

Agenda

- Practical issues
- Hardware description
 - FPGA
- HDL based design

2023-09-14 3

TSTE12 Deadlines Y,D,ED

- Final version of design sketch and project plan this week
 - Show implementation ideas, show sequence of implementation and task partitioning between group members
- Weekly meetings should start
 - Internal weekly meeting with transcript sent to supervisor
- Lab 2 results will be checked after the project ends

TSTE12 Design of Digital Systems, Lecture 8

2023-09-14 4

TSTE12 Deadlines MELE, erasmus

- Final requirement specification this week
- Wednesday 20 September 21.00: Lab 2 soft deadline
 - Lab 2 results will be checked after project completed

2023-09-14 5

2023-09-14

6

Handin (homework), Individual!

- 1st handin deadline Monday 18 September 23:30
- Use only plan text editor (emacs, vi, modelsim or similar) for code entry.
- Solve tasks INDIVIDUALLY
- Submit answers using Lisam assignment function
 - 4 different submissions for code, one for each code task
 - 1 submission for all theory question answers
- Use a special terminal window when working with handins

module load TSTE12 ; TSTE12handin

TSTE12 Design of Digital Systems, Lecture 8

Hardware overview

- Detailed description of Hardware
- Standard parts
 - TTL (SSI, MSI LSI)
 - Memories, microprocessors, I/O
- ASIC (Application Specific Integrated Circuit)
 - Integrated circuit that has been produced for a specific application and (often) produced in small numbers
 - Memories and microprocessors are general application devices

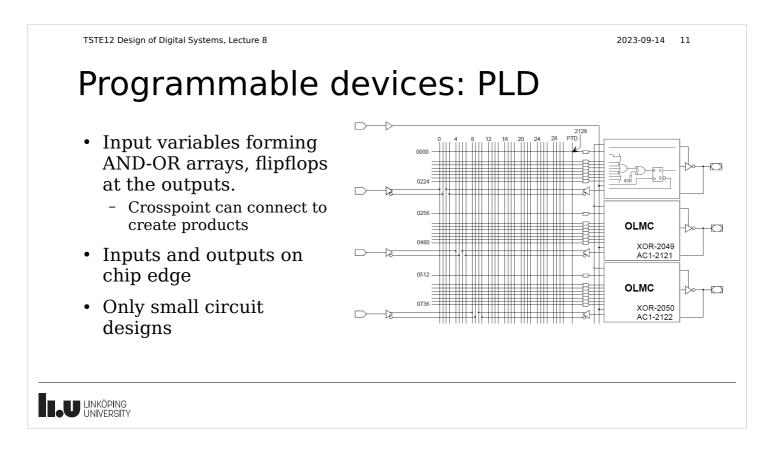
2023-09-14 7

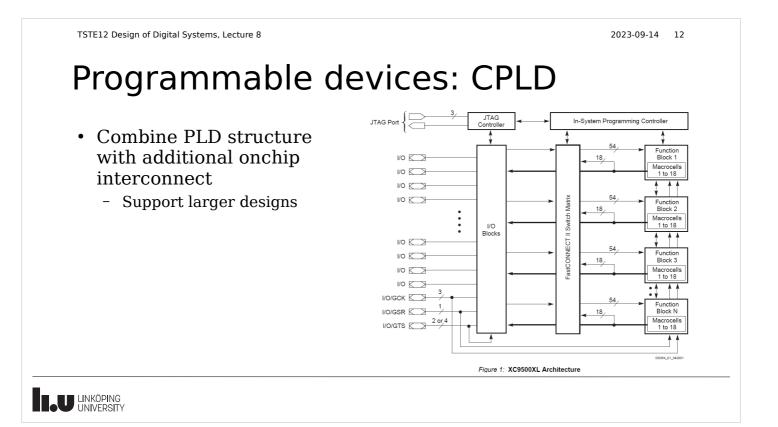
ASIC technologies

- May use different technologies for ASIC: PLD, Gate array, FPGA, Standard cell, custom. ASIC is however limited to Standard cell and gate array. Custom design is also used.
- CMOS switch. Power consumption: $P \thicksim CV^2 f$
 - Use low power supply, reduce clock, reduce area
- Transistor channel length (old measure of chip manufacturing process) shorter than 0.01 um (so called 5 nm used today, e.g. TSMC N5 process in Ryzen 7000 series CPUs, 4 nm in Apple A16 Bionic in Iphone 14)

