

TSTE12 Design of Digital Systems
Lecture 7
Kent Palmkvist

2024-09-16TSTE12 Design of Digital Systems, Lecture 7 2

Agenda

• Practical issues

• Highlevel simulation models

• Algorithm level design
– Larger models
– Time multiplexing

• RTL level models
– Control units

• Gate level models

09/16/2024 10:40

2024-09-16TSTE12 Design of Digital Systems, Lecture 7 3

TSTE12 Deadlines Y,D,ED
• Initial version design sketch and project plan tuesday 17

September

• Weekly meetings should start
– Internal weekly meeting with transcript sent to supervisor

• Lab 2 soft deadline Wednesday 24 September at 21.00
– Lab 2 results will be checked after project end

2024-09-16TSTE12 Design of Digital Systems, Lecture 7 4

TSTE12 Deadlines MELE, erasmus

• First project meeting completed

• Tuesday 17 September: First version of requirement specification

• Wednesday 18 September 21.00: Lab 1 deadline
– Pass required to be allowed continued project participation

09/16/2024 10:40

2024-09-16TSTE12 Design of Digital Systems, Lecture 7 5

Handin (homework), Individual!
● 1st handin published today Monday 16 September

– Deadline Monday 23 September 23:30
● Use only plan text editor (emacs, vi, modelsim or similar) for code entry.

● Solve tasks INDIVIDUALLY

● Submit answers using Lisam assignment function

– 4 different submissions for code, one for each code task
– 1 submission for all theory question answers

● Use a special terminal window when working with handins

module load TSTE12 ; TSTE12handin

2024-09-16TSTE12 Design of Digital Systems, Lecture 7 6

Example: Paralell to serial converter

● English text description
– The 8-bit parallel word (PARIN) is loaded into the converter when the

control signal LD makes a zero to one transition At this time the status
signal BUSY is set high. The data is shifted out serially at a rate controlled
by the input shift clock SHCLK. Shifting occurs at the rise of the clock.
BUSY remains high until shifting is complete. While BUSY is high, no
further loads will be accepted.

● Note some sentences are shared between functions

● Two processes: LOAD and SHIFT

09/16/2024 10:40

2024-09-16TSTE12 Design of Digital Systems, Lecture 7 7

Parallel to serial converter, cont.

● LOAD: (a) 8-bit parallel word (PARIN) load when LD makes a
zero to one transition. Set BUSY high. (b) BUSY remains high
until shift complete. No new loads while BUSY high

● SHIFT: (a) Data shifted out controlled by rising edge of SHCLK.
(b) BUSY remain high until shift complete

LOAD SHIFT
PARIN

BUSY

SO

SH_COMP

LD

PREG

SHCLK

entity PAR_TO_SER is
 port(LD,SHCLK: in BIT;
 PARIN: in BIT_VECTOR(0 to 7);
 BUSY: inout BIT := '0';
 SO: out BIT);
end PAR_TO_SER;

2024-09-16TSTE12 Design of Digital Systems, Lecture 7 8

PMG version

● Corresponding code
based on processes

● PMG defines interface of
each process + signals
between the processes

● Code start by defining
processes and comments
about activities

architecture TWO_PROC of PAR_TO_SER is
 signal SH_COMP: BIT :='0';
 signal PREG: BIT_VECTOR(0 to 7);
begin

 LOAD:process(LD,SH_COMP)
 begin
 ---- Activities:
 ----1)Register Load
 ----2)Busy Set
 ----3)Busy Reset
 end process LOAD;

 SHIFT:process(BUSY,SHCLK)
 variable COUNT: INTEGER;
 variable OREG: BIT_VECTOR(0 to 7);
 begin
 ----Activities:
 ----1)Shift Initialize
 ----2)Shift
 ----3)Shift Complete
 end process SHIFT;

end TWO_PROC;

09/16/2024 10:40

2024-09-16TSTE12 Design of Digital Systems, Lecture 7 9

PMG -> Code

● Each process has
a check for an
event, and then a
part that execute
the data
operations

