive
strength

09/12/2023 10:58

2023-09-14TSTE12 Design of Digital Systems, Lecture 8 17

Other FPGA example: Altera (intel)
Cyclone

● Same basic structure
– Logic Array
– Separate I/O blocks
– Dedicated memory
– PLL for internal clock

generation

E P 1 C 3

P L L

M 4 K R A M
B l o c k

L o g i c A r r a y

I O E s

2023-09-14TSTE12 Design of Digital Systems, Lecture 8 18

Altera (Intel) Cyclone

● Logic element structure
– More detailed description
– One Lookup table +

one flipflop

09/12/2023 10:58

2023-09-14TSTE12 Design of Digital Systems, Lecture 8 19

Alternative FPGA structure: Actel
(Microsemi)

● Smaller functions

● Separate register from
combination logic

2023-09-14TSTE12 Design of Digital Systems, Lecture 8 20

Programming of FPGA

● Two types: reprogrammable or
one-time programmable

● Control a CMOS-switch using a
RAM/EPROM/EEPROM-cell. The
CMOS switch is slow (compared
to the alternative)

● The alternative is fuse/Antifuse
(burn together two wires by
using high voltage)

09/12/2023 10:58

2023-09-14TSTE12 Design of Digital Systems, Lecture 8 21

Important aspects

● Speed of the switched (impedance, capacitans). Many switches
in series ruins the performance

● Reprogrammable? Needs any design changes to be done?

● Volatile designs? What happens at power failure? How is the
design put into the chip? How long delay from power on to
working design?

● Area of the switches? Needs many switches?

2023-09-14TSTE12 Design of Digital Systems, Lecture 8 22

Technology comparison table

● Most common
– SRAM
– EEPROM/FLASH

● Xilinx/Altera
– SRAM/EEPROM

● Actel
– Antifuse
– Do also create classic FPGA (SRAM/EEPROM based)

● SRAM based FPGA usually support automatic configuration from
serial flash memory at power-on

SRAM Antifuse EPROM EEPROM/FLASH
Volatile yes no no no
Re-programmable yes no yes yes
Chip area large small small average
R (routing nets) large small large large
C large small large large

09/12/2023 10:58

2023-09-14TSTE12 Design of Digital Systems, Lecture 8 23

How to configure the FPGA

● Non-volatile technology
– FLASH, EEPROM, PROM, etc.

● External programmer
– Software on PC to program device

● External ROM/FLASH
– Standard FLASH
– Serial FLASH

● Embedded microcontroller
– Boot application configures FPGA
– Not possible if flash needed for CPU operation

2023-09-14TSTE12 Design of Digital Systems, Lecture 8 24

FPGA configuration, cont.

● Large volumes may use non-programmable devices based on
FPGA
– Resynthesize: may give different behavior
– Strip FPGA: Remove configuration logic

09/12/2023 10:58

2023-09-14TSTE12 Design of Digital Systems, Lecture 8 25

FPGA hardware options

● Multipliers

● DSP blocks
– Multiply-ackumulate
– Common operation in DSP
– High precision (> 20 bits)

● Optimized I/O support
– Differential signaling
– Low swing/current steering

2023-09-14TSTE12 Design of Digital Systems, Lecture 8 26

FPGA hardware options, cont.

● Clock circuits
– Phase locked loops (PLL), Delay locked loops (DLL)
– Clock tree distribution

● Serializer/deserializer
– Support modern PC bus standards such as PCI Express
– Dedicated block to send/recieve high speed (> Gbit/s) serial data
– Reduce number of I/O pins

09/12/2023 10:58

2023-09-14TSTE12 Design of Digital Systems, Lecture 8 27

FPGA hardware options, cont.

● A/D and D/A converters

● Memory units

● CPU
– e.g., physical powerpc or ARM core inside FPGA
– Usually combined with external memory interfaces and CPU-based I/O

support (e.g. wired ethernet, SD-card reader etc.)