TSTE12 Design of Digital Systems, Lecture 8	2023-09-14 8
Gate array, mask pr	ogrammable
 Predefined pattern of transistors Add interconnect metal for each design Fast manufacture (weeks) No transistor sizing Example shows inverter design Combined with library of existing cells Basic gates, flipflops etc. 	Poly Gates

TSTE12 Design of Digital Systems, Lecture 8 Standard cell	2023-09-14 9
 Transistor placement and metal layers unique for each design, needs to be manufactured 	to power metal connection to power pads pads vss VDD VSS VDD
• Limited number of layout cell types (Cell library)	feedthrough cell A.11
 Cells already characterized 	cell A.14 cell A.23 cell A.132 metal2 spacer cells
 Slow manufacture (month) 	metal2 11 power cell metal1


2023-09-14 10


TSTE12 Design of Digital Systems, Lecture 8

Full custom layout

- Full custom
 - Individual placement and scaling of transistors
 - Full control of wires and connections
 - Maximum control, maximum effort
- Complete freedom to place and route transistors
 - Not limited to existing logic style/library
 - Slow manufacture (months)
 - Higher performance than standard cells
- Requires more testing (simulation)

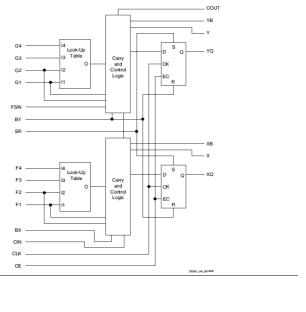
FPGA structure	
 Field Programmable Gate Array Cells in an array, special I/O blocks around the edges. Between cells (CLBs or LEs) are routing wires located (interconnect) 	BLOCK RAM BLOCK
	/ 0200000000000000000000000000000000000
LINKÖPING UNIVERSITY	

TSTE12 Design of Digital Systems, Lecture 8

2023-09-14 14

2023-09-14 13

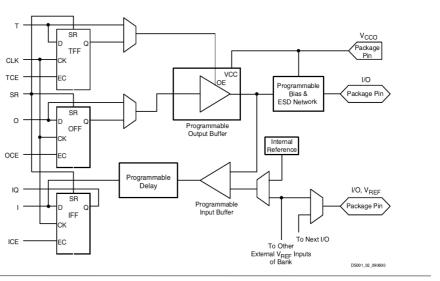
FPGA building blocks

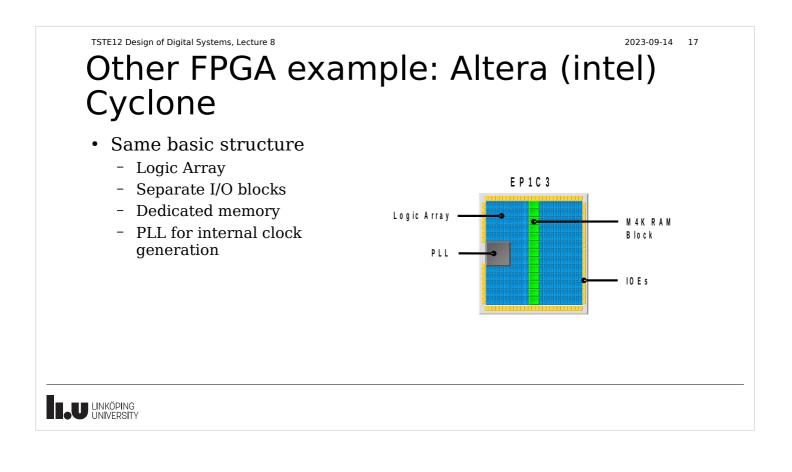

- CLB/Logic Element
 - Different name in different manufacturers designs
 - In many cases are they based on lookup tables (i.e., no simple gates, instead more advanced functions) => less need for routing channels (that are expensive). Lookup table can be viewed as a small RAM or a MUX with fixed inputs.
 - Trade off between big lookup tables and utilization. Optimal around 4-6 bits address.
 - Often a flip-flop included in the CLB/LE