 SHIFT:process(BUSY,SHCLK)
 variable COUNT: INTEGER;
 variable OREG: BIT_VECTOR(0 to 7);
 begin
 ----Activities:
 if BUSY'EVENT and
 BUSY = '1' then
 ----1)Shift Initialize
 COUNT := 7;
 OREG := PREG;
 SH_COMP <= '0';
 end if;
 if SHCLK'EVENT and
 SHCLK= '1'and
 BUSY='1' then
 ----2)Shift
 SO<=OREG(COUNT);
 COUNT := COUNT - 1;
 ----3)Shift Complete
 if COUNT < 0 then
 SH_COMP <= '1';
 end if;
 end if;
 end process SHIFT;

 LOAD:process(LD,SH_COMP)
 begin
 ---- Activities:
 if LD'EVENT and LD='1'
 and BUSY='0' then
 ----1)Register Load
 PREG <= PARIN;
 ----2)Busy Set
 BUSY <= '1';
 end if;
 if SH_COMP'EVENT
 and SH_COMP='1' then
 ----3)Busy Reset
 BUSY <= '0';
 end if;
 end process LOAD;

2024-09-16TSTE12 Design of Digital Systems, Lecture 7 10

Timing example

● New model: Buffered register
– Loaded on rise of the strobe (STRB)

● English description:
– The register is loaded on the rise of the strobe (STRB), and assuming that

the output buffers are enabled, the output of the buffers will change t
SD

nanoseconds later. The enable condition for the register buffer is the AND
of the DS1 and invers of DS2 inputs. Any change in the enable condition
will cause the outputs to change tED nanoseconds later.

09/16/2024 10:40

2024-09-16TSTE12 Design of Digital Systems, Lecture 7 11

Timing example, cont.

● Three processes: PREG, ENABLE, OUTPUT

● Add delay on wires
tSD = STRB_DEL + ODEL

tED = EN_DEL + ODEL

ENABLE

DI

STRB

DS1

REG(STRB_DEL)

ENBLD(EN_DEL)

OUTPUT

PREG

DO(ODEL)

nDS2

2024-09-16TSTE12 Design of Digital Systems, Lecture 7 12

Timing example, cont.

entity BUFF_REG is
 generic(
 STRB_DEL,EN_DEL,ODEL: TIME);
 port(
 DI: in BIT_VECTOR(1 to 8);
 STRB: in BIT;
 DS1: in BIT;
 NDS2: in BIT;
 DO: out BIT_VECTOR(1 to 8));
end BUFF_REG;

architecture THREE_PROC of BUFF_REG is
 signal REG: BIT_VECTOR(1 to 8);
 signal ENBLD: BIT;
 begin

 PREG: process(STRB)
 begin
 if (STRB = '1') then
 REG <=DI after STRB_DEL;
 end if;
 end process PREG;

 ENABLE: process(DS1,NDS2)
 begin
 ENBLD <= DS1 and not NDS2 after EN_DEL;
 end process ENABLE;

 OUTPUT: process(REG,ENBLD)
 begin
 if (ENBLD = '1') then
 DO <= REG after ODEL;
 else
 DO <= "11111111" after ODEL;
 end if;
 end process OUTPUT;
end THREE_PROC;

09/16/2024 10:40

2024-09-16TSTE12 Design of Digital Systems, Lecture 7 13

Process complexity trade-off

● Number of signals
– Many signals => slow simulation

● Large processes
– Complex behavior may not match specification

● Ease of mapping to hardware
– More processes may simplify mapping

2024-09-16TSTE12 Design of Digital Systems, Lecture 7 14

Checking timing

● Additional requirements
– DI stable SUT ns before STRB rise
– DI stable HT ns after STRB rise
– STRB minimum high duration MPW ns

● Implement checks using assert statements

assert not (not STRB'stable and (STRB = '1')
 and not DI'stable(SUT))
 report “Setup Time Failure”;

09/16/2024 10:40

2024-09-16TSTE12 Design of Digital Systems, Lecture 7 15

Timing Check placement

● Tests in architecture must be copied between architectures
– May introduce errors
– If changed, many architectures must be changed

● Solution: Place checks in the entity
– Check always executed, independent of selected architecture

2024-09-16TSTE12 Design of Digital Systems, Lecture 7 16

Timing check example
Entity BUFF_REG is
 Generic (STRB_DEL, EN_DEL, ODEL,SUT,HT,MPW: TIME);
 Port (DI: in bit_vector(1 to 8);
 STRB : in bit ; DS1 : in bit;
 NDS2 : in bit;
 DO : out bit_vector(1 to 8));
 Begin
 Assert STRB’stable or (STRB = ’0’) or DI’stable(SUT)
 Report ”Setup time Failure”;