● Alternative to dedicated CPU hardware: soft cpu
– VHDL design of a processor
– Allows for modification of processor structure

2023-09-14TSTE12 Design of Digital Systems, Lecture 8 28

ASIC vs FPGA

● ASIC have a large NRE cost
– Non-Recurring Engineering cost, price of 1st unit

● FPGA have large per unit cost

● Selection of technology depend on
– Performance requirements
– Number of units
– Time to market

09/12/2023 10:58

2023-09-14TSTE12 Design of Digital Systems, Lecture 8 29

HDL based design

● Structured design using HDL

● FSM descriptions

2023-09-14TSTE12 Design of Digital Systems, Lecture 8 30

Example: Combination logic

● Binary comparison. Compare two two-bit words
– GE: Greater or equal
– LE: Less or equal
– E: Equal
– G: Greater
– L: Less

entity COM is
 generic (D:time);
 port (N1, N0, M1, M0: in BIT;
 GE, LE, E, G, L: out BIT);
end COM;

09/12/2023 10:58

2023-09-14TSTE12 Design of Digital Systems, Lecture 8 31

Descriptions

● ROM
– Table lookup

use work.TRUTH4x5.all;
architecture TABLE of COM is
begin
 process (N1,N0,M1,M0)
 variable INDEX: INTEGER;
 variable WOUT: WORD;
 begin
 INDEX := INTVAL (N1&N0&M1&M0);
 WOUT := TRUTH (INDEX);
 GE <= WOUT(4) after D;
 LE <= WOUT(3) after D;
 E <= WOUT(2) after D;
 G <= WOUT(1) after D;
 L <= WOUT(0) after D;
 end process;
end TABLE;

package TRUTH4x5 is
 constant NUM_OUTPUTS: INTEGER:=5;
 constant NUM_INPUTS: INTEGER:=4;
 constant NUM_ROWS: INTEGER:= 2 ** NUM_INPUTS;
 type WORD is array(NUM_OUTPUTS-1 downto 0) of BIT;
 type ADDR is array(NUM_INPUTS-1 downto 0) of BIT;
 type MEM is array (0 to NUM_ROWS-1) of WORD;
 constant TRUTH: MEM :=
 ("11100", "01001", "01001", "01001",
 "10010", "11100", "01001", "01001",
 "10010", "10010", "11100", "01001",
 "10010", "10010", "10010", "11100");
 function INTVAL(VAL:ADDR) return INTEGER;
end TRUTH4x5;

package body TRUTH4x5 is
 function INTVAL(VAL: ADDR) return INTEGER is
 variable SUM: INTEGER:=0;
 begin
 for N in VAL'LOW to VAL'HIGH loop
 if VAL(N) = '1' then
 SUM := SUM + (2 ** N);
 end if;
 end loop;
 return SUM;
 end INTVAL;
end TRUTH4x5;

2023-09-14TSTE12 Design of Digital Systems, Lecture 8 32

Descriptions, CASE statement

● One multiplexer
for each output

architecture MUX of COM is
begin
 process(N1,N0,M1,M0)
 begin
 case N1&N0&M1&M0 is
 when "0000" => GE <= '1' after D; LE <= '1' after D;
 E <= '1' after D; G <= '0' after D; L <= '0' after D;
 when "0001" => GE <= '0' after D; LE <= '1' after D;
 E <= '0' after D; G <= '0' after D; L <= '1' after D;
 when "0010" => GE <= '0' after D; LE <= '1' after D;
 E <= '0' after D; G <= '0' after D; L <= '1' after D;
 when "0011" => GE <= '0' after D; LE <= '1' after D;
 E <= '0' after D; G <= '0' after D; L <= '1' after D;
 when "0100" => GE <= '1' after D; LE <= '0' after D;
 E <= '0' after D; G <= '1' after D; L <= '0' after D;
 when "0101" => GE <= '1' after D; LE <= '1' after D;
 E <= '1' after D; G <= '0' after D; L <= '0' after D;
 when "0110" => GE <= '0' after D; LE <= '1' after D;
 E <= '0' after D; G <= '0' after D; L <= '1' after D;
 when "0111" => GE <= '0' after D; LE <= '1' after D;
 E <= '0' after D; G <= '0' after D; L <= '1' after D;

 when "1000" => GE <= '1' after D; LE <= '0' after D;
 E <= '0' after D; G <= '1' after D; L <= '0' after D;
 when "1001" => GE <= '1' after D; LE <= '0' after D;
 E <= '0' after D; G <= '1' after D; L <= '0' after D;
 when "1010" => GE <= '1' after D; LE <= '1' after D;
 E <= '1' after D; G <= '0' after D; L <= '0' after D;
 when "1011" => GE <= '0' after D; LE <= '1' after D;
 E <= '0' after D; G <= '0' after D; L <= '1' after D;
 when "1100" => GE <= '1' after D; LE <= '0' after D;
 E <= '0' after D; G <= '1' after D; L <= '0' after D;
 when "1101" => GE <= '1' after D; LE <= '0' after D;
 E <= '0' after D; G <= '1' after D; L <= '0' after D;
 when "1110" => GE <= '1' after D; LE <= '0' after D;
 E <= '0' after D; G <= '1' after D; L <= '0' after D;
 when "1111" => GE <= '1' after D; LE <= '1' after D;
 E <= '1' after D; G <= '0' after D; L <= '0' after D;
 end case;
 end process;
end MUX;