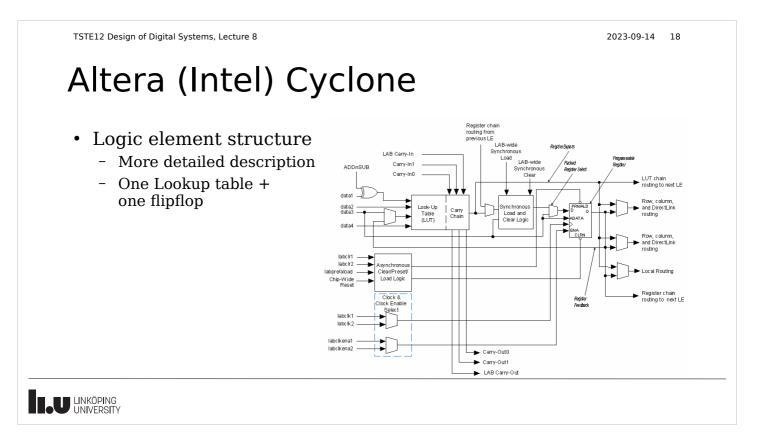
2023-09-14 15

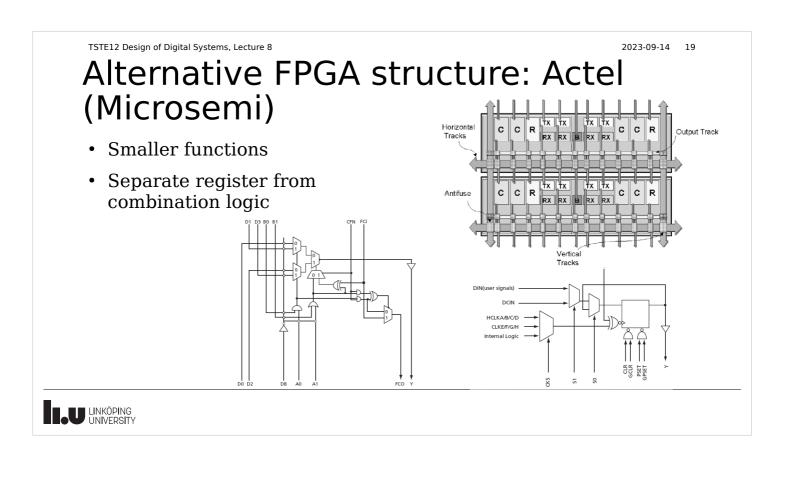
CLB Example: Xilinx (AMD) Spartan II

- Choose positive or negative clock edge
- May combine lookup tables
- CLB may be rearranged into a memory or shift register

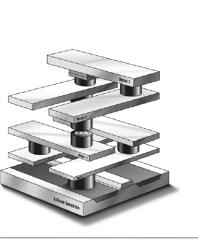

2023-09-14


16


TSTE12 Design of Digital Systems, Lecture 8


Xilinx Spartan II I/O logic

- Support multiple I/O standards
 - 3.3V, 1.8V, 1.2V etc.
 - Differential
- Flipflops located close to pin
 - Reduce delays due to routing signal to pin
- Different drive strength



Programming of FPGA

- Two types: reprogrammable or one-time programmable
- Control a CMOS-switch using a RAM/EPROM/EEPROM-cell. The CMOS switch is slow (compared to the alternative)
- The alternative is fuse/Antifuse (burn together two wires by using high voltage)

2023-09-14

2023-09-14 21

Important aspects

- Speed of the switched (impedance, capacitans). Many switches in series ruins the performance
- Reprogrammable? Needs any design changes to be done?
- Volatile designs? What happens at power failure? How is the design put into the chip? How long delay from power on to working design?
- Area of the switches? Needs many switches?