 Assert STRB’delayed(HUT)’stable or
 (STRB’delayed(HT) = ’0’) or DI’STABLE(HT)

 Report ”Hold Time Failure”;

 Assert STRB’stable or (STRB = ’1’) or
 STRB’delayed’stable(MPW)
 Report ”Minimum pulse width failure”;

End BUFF_REG;

09/16/2024 10:40

2024-09-16TSTE12 Design of Digital Systems, Lecture 7 17

Algorithm level design

● Focus on functions at high
abstraction level
– Subsystems
– Algorithms to use

● Ignore timing, datapaths etc.

2024-09-16TSTE12 Design of Digital Systems, Lecture 7 18

Bigger system example

● 3 units, Add and Store,
Buffered Register, RAM

● Predefined sequence
– Store value in buffer
– move buffer value to add and

store unit
– Read memory content and add to

input value
– Write back result to memory

09/16/2024 10:40

2024-09-16TSTE12 Design of Digital Systems, Lecture 7 19

Bigger system example, cont.

● DATA_BUS driven by all modules
– Requires a resolution function
– Preset to ZZZ to get a useful value (X will always give X)
– Note this is done in the entity! Reason: inout => Driver on the entity

entity RAM is
 generic(RDEL,DISDEL,ACK_DEL,ACK_PW: TIME);
 port(DATA: inout BUS1(7 downto 0):="ZZZZZZZZ";
 ADDR: in MVL4_VECTOR(4 downto 0);
 RD,WRITE,CS: in MVL4;
 RACK,WACK: out MVL4);
end RAM;

2024-09-16TSTE12 Design of Digital Systems, Lecture 7 20

Simple RAM model

● Use of MVL4
=> use drive
and sense
functions

architecture SIMPLE of RAM is
begin
 MEM: process (CS,RD,WRITE)
 type MEMORY is array(0 to 31) of MVL4_VECTOR(7 downto 0);
 variable MEM: MEMORY:= (others => (others => '0'));
 begin
 if CS = '1' then
 if RD = '1' then
 DATA <= DRIVE(MEM(INTVAL(ADDR))) after RDEL;
 RACK <= '1' after ACK_DEL,
 '0' after ACK_DEL + ACK_PW;
 elsif WRITE = '1' then
 MEM (INTVAL(ADDR)):= SENSE(DATA,'1');
 WACK <= '1' after ACK_DEL, '0' after ACK_DEL+ACK_PW;
 end if;
 else
 DATA <= "ZZZZZZZZ" after DISDEL;
 end if;
 end process MEM;
end SIMPLE;

09/16/2024 10:40

2024-09-16TSTE12 Design of Digital Systems, Lecture 7 21

Bigger example, cont.

● The RAM-model uses an aggregate to initialize all elements to
zero

● ADD and Store is a form of a state machine
– Go through a sequence step by step
– Execute some function in each step
– Each step ends in a wait

● Divide system into datapath and control

● Clock generation as earlier (loop with run)

2024-09-16TSTE12 Design of Digital Systems, Lecture 7 22

Bigger example, cont.
CON: process
 variable DATA_REG:
 MVL4_VECTOR(7 downto 0);
 begin
 if RESET = '1' then --CS0
 DATA <= "ZZZZZZZZ"after DIS_DEL;
 end if;
 wait on DAV until DAV = '1';
--
 EN <= '1' after CON_DEL; --CS1
 wait for CLK_PER;
--
 EN <= '0' after CON_DEL;
 DATA_REG := SENSE(DATA,'1'); --CS2
 wait for CLK_PER;
--
 MADDR <= DADDR after MA_DEL;
 MEMEN <= '1' after CON_DEL; --CS3
 READ <= '1' after CON_DEL;
 wait on RACK until RACK ='1';
--

 DATA_REG :=
 ADD8(SENSE(DATA,'1'),DATA_REG);
 READ <= '0'after CON_DEL;
 MEMEN <= '0'after CON_DEL; --CS4
 wait for CLK_PER;
--
 DATA <= DRIVE(DATA_REG) after DO_DEL;
 WRITE <= '1'after CON_DEL;
 MEMEN <= '1'after CON_DEL; --CS5
 wait on WACK until WACK ='1';
--
 WRITE <= '0'after CON_DEL;
 MEMEN <= '0'after CON_DEL; --CS6
 DATA <= "ZZZZZZZZ" after DIS_DEL;
 wait for CLK_PER;
end process CON;