09/12/2023 10:58

2023-09-14TSTE12 Design of Digital Systems, Lecture 8 33

Descriptions, improved CASE

● Remove one variable in the
selection of the case
statement

● Use the removed variable
as output value or its
inverse

● More variables can be
removed
– Increase logic in front of

multiplexer

architecture MUX3 of COM is
begin
 process (N1, N0, M1, M0)
 begin
 case N1&N0&M1 is
 when "000" => GE <= not M0 after D; LE <= '1' after D;
 E <= not M0 after D; G <= '0' after D; L <= M0 after D;
 when "001" => GE <= '0' after D; LE <= '1' after D;
 E <= '0' after D; G <= '0' after D; L <= '1' after D;
 when "010" => GE <= '1' after D; LE <= M0 after D;
 E <= M0 after D; G <= not M0 after D; L <= '0' after D;
 when "011" => GE <= '0' after D; LE <= '1' after D;
 E <= '0' after D; G <= '0' after D; L <= '1' after D;
 when "100" => GE <= '1' after D; LE <= '0' after D;
 E <= '0' after D; G <= '1' after D; L <= '0' after D;
 when "101" => GE <= not M0 after D; LE <= '1' after D;
 E <= not M0 after D; G <= '0' after D; L <= M0 after D;
 when "110" => GE <= '1' after D; LE <= '0' after D;
 E <= '0' after D; G <= '1' after D; L <= '0' after D;
 when "111" => GE <= '1' after D; LE <= M0 after D;
 E <= M0 after D; G <= not M0 after D; L <= '0' after D;
 end case;
 end process;
end MUX3;

2023-09-14TSTE12 Design of Digital Systems, Lecture 8 34

Hardware, improved Case statement

● One mux plus inverter

● Every output have its own
multiplexer (same as for non-
improved case statement)

09/12/2023 10:58

2023-09-14TSTE12 Design of Digital Systems, Lecture 8 35

Partitioning

● Rewrite expressions, sharing common subexpression
– E= GE AND LE
– G = GE AND NOT LE
– L = LE AND NOT GE

● That is, two expressions followed by simple generation of E, G,
and L

● Designer makes logic synthesis instead of tool
– Synthesis tool may still modify description

2023-09-14TSTE12 Design of Digital Systems, Lecture 8 36

Two-level logic

● Many different choices

● Can be described as structure

architecture POSDF of COM is
 signal Z1,Z0: BIT;
begin
 Z1 <= (not N0 or M1 or M0) and (not N1 or M1) and
 (not N1 or not N0 or M0);
 Z0 <= (N1 or N0 or not M0) and (N1 or not M1) and
 (N0 or not M1 or not M0);
 LE <= Z1 after D;
 GE <= Z0 after D;
 E <= Z1 and Z0 after D;
 G <= Z0 and not Z1 after D;
 L <= Z1 and not Z0 after D;
end POSDF;

09/12/2023 10:58

2023-09-14TSTE12 Design of Digital Systems, Lecture 8 37

Structural description
architecture TWO_LEVEL_OR_AND of COM is
 signal Z10,Z11,Z12,Z00,Z01,Z02: BIT;
 signal N0BAR,N1BAR,M0BAR,M1BAR: BIT;
 signal Z0,Z1,Z0NOT,Z1NOT: BIT;
 component NOT2G
 generic (D: TIME);
 port (I: in BIT; O: out BIT);
 end component;
 for all: NOT2G use entity NOT2(BEHAVIOR);
 component AND2G
 generic (D: TIME);
 port (I1, I2: in BIT; O: out BIT);
 end component;
 for all: AND2G use entity AND2(BEHAVIOR);
 component AND3G
 generic (D: TIME);
 port(I1,I2,I3: in BIT; O: out BIT);
 end component;
 for all: AND3G use entity AND3(BEHAVIOR);
 component OR2G
 generic (D: TIME);
 port(I1,I2: in BIT; O: out BIT);
 end component;
 for all: OR2G use entity OR2(BEHAVIOR);
 component OR3G
 generic (D: TIME);
 port (I1,I2,I3: in BIT; O: out BIT);
 end component;
 for all: OR3G use entity OR3(BEHAVIOR);
 component WIREG
 port (I: in BIT; O: out BIT);
 end component;
 for all: WIREG use entity WIRE(BEHAVIOR);