TSTE12 Design of Digital Systems, Lecture 8

2023-09-14 22

no

yes

large

large

average

Antifuse EPROM EEPROM/FLASH

no

yes

small

large

large

Technology comparison table

Re-programmable

R (routing nets)

Volatile

С

Chip area

- Most common
 - SRAM
 - EEPROM/FLASH
- Xilinx/Altera
 - SRAM/EEPROM
- Actel
 - Antifuse
 - Do also create classic FPGA (SRAM/EEPROM based)
- SRAM based FPGA usually support automatic configuration from serial flash memory at power-on

SRAM

yes

yes

large

large

large

no

no

small

small

small

2023-09-14 23

How to configure the FPGA

- Non-volatile technology
 - FLASH, EEPROM, PROM, etc.
- External programmer
 - Software on PC to program device
- External ROM/FLASH
 - Standard FLASH
 - Serial FLASH
- Embedded microcontroller
 - Boot application configures FPGA
 - Not possible if flash needed for CPU operation

TSTE12 Design of Digital Systems, Lecture 8

2023-09-14 24

FPGA configuration, cont.

- Large volumes may use non-programmable devices based on FPGA
 - Resynthesize: may give different behavior
 - Strip FPGA: Remove configuration logic

<section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item>

TSTE12 Design of Digital Systems, Lecture 8

TSTE12 Design of Digital Systems, Lecture 8

2023-09-14 26

FPGA hardware options, cont.

- Clock circuits
 - Phase locked loops (PLL), Delay locked loops (DLL)
 - Clock tree distribution
- Serializer/deserializer
 - Support modern PC bus standards such as PCI Express
 - Dedicated block to send/recieve high speed (> Gbit/s) serial data
 - Reduce number of I/O pins

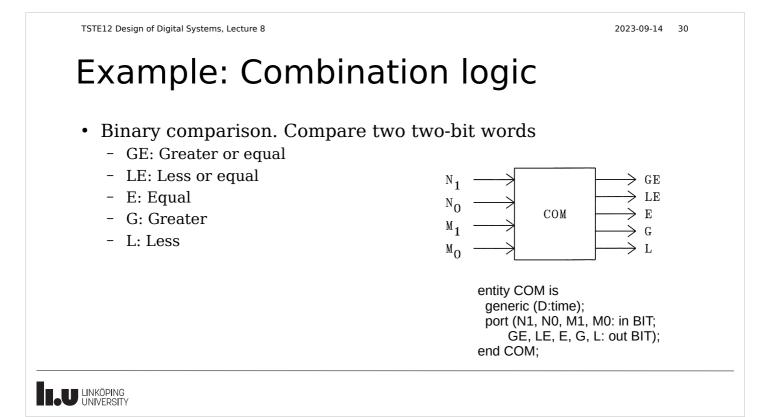
2023-09-14 27

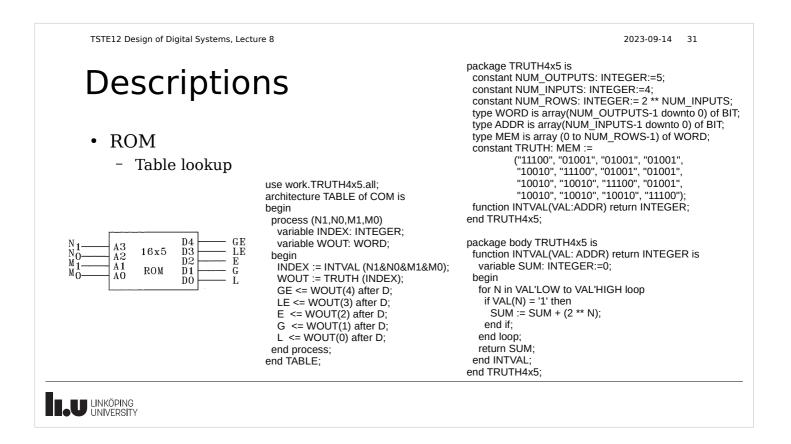
2023-09-14 28

FPGA hardware options, cont.