09/16/2024 10:40

2024-09-16TSTE12 Design of Digital Systems, Lecture 7 23

Control state machine

● Hardware aspects on the control machine
– Wait can not be used in synthesis
– Use a manual direct translation technique

● One-hot encoding
– Simple and straight forward
– Suitable for FPGA implementation
– Low complexity decoding of state

2024-09-16TSTE12 Design of Digital Systems, Lecture 7 24

One-hot encoded controller

09/16/2024 10:40

2024-09-16TSTE12 Design of Digital Systems, Lecture 7 25

Control step classes

● Automatic increase
– From step ci to ci+1 after some time

● Handshake
– Wait for DAV, CS1 => EN = 1, Buffer resets DAV when EN = 1

● Asynchronous stepping
– CS3 to CS4: Wait for external RACK edge, RACK may be shorter than 1

clock period!

2024-09-16TSTE12 Design of Digital Systems, Lecture 7 26

Hardware vs Behavioral model

● Important to have same behavior of hardware and VHDL model

● Reset behavior is different
– The model only checks for reset in CS0
– Hardware checked reset everywhere
– Different behavior between model and HW! Bad.
– Add reset check in every control step

09/16/2024 10:40

2024-09-16TSTE12 Design of Digital Systems, Lecture 7 27

Why single clock domainn

● Reset problems
– Even single clock domain should synchronize asynchronous reset inputs
– Must guarantee that whole circuit releases from reset at the same time

● Communication problems
– Possible race between data and clock
– Metastability

2024-09-16TSTE12 Design of Digital Systems, Lecture 7 28

Control branching

● Want a control machine able to handle conditional
execution of sequences
– Similar to hierarchical finite state machine (FSM)
– VHDL cannot do jumps, only breaking loops

● Working implementation approach
– Sequences in individual processes
– Check at end of process which process to start next

● Output signals from state machine
– Require Resolution function as assignment done in

multiple processes (need to turn off non-active processes)

Proc_A

Proc_B Proc_C

Each processes
should control
signal S

X=1 X=0

09/16/2024 10:40

2024-09-16TSTE12 Design of Digital Systems, Lecture 7 29

Control branching using multiple
processes

architecture TWO of WAIT_STEPS is

 signal TRIGGERB,TRIGGERBA,
 TRIGGERC,TRIGGERCA: DOT1 := '0';
 signal SINT: RINTEGER register;

begin

A: process
 begin
 SINT <= null;
 wait on RUN,TRIGGERBA,TRIGGERCA until RUN = '1';
 SINT <= 0; ---Step 0
 wait for CLK_DEL;
 SINT <= 1; ---Step 1
 wait for CLK_DEL;
 SINT <= null;
 if X = '1' then
 TRIGGERB <= not(TRIGGERB);
 else
 TRIGGERC <= not(TRIGGERC);
 end if;
 end process A;

B: process
 begin
 SINT <= null;
 wait on TRIGGERB;
 SINT <= 2; ---Step 2
 wait for CLK_DEL;
 SINT <= 3; ---Step 3
 wait for CLK_DEL;
 SINT <= null;
 TRIGGERBA <= not(TRIGGERBA);
 end process B;

C: process
 begin
 SINT <= null;
 wait on TRIGGERC;
 SINT <= 4; ---Step 4
 wait for CLK_DEL;
 SINT <= 5; ---Step 5
 wait for CLK_DEL;
 SINT <= null;
 TRIGGERCA <= not(TRIGGERCA);
 end process C;
 S <= SINT;

end TWO;