begin
C1: NOT2G
 generic map (2 ns)
 port map (N0, N0BAR);
 C2: NOT2G
 generic map (2 ns)
 port map (N1, N1BAR);
 C3: NOT2G
 generic map (2 ns)
 port map (M0, M0BAR);
 C4: NOT2G
 generic map (2 ns)
 port map (M1, M1BAR);
 C5: OR3G
 generic map (2 ns)
 port map (N0BAR, M1, M0, Z10);
 C6: OR2G
 generic map (2 ns)
 port map (N1BAR, M1, Z11);
 C7: OR3G
 generic map (2 ns)
 port map (N1BAR, N0BAR, M0, Z12);
 C8: AND3G
 generic map (2 ns)
 port map (Z10, Z11, Z12, Z1);
 C9: OR3G
 generic map (2 ns)
 port map (N1, N0, M0BAR, Z00);

 C10:OR2G
 generic map (2 ns)
 port map (N1, M1BAR, Z01);
 C11:OR3G
 generic map (2 ns)
 port map (N0, M1BAR, M0BAR, Z02);
 C12:AND3G
 generic map (2 ns)
 port map (Z00, Z01, Z02, Z0);
 C13:NOT2G
 generic map (2 ns)
 port map (Z1, Z1NOT);
 C14:NOT2G
 generic map (2 ns)
 port map (Z0, Z0NOT);
 C15:AND2G
 generic map (2 ns)
 port map (Z0, Z1, E);
 C16:AND2G
 generic map (2 ns)
 port map (Z0, Z1NOT, G);
 C17:AND2G
 generic map (2 ns)
 port map (Z1, Z0NOT, L);
 C18:WIREG
 port map (Z0, GE);
C19: WIREG
 port map (Z1, LE);
end TWO_LEVEL_OR_AND;

2023-09-14TSTE12 Design of Digital Systems, Lecture 8 38

Finite state machines (FSM)

● Example: serial/parallel converter
– A indicates start of data
– Output Z only during one clock cycle

entity STOP is
 port (R, A, D, CLK: in BIT;
 Z: out BIT_VECTOR(3 downto 0);
 DONE: out BIT);
end STOP;

09/12/2023 10:58

2023-09-14TSTE12 Design of Digital Systems, Lecture 8 39

FSM design, cont.

● First: Select type of state machine (Moore, Mealy)
– Moore machine have stable output after a few gate delays
– Moore machine can not produce output dependent on current input

values
– Moore machine may require more states than Mealy machines
– Mealy machine may sometimes be required due to direct respons from

FSM on input signal change

2023-09-14TSTE12 Design of Digital Systems, Lecture 8 40

FSM Design, cont.

● Second: Create a state diagram. Good start is reset-state S0.
– S1: First data on D, Done=0, Z unspecified
– S2: Second data on D, Done =0, Z unspecified
– S3: Third data on D, Done = 0, Z unspecified
– S4: Fourth data on D, Done = 0, Z unspecified
– S5: Output on Z, Done= 1
– In S5 can A also be 1 (indicating new data)

● Next clock cycle must take care data, i.e., use S1 without passing through S0

09/12/2023 10:58

2023-09-14TSTE12 Design of Digital Systems, Lecture 8 41

FSM state diagram

● Some tools can translate state diagram automatically to VHDL
(e.g., HDL Designer)

2023-09-14TSTE12 Design of Digital Systems, Lecture 8 42

Alternate desription

● Transition list

– Textual description of the FSM
– Useful for large state diagrams
– Graphs become hard to understand when number of states increase
– Possible to cope with complexity by use of hierarchy

Current Transition Next Data Output
State Expression State Transfers

S0 R+A S0 None DONE=0, Z unspecified
S0 R & A S1

S1 R S2 Store bit 1 DONE=0, Z unspecified
S1 R S0
: : : : :