- A/D and D/A converters
- Memory units
- CPU
 - e.g., physical powerpc or ARM core inside FPGA
 - Usually combined with external memory interfaces and CPU-based I/O support (e.g. wired ethernet, SD-card reader etc.)
- Alternative to dedicated CPU hardware: soft cpu
 - VHDL design of a processor
 - Allows for modification of processor structure

TSTE12 Design of Digital Systems, Lecture 8

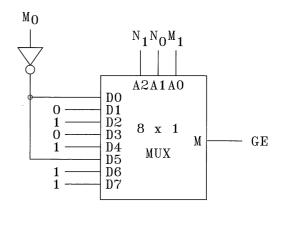

ASIC vs FPGA


- ASIC have a large NRE cost
 - Non-Recurring Engineering cost, price of 1st unit
- FPGA have large per unit cost
- Selection of technology depend on
 - Performance requirements
 - Number of units
 - Time to market

HDL based design

- Structured design using HDL
- FSM descriptions

TSTE12 Design of Digital Systems, Lecture	e 8	2023-09-14 32
Descriptior	ns, CASE statem	nent
• One multiplexer for each output $ \begin{array}{c} $	$ \begin{array}{l} E <= '0' \mbox{ after D; } G <= '1' \mbox{ after D; } L <= '0' \mbox{ after D; } when "0101" => GE <= '1' \mbox{ after D; } LE <= '1' \mbox{ after D; } E <= '1' \mbox{ after D; } G <= '0' \mbox{ after D; } L <= '0' \mbox{ after D; } When "0110" => GE <= '0' \mbox{ after D; } LE <= '1' \mbox{ after D; } E <= '0' \mbox{ after D; } G <= '0' \mbox{ after D; } LE <= '1' \mbox{ after D; } GE <= '0' \mbox{ after D; } LE <= '1' \mbox{ after D; } H <= '0' \mbox{ after D; } GE <= '0' \mbox{ after D; } LE <= '1' \mbox{ after D; } H <= '1' \mbox{ after D; } H <= '0' \mbox{ after D; } H <= '1' \$	when "1000" => GE <= '1' after D; LE <= '0' after D; E <= '0' after D; G <= '1' after D; L <= '0' after D; When "1001" => GE <= '1' after D; L <= '0' after D; E <= '0' after D; G <= '1' after D; L <= '0' after D; When "1010" => GE <= '1' after D; LE <= '1' after D; E <= '1' after D; G <= '0' after D; L <= '0' after D; When "1011" => GE <= '0' after D; L <= '1' after D; E <= '0' after D; G <= '0' after D; L <= '1' after D; E <= '0' after D; G <= '0' after D; L <= '0' after D; When "1100" => GE <= '1' after D; L <= '0' after D; When "1100" => GE <= '1' after D; L <= '0' after D; When "1100" => GE <= '1' after D; L <= '0' after D; When "1101" => GE <= '1' after D; L <= '0' after D; When "1110" => GE <= '1' after D; L <= '0' after D; E <= '0' after D; G <= '1' after D; L <= '0' after D; When "1111" => GE <= '1' after D; L <= '0' after D; When "1111" => GE <= '1' after D; L <= '0' after D; When "1111" => GE <= '1' after D; L <= '0' after D; When "1111" => GE <= '1' after D; L <= '0' after D; When "1111" => GE <= '1' after D; L <= '0' after D; When "1111" => GE <= '1' after D; L <= '0' after D; When "1111" => GE <= '1' after D; L <= '0' after D; When "1111" => GE <= '1' after D; L <= '0' after D; When "1111" => GE <= '1' after D; L <= '0' after D; When "1111" => GE <= '0' after D; L <= '0' after D; When "1111" => GE <= '1' after D; L <= '0' after D; When "1111" => GE <= '1' after D; L <= '0' after D; When "1111" => GE <= '1' after D; L <= '0' after D; When "1111" => GE <= '1' after D; L <= '0' after D; When "1111" => GE <= '1' after D; L <= '0' after D; When "1111" => GE <= '1' after D; L <= '0' after D; When "1111" => GE <= '1' after D; L <= '0' after D; When "1111" => GE <= '1' after D; L <= '0' after D; E <= '1'