2024-09-16TSTE12 Design of Digital Systems, Lecture 7 30

Time multiplexing

● Problem: Multiple processes driving one signal
– Multiple drivers (one for each process)
– Want to enable separate drivers at non-overlapping intervals
– Assigned signal value should keep the value even after driver enable

removed (memory function)
– Use signal type containing a resolution function

● Remember: This is NOT for synthesis

09/16/2024 10:40

2024-09-16TSTE12 Design of Digital Systems, Lecture 7 31

Time Multiplexing, non-working

● Two-phase clock
– One pulse each alternating

● Resolved output signal Z
– Allows multiple assignment

● Problem
– Z = ’X’ when PH_TWO assign ’1’
– Assignment from PH_ONE will

not turn off
– Each driver always outputs last

assigned value

entity TIME_MUX is
 generic(DEL1,DEL2: TIME);
 port(PHASE_ONE,PHASE_TWO: in MVL4;
 Z: out DOTX := '0');
end TIME_MUX;

architecture PROCESS_IF_0 of TIME_MUX is
begin

 PH_ONE:process(PHASE_ONE)
 begin
 if PHASE_ONE = ’1’ then
 Z <= '0' after DEL1;
 end if;
 end process;

 PH_TWO:process(PHASE_TWO)='1')
 begin
 if PHASE_TWO = ’1’ then
 Z <= '1' after DEL2;
 end if;
 end PH_TWO;

end PROCESS_IF_0;

2024-09-16TSTE12 Design of Digital Systems, Lecture 7 32

Time multiplexing, cont.

● Ordinary processes
– Assignment of null

disables driver
– Keyword register in

signal declaration
● defines what

happen when all
driver are null

architecture PROC_NULL of TIME_MUX is
 signal ZINT: DOTX register;
begin

 PH_ONE: process(PHASE_ONE)
 begin
 if PHASE_ONE = '1' then
 ZINT <= '0' after DEL1;
 else
 ZINT <= null;
 end if;
 end process PH_ONE;

 PH_TWO: process(PHASE_TWO)
 begin
 if PHASE_TWO = '1' then
 ZINT <= '1' after DEL2;
 else
 ZINT <= null;
 end if;
 end process PH_TWO;

 Z <= ZINT;

end PROC_NULL;

09/16/2024 10:40

2024-09-16TSTE12 Design of Digital Systems, Lecture 7 33

Time multiplexing, cont.

● Use bus instead of
register
– Default resolution

function used if not
driven

● Resolution
function recieves
an empty input

– MVL4 resolution
function start with
’Z’ value!

architecture PROC_NULL of TIME_MUX is
 signal ZINT: DOTX bus;
begin

 PH_ONE: process(PHASE_ONE)
 begin
 if PHASE_ONE = '1' then
 ZINT <= '0' after DEL1;
 else
 ZINT <= null;
 end if;
 end process PH_ONE;

 PH_TWO: process(PHASE_TWO)
 begin
 if PHASE_TWO = '1' then
 ZINT <= '1' after DEL2;
 else
 ZINT <= null;
 end if;
 end process PH_TWO;

 Z <= ZINT;

end PROC_NULL;

2024-09-16TSTE12 Design of Digital Systems, Lecture 7 34

Time multiplexing, cont.

● Without the use of
Register/Bus.

● Separate signals,
check 'QUIET to
find active
assignment

entity TIME_MUX is
 generic(DEL1,DEL2: TIME);
 port(PHASE_ONE,PHASE_TWO: in
MVL4;
 Z: buffer MVL4);
end TIME_MUX;

architecture QUIET_MUX of TIME_MUX is
 signal PH1,PH2,Z1,Z2: MVL4;
begin

 PH_ONE: process(PHASE_ONE)
 begin
 if PHASE_ONE = '1' then
 Z1 <= '0' after DEL1;
 end if;
 end process PH_ONE;

PH_TWO: process(PHASE_TWO)
 begin
 if PHASE_TWO = '1' then
 Z2 <= '1' after DEL2;
 end if;
 end process PH_TWO;

 Z <= Z1 when not Z1'quiet else
 Z2 when not Z2'quiet else
 Z;

end QUIET_MUX;

09/16/2024 10:40

2024-09-16TSTE12 Design of Digital Systems, Lecture 7 35

Register transfer level (RTL)

● At this level can the following aspects be analysed
– Compare timing between different units at register level

● Delay in subfunctions, etc.
– Resource allocation

● Number of buses, registers, processing elements etc.
– Scheduling (when to perform an operation)
– Control structure (e.g., microcoded control units)
– Bus design