S5 R & A S1 None DONE=1, Z=parallel data out
S5 R + A S0

09/12/2023 10:58

2023-09-14TSTE12 Design of Digital Systems, Lecture 8 43

FSM description in VHDL
architecture FSM_RTL of STOP is
 type STATE_TYPE is (S0, S1, S2, S3, S4, S5);
 signal STATE: STATE_TYPE;
 signal SHIFT_REG: BIT_VECTOR (3 downto 0);
begin

STATE: process (CLK)
 begin
 if CLK='1' then
 case STATE is
 when S0 =>
 -- Data Section
 -- Control Section
 if R='1' or A='0' then
 STATE <= S0;
 elsif R='0' and A='1' then
 STATE <= S1;
 end if;
 when S1 =>
 -- Data Section
 SHIFT_REG <= D & SHIFT_REG(3 downto 1);
 -- Control Section
 if R='0' then
 STATE <= S2;
 elsif R='1' then
 STATE <= S0;
 end if;

 when S2 =>
 -- Data Section
 SHIFT_REG <= D & SHIFT_REG(3 downto 1);
 -- Control Section
 if R='0' then
 STATE <= S3;
 elsif R='1' then
 STATE <= S0;
 end if;
 when S3 =>
 -- Data Section
 -- Shift in the third bit
 SHIFT_REG <= D & SHIFT_REG(3 downto 1);
 -- Control Section
 if R='0' then
 STATE <= S4;
 elsif R='1' then
 STATE <= S0;
 end if;
 when S4 =>
 -- Data Section
 -- Shift in the fourth bit
 SHIFT_REG <= D & SHIFT_REG(3 downto 1);
 -- Control Section
 if R='0' then
 STATE <= S5;
 elsif R='1' then
 STATE <= S0;
 end if;

 when S5 =>
 -- Data Section
 -- Control Section
 if R='0' and A='1' then
 STATE <= S1;
 elsif R='1' or A='0' then
 STATE <= S0;
 end if;
 end case;
 end if;
 end process STATE;

 OUTPUT: process (STATE)
 begin
 case STATE is
 when S0 to S4 =>
 DONE <= '0';
 when S5 =>
 DONE <= '1';
 Z <= SHIFT_REG;
 end case;
 end process OUTPUT;
end FSM_RTL;

2023-09-14TSTE12 Design of Digital Systems, Lecture 8 44

State machine partitioning

● State machines partitioned into multiple processes
– Updating (clocked), i.e., the state register
– Next state calculation
– Output calculation

● May find different combinations of these
– Single process
– Two processes (nextstate + output, state update)
– Three processes (nextstate, output, state update)

● Multiple processes to avoid creating Mealy instead of Moore
machine

09/12/2023 10:58

2023-09-14TSTE12 Design of Digital Systems, Lecture 8 45

State assignment

● States are not coded in VHDL
– Use enumeration

● Allows synthesis tools do a better work
– Powerful computer algorithms usually find better state assignment
– Possible to control state minimisation and assignment in synthesis tool

● E.g. one-hot encoding may be more suitable in same cases

2023-09-14TSTE12 Design of Digital Systems, Lecture 8 46

Alternative description: table based

● Small statemachine, one input X and one output Z

● Code the state table as an array with nextstate and output

entity TWO_CONSECUTIVE is
 port(CLK,R,X: in BIT; Z: out BIT);
end TWO_CONSECUTIVE;
--
architecture FSM of TWO_CONSECUTIVE is
 type STATE is (S0,S1,S2);
 signal FSM_STATE: STATE := S0;
 type TRANSITION is record
 OUTPUT: BIT;
 NEXT_STATE: STATE;
 end record;
 type TRANSITION_MATRIX is array(STATE,BIT) of TRANSITION;
 constant STATE_TRANS: TRANSITION_MATRIX :=
 (S0 => ('0' => ('0',S1), '1' => ('0',S2)),
 S1 => ('0' => ('1',S1), '1' => ('0',S2)),
 S2 => ('0' => ('0',S1), '1' => ('1',S2)));

begin
 process(R,X,CLK,FSM_STATE)
 begin
 if R = '0' then -- Reset
 FSM_STATE <= S0;
 elsif CLK'EVENT and CLK ='1' then -- Clock event
 FSM_STATE <= STATE_TRANS(FSM_STATE,X).NEXT_STATE;
 end if;
 if FSM_STATE'EVENT or X'EVENT then -- Output Function
 Z <= STATE_TRANS(FSM_STATE,X).OUTPUT;
 end if;
 end process;
end FSM;

09/12/2023 10:58

09/12/2023 10:58