Descriptions, improved	architecture MUX3 of COM is
 Remove one variable in the selection of the case statement 	begin process (N1, N0, M1, M0) begin case N1&N0&M1 is when "000" => GE <= not M0 after D; LE <= '1' after D E <= not M0 after D; G <= '0' after D; L <= M0 after D; when "001" => GE <= '0' after D; LE <= '1' after D; E <= '0' after D; G <= '0' after D; L <= '1' after D;
 Use the removed variable as output value or its inverse 	when "010" => GE <= '1' after D; LE <= M0 after D; E <= M0 after D; G <= not M0 after D; L <= '0' after D when "011" => GE <= '0' after D; LE <= '1' after D; E <= '0' after D; G <= '0' after D; L <= '1' after D; when "100" => GE <= '1' after D; LE <= '0' after D; E <= '0' after D; G <= '1' after D; L <= '0' after D;
 More variables can be removed Increase logic in front of multiplexer 	when "101" => GE <= not M0 after D; LE <= '1' after D E <= not M0 after D; G <= '0' after D; L <= M0 after D; when "110" => GE <= '1' after D; LE <= '0' after D; E <= '0' after D; G <= '1' after D; L <= '0' after D; when "111" => GE <= '1' after D; LE <= M0 after D; E <= M0 after D; G <= not M0 after D; L <= '0' after D end case;
	end process; end MUX3;

2023-09-14 34

Hardware, improved Case statement

- One mux plus inverter
- Every output have its own multiplexer (same as for nonimproved case statement)

, sharing comi	ion subexpression	
<u>-</u>		
2		
ions followed b	y simple generation	n of E, G,
ic synthesis ins	tead of tool	
till modify descrip	tion	
E S	jic synthesis ins	

TSTE12 Design of Digital Systems, Lecture 8

Two-level logic

- Many different choices
- Can be described as structure

architecture POSDF of COM is signal Z1,Z0: BIT; begin Z1 <= (not N0 or M1 or M0) and (not N1 or M1) and (not N1 or not N0 or MÓ); Z0 <= (N1 or N0 or not M0) and (N1 or not M1) and (N0 or not M1 or not M0); $LE \stackrel{\sim}{<}= Z1$ after D; GE <= Z0 after D; E <= Z1 and Z0 after D; G <= Z0 and not Z1 after D; L <= Z1 and not Z0 after D; end POSDF;

Structural description architecture TWO_LEVEL_OR_AND of COM is signal Z10,Z11,Z12,Z00,Z01,Z02: BIT; signal X0BAR,NIBAR,MUBAR,MIBAR: BIT; signal Z0,Z1,Z0NOT,Z1NOT: BIT; component NOT2G generic (D: TIME); port (I: in BIT; O: out BIT); end component; for all: NOT2G use entity NOT2(BEHAVIOR); component AND2G generic (D: TIME); port (I, 12: in BIT; O: out BIT); end component; for all: AND2G use entity AND2(BEHAVIOR); component AND3G generic (D: TIME); port (I, 1,2,13: in BIT; O: out BIT); end component; for all: AND3G use entity AND3(BEHAVIOR); component OR2G generic (D: TIME); port(1, 1,2,13: in BIT; O: out BIT); end component; for all: OR2G use entity OR2(BEHAVIOR); component OR2G generic (D: TIME); port (1, 1,2,13: in BIT; O: out BIT); end component; for all: OR2G use entity OR2(BEHAVIOR); component OR3G generic (D: TIME); port (1, 1, 2, 13: in BIT; O: out BIT); end component; for all: OR3G use entity OR3(BEHAVIOR);	begin C1: NOT2G generic map (2 ns) port map (N0, NOBAR); C2: NOT2G generic map (2 ns) port map (N1, NIBAR); C3: NOT2G generic map (2 ns) port map (M0, MOBAR); C4: NOT2G generic map (2 ns) port map (M1, M1BAR); C5: OR3G generic map (2 ns) port map (NOBAR, M1, M0, Z10); C6: OR2G generic map (2 ns) port map (NIBAR, M1, Z11); C7: OR3G generic map (2 ns) port map (NIBAR, NOBAR, M0, Z12); C8: AND3G generic map (2 ns) port map (M1BAR, NOBAR, M0, Z12); C9: OR3G generic map (2 ns) port map (M1, Z11, Z12, Z1); C9: OR3G generic map (2 ns) port map (M1, N0, MOBAR, Z00);	C10:OR2G generic map (2 ns) port map (N1, M1BAR, Z01); C11:OR3G generic map (2 ns) port map (N0, M1BAR, M0BAR, Z02); C12:AND3G generic map (2 ns) port map (200, Z01, Z02, Z0); C13:NOT2G generic map (2 ns) port map (21, Z1NOT); C14:NOT2G generic map (2 ns) port map (20, Z1, E); C16:AND2G generic map (2 ns) port map (20, Z1, E); C16:AND2G generic map (2 ns) port map (20, Z1NOT, G); C17:AND2G generic map (2 ns) port map (Z1, Z0NOT, L); C18:WIREG port map (Z0, GE); C19: WIREG port map (Z0, GE); C19: WIREG
---	--	--