2024-09-16TSTE12 Design of Digital Systems, Lecture 7 36

Difference between behavior and
dataflow descriptions

● Behavioral model
– System with two registers and an adder
– Behavior description does not indicate

how operations are performed
– Command selects operation
– Only signals that corresponds to saved

data

entity REG_SYS is
 port(C: in BIT;
 COM: in BIT_VECTOR(0 to 1);
 INP: in BIT_VECTOR(0 to 7));
end REG_SYS;

architecture ALG of REG_SYS is
 signal R1,R2: BIT_VECTOR(0 to 7);
begin

 process(C)
 begin
 if C='1' then
 case COM is
 when "00" => R1 <= INP;
 when "01" => R2 <= INP;
 when "10" => R1 <= ADD8(R1,R2);
 when "11" =>
 R1 <= ADD8(R1,INC8(not(R2)));
 end case;
 end if;
 end process;

end ALG;

09/16/2024 10:40

2024-09-16TSTE12 Design of Digital Systems, Lecture 7 37

Behavioral vs Dataflow, cont.

● Dataflow model
– More signals (many for communication)
– Operations are registers, multiplexes, or arithmetic/logic operations
– Global decoding using signals D00 to D11
– Corresponds to a data flow graph

2024-09-16TSTE12 Design of Digital Systems, Lecture 7 38

Behavioral vs Dataflow, cont.
architecture DF1 of REG_SYS is
 signal MUX_R1,R1,R2,R2C,R2TC,MUX_ADD,SUM:
 BIT_VECTOR(0 to 7);
 signal D00,D01,D10,D11,R1E: BIT;

begin
 D00 <= not COM(0) and not COM(1);
 D01 <= not COM(0) and COM(1); ---Command Decoder
 D10 <= COM(0) and not COM(1);
 D11 <= COM(0) and COM(1);
 MUX_R1 <= SUM when D00 = '0' else INP; --Reg 1 Mux
 R1E <= D00 or D10 or D11;

R1_REG: process(C) -- Register 1
 begin
 if (C=’1’) and C’EVENT) then
 if (R1E = '1') then
 R1 <= MUX_R1;
 end if;
 end if;
 end process;

R2_REG: process(C) --Register 2
 begin
 if (C=’1’) and C’EVENT) then
 if (D01 = '1') then
 R2 <= INP;
 end if;
 end if;
 end process;

 R2C <= not R2; ---Complement
 R2TC <= INC8(R2C); ---Increment
 MUX_ADD <= R2TC when D11 = '1' else R2; ---Adder Mux
 SUM <= ADD8(R1,MUX_ADD); ---Adder

end DF1;

09/16/2024 10:40

2024-09-16TSTE12 Design of Digital Systems, Lecture 7 39

Described Dataflow implementation

● One-to-one mapping
 MUX_R1 <= SUM when D00 = '0'
 else INP;
 R1E <= D00 or D10 or D11;
R1_REG: process(C) begin
 if (C=’1’) and C’EVENT and
 (R1E=’1’) then
 R1 <= MUX_R1;
 end if; end process;
R2_REG: process(C) begin
 if (C=’1’) and C’EVENT and
 (D01='1') then
 R2 <= INP;
 end if; end process;
 R2C <= not R2;
 R2TC <= INC8(R2C);
 MUX_ADD <= R2TC when D11 = '1'
 else R2;
 SUM <= ADD8(R1,MUX_ADD);

2024-09-16TSTE12 Design of Digital Systems, Lecture 7 40

Control units

● Hard wired
– Moore (output only dependent on state)
– Mealy (output dependent on state and input)
– Fast
– Custom designed

● Microcoded
– Cheap
– Standardized (easy to reuse)

09/16/2024 10:40

2024-09-16TSTE12 Design of Digital Systems, Lecture 7 41

Microcoded control unit

● General structure
– AG = Adress generator
– MAR = Memory Adress Register
– MIR = Memory Instruction register

2024-09-16TSTE12 Design of Digital Systems, Lecture 7 42

Microcoded control unit

● Advantages
– Easy to create a generic design
– Only ROM contents needs to be replaced
– Easy to change existing design
– Short design time (low design cost)
– May use compiler to create ROM contents

● Drawbacks
– Slower in many cases (ROM must be read)

● Only Moore type of controllers
– Small controllers are more expensive due to extra register and ROM
– Must be designed for worst case regarding required features

09/16/2024 10:40

2024-09-16TSTE12 Design of Digital Systems, Lecture 7 43

Microcoded control unit, example

● Controller for an extremly small RISC processor
– 4 register (PC, R, MDR, MIR)
– 1 subtraction unit
– Some multiplexers and busses
– Use the same add unit both for instruction operation and

PC update
– Cost: 9 clock cycles per instruction

● Only one instruction: subtract with branch on
negative result
– 3 byte instruction

● 1st operand address, 2nd operand address, branch address

2024-09-16TSTE12 Design of Digital Systems, Lecture 7 44

Controller for structure

● One instruction execution
0. PCout,Zin,MARin,READ,ZEND
1. MDRout,MARin,READ

2. MDRout,Rin
3. Pcout,Cin,PCin,MARin,READ

4. MDRout,MARin,READ
5. MDRout,COMP,Cin,Nin,MDRin,WRITE

6. PCout,Cin,PCin,MARin,READ
7. PCout,Cin,PCin,NNEND

8. MDRout,Pcin

● 2 loops, 0-7 or 0-8

09/16/2024 10:40

2024-09-16TSTE12 Design of Digital Systems, Lecture 7 45

Control with two jumps, microcoded

● All control steps described
in a ROM table

● Easy to understand

● Easy to redesign

2024-09-16TSTE12 Design of Digital Systems, Lecture 7 46

URISC controller, Mealy

● Inclear sequence

● Hard to modify

● Faster

09/16/2024 10:40

2024-09-16TSTE12 Design of Digital Systems, Lecture 7 47

More on microcoded controllers

● Lecture 11 will cover more details on microcoded controller
structures
– Introduces also lab 3

● Lab 3 includes an example of a microcoded controller structure
– Controller used to control a user interface and a datapath
– Y and D program students have seen this approach in computer

technology courses
● Used there for creating machine instruction implementations

2024-09-16TSTE12 Design of Digital Systems, Lecture 7 48

Gate level simulation

● All designs will eventually reach the gate level

● Need accuracy to allow check of timing requirements
– Setup time on flip-flops
– Clock signals
– Races, hazards
– Glitch example (inverter + and with rising edge input)

● Models must be efficient
– Large number of gates
– Slow simulation due to accuracy

● Still much faster than spice simulation

09/16/2024 10:40

2024-09-16TSTE12 Design of Digital Systems, Lecture 7 49

How accurate can a gate model be?

● Example: 2 input OR-gate

Entity OR2 IS
 Port (I1, I2 : in bit; O : out bit);
END OR2;
Architecture DELTA_DEL of OR2 IS
BEGIN
 O <= I1 OR I2;
END DELTA_DEL;
Architecture FIXED_DEL OF OR2 IS
BEGIN
 O <= I1 OR I2 after 3 ns;
END FIXED_DEL;

ENTITY OR2G IS
 Generic (DEL: TIME)M
 Port (I1, I2 : in bit; O : out

bit);
END OR2G;
Architecture GNR_DEL of

OR2G IS
BEGIN
 O <= I1 OR I2 after DEL;
END GNR_DEL;

2024-09-16TSTE12 Design of Digital Systems, Lecture 7 50

Model accuracy

● Models are better and better, but not good enough
– Multiple timing models required
– typical delay, max, min

● Want single model, only changing one constant
– Timing_CONTROL
– Set one constant to define type of timing (min, max, typical)

09/16/2024 10:40

2024-09-16TSTE12 Design of Digital Systems, Lecture 7 51

Code example
package TIMING_CONTROL is
 type TIMING is (MIN,MAX,TYP,DELTA);
 constant TIMING_SEL: TIMING := TYP;
 function T_CHOICE(TIMING_SEL: TIMING;
 TMIN,TMAX,TTYP: TIME)
 return TIME;
end TIMING_CONTROL;

package body TIMING_CONTROL is
 function T_CHOICE(TIMING_SEL: TIMING;
 TMIN,TMAX,TTYP: TIME)
 return TIME is
 begin
 case TIMING_SEL is
 when DELTA => return 0 ns;
 when TYP => return TTYP;
 when MAX => return TMAX;
 when MIN => return TMIN;
 end case;
 end T_CHOICE;
end TIMING_CONTROL;

use work.TIMING_CONTROL.all;
entity OR2_TV is
 generic(TMIN,TMAX,TTYP: TIME);
 port(I1,I2: in BIT; O: out BIT);
end OR2_TV;

architecture VAR_T of OR2_TV is
begin
 O <= I1 or I2 after T_CHOICE(TIMING_SEL,
 TMIN,TMAX,TTYP);
end VAR_T;