TSTE12 Design of Digital Systems, Lecture 8	2023-09-14 38
Finite state machi	nes (FSM)
 Example: serial/parallel conv A indicates start of data Output Z only during one clock 	
	CLK
$\begin{array}{c c} R & \longrightarrow \\ A & \longrightarrow \\ \end{array} & \qquad \qquad$	R
$\begin{array}{c c} D & \longrightarrow \\ CLK & \longrightarrow \end{array} \qquad \qquad$	A
entity STOP is	D
port (R, A, D, CLK: in BIT; Z: out BIT_VECTOR(3 downto 0); DONE: out BIT);	DONE
end STOP;	Z[4]

2023-09-14 39

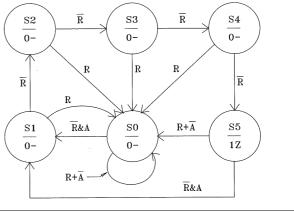
FSM design, cont.

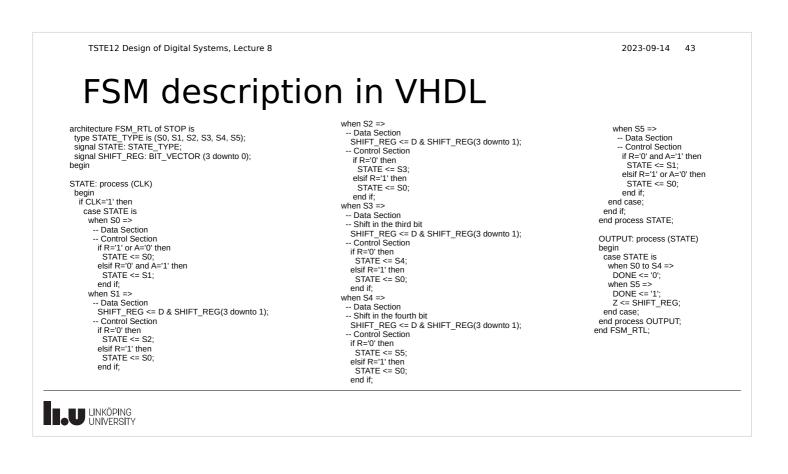
- First: Select type of state machine (Moore, Mealy)
 - Moore machine have stable output after a few gate delays
 - Moore machine can not produce output dependent on current input values
 - Moore machine may require more states than Mealy machines
 - Mealy machine may sometimes be required due to direct respons from FSM on input signal change

TSTE12 Design of Digital Systems, Lecture 8

2023-09-14 40

FSM Design, cont.