2024-09-16TSTE12 Design of Digital Systems, Lecture 7 52

Additional timing details

● Timing is asymmetric
– Different rise and fall times
– Needs modeling

entity OR2GV is
 generic(TPLH,TPHL: TIME);
 port(I1,I2: in BIT; O: out BIT);
end OR2GV;

architecture VAR_DEL of OR2GV is
begin
 process(I1,I2)
 variable OR_NEW,OR_OLD:BIT;
 begin
 OR_NEW := I1 or I2;
 if OR_NEW = '1' and OR_OLD = '0' then
 O <= OR_NEW after TPLH;
 elsif OR_NEW = '0' and OR_OLD = '1' then
 O <= OR_NEW after TPHL;
 end if;
 OR_OLD := OR_NEW;
 end process;
end VAR_DEL;

09/16/2024 10:40

2024-09-16TSTE12 Design of Digital Systems, Lecture 7 53

Load dependency

● Every attached gate input slows the output speed
– Large fan-out
– Load is gate dependent

● Number of transistor gates connected
● Size of transistors on input gate

● Each connection corresponds to a small delay
– Model each individual input wire delay
– Gate delay included in output wire delay

● Not good enough still
– Delay depends on edge slope, temperature, etc.

2024-09-16TSTE12 Design of Digital Systems, Lecture 7 54

Common model used in synopsis
library compiler

● DTOTAL = DI + DS + DT + DC

● DI = Intrinsic delay inherent in gate and independent of
where/how it is used

● DS = Slope delay caused by ramp time of the input signal

● DT Transition delay caused by loading of the output pin
(approx Rdriver (Cwire+Cpin))

● DC Connect media delay to an input pin (wire delay).

09/16/2024 10:40

2024-09-16TSTE12 Design of Digital Systems, Lecture 7 55

Different max and min

● Wire delay (DC) more complicated
– Worst case
– Best case
– Balanced

● Technology library
– Large amount of information
– Usually described as tables
– Sometimes described as polynomial coefficients

2024-09-16TSTE12 Design of Digital Systems, Lecture 7 56

Back annotation

● The process of abstraction
– adding more details to a high level model by analyzing a lower abstraction

level model
– Example: Layout information used to generate timing information in a

gate netlist

● Standardized way: SDF
– Add timing info from layout to gate level
– Useful for general timing requirements and properties)
– Delays module path, device, interconnect, and port

09/16/2024 10:40

2024-09-16TSTE12 Design of Digital Systems, Lecture 7 57

SDF file format

● Timing checks: setup, hold,
recovery, removal, skew, width,
period, and no change

● Timing constraints: path, skew,
period, sum, and diff

● Each trippel defines min, typical,
and max delay
– One for positive edge
– One for negative edge

2024-09-16TSTE12 Design of Digital Systems, Lecture 7 58

SDF File format, cont.

● Design/instance-specific or type/library-specific data

● Timing environment:

● intended operating timing environment

● Scaling, environmental, and technology parameters

● Incremental delay builds on the previous models timing by
adding/subtracting timing information

● Absolute replaces timing information

09/16/2024 10:40

2024-09-16TSTE12 Design of Digital Systems, Lecture 7 59

Gate models of increasing
complexity

● Creating accurate library models is time consuming

● Delay, timechecks etc. can be done in many different ways

● A standard has evolved that defines what parameters to use
– Simplifies back annotation
– Allows for accelerated models (hard-coded)

2024-09-16TSTE12 Design of Digital Systems, Lecture 7 60

VITAL models of gates

● Three parts: Input delay, Functional
and Path delay

09/16/2024 10:40

2024-09-16TSTE12 Design of Digital Systems, Lecture 7 61

Detection of timing errors

● Input path delay: Transport delay dependent on previous value
and wire delay

● Functional part. Boolean expression or lookup tables for fast
simulation

● Path delay: output delay, glitch handling

● Models often includes error detection
– Short spikes, short setup/hold timing etc.
– Unacceptable values (Z or X)
– Unacceptable input combinations (both set and reset active on SR

flipflop)

09/16/2024 10:40