- Second: Create a state diagram. Good start is reset-state S0.
 - S1: First data on D, Done=0, Z unspecified
 - S2: Second data on D, Done =0, Z unspecified
 - S3: Third data on D, Done = 0, Z unspecified
 - S4: Fourth data on D, Done = 0, Z unspecified
 - S5: Output on Z, Done= 1
 - In S5 can A also be 1 (indicating new data)
 - Next clock cycle must take care data, i.e., use S1 without passing through S0


2023-09-14 41

FSM state diagram

• Some tools can translate state diagram automatically to VHDL (e.g., HDL Designer)

Alte	rna	ate d	esri	ption			
• Tran	sitio	n list					
- Te	extual	descriptio	n of the	FSM			
		or large st					
		0	-		when number of state	es increase	
	-				use of hierarchy	,o morouso	
10	1	t Transition Expression	Next State	Data Transfers	Output		
	S0 S0	R+A R & A	S0 S1	None	DONE=0, Z unspecified		
	S1 S1	R	S2 S0	Store bit 1	DONE=0, Z unspecified		
	:	:	:	:	:		
	S5 S5	R & A R + A	S1	None	DONE=1, Z=parallel data out		
		R + A	S0				

2023-09-14 44

State machine partitioning

- State machines partitioned into multiple processes
 - Updating (clocked), i.e., the state register
 - Next state calculation
 - Output calculation
- May find different combinations of these
 - Single process
 - Two processes (nextstate + output, state update)
 - Three processes (nextstate, output, state update)
- Multiple processes to avoid creating Mealy instead of Moore machine

2023-09-14 45

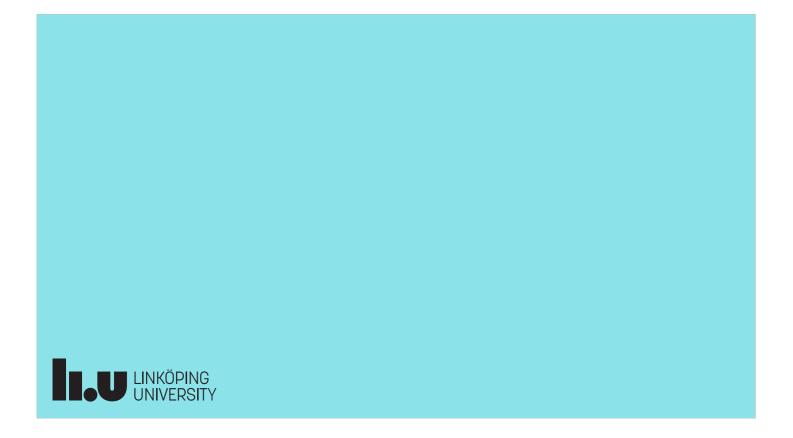
TSTE12 Design of Digital Systems, Lecture 8

State assignment

- States are not coded in VHDL
 - Use enumeration
 - Allows synthesis tools do a better work
 - Powerful computer algorithms usually find better state assignment
 - Possible to control state minimisation and assignment in synthesis tool
 - E.g. one-hot encoding may be more suitable in same cases

TSTE12 Design of Digital Systems, Lecture 8

entity TWO_CONSECUTIVE is


2023-09-14 46

Alternative description: table based

- Small statemachine, one input X and one output Z
- Code the state table as an array with nextstate and output

```
port(CLK,R,X: in BIT; Z: out BIT);
end TWO_CONSECUTIVE;
                                                                        beain
architecture FSM of TWO CONSECUTIVE is
                                                                         process(R,X,CLK,FSM_STATE)
type STATE is (S0,S1,S2);
                                                                         begin
 signal FSM_STATE: STATE := S0;
                                                                          if R = '0' then -- Reset
 type TRANSITION is record
                                                                           FSM_STATE <= S0;
                                                                          elsif CLK'EVENT and CLK ='1' then -- Clock event
  OUTPUT: BIT;
                                                                           FSM_STATE <= STATE_TRANS(FSM_STATE,X).NEXT_STATE;
  NEXT_STATE: STATE;
 end record;
                                                                          end if
 type TRANSITION_MATRIX is array(STATE,BIT) of TRANSITION;
                                                                          if FSM STATE'EVENT or X'EVENT then -- Output Function
 constant STATE_TRANS: TRANSITION_MATRIX :=
(S0 => ('0' => ('0',S1), '1' => ('0',S2)),
S1 => ('0' => ('1',S1), '1' => (0',S2)),
                                                                           Z <= STATE_TRANS(FSM_STATE,X).OUTPUT;
                                                                          end if;
                                                                         end process;
   S2 => ('0' => ('0',S1), '1' => ('1',S2)));
                                                                        end FSM:
```