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TSTE12 Design of Digital Systems, Lecture 7

Agenda

e Practical issues

* Algorithm level design
- Larger models
- Time multiplexing

* RTL level models
- Control units

* Gate level models
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TSTE12 Deadlines Y,D,ED

* Initial version design sketch and project plan tuesday 12
September

* Weekly meetings should start
- Internal weekly meeting with transcript sent to supervisor

* Lab 2 soft deadline Wednesday 13 September at 21.00
- Lab 2 results will be checked after project end
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TSTE12 Deadlines MELE, erasmus

 First project meeting no later than today Monday 11 September
* Tuesday 12 September: First version of requirement specification

 Wednesday 13 September 21.00: Lab 1 deadline
- Pass required to be allowed continued project participation
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Handin (homework), Individual!

1** handin published today Monday 11 September

— Deadline Monday 18 September 23:30
Use only plan text editor (emacs, vi, modelsim or similar) for code entry.

Solve tasks INDIVIDUALLY

Submit answers using Lisam assignment function

- 4 different submissions for code, one for each code task
— 1 submission for all theory question answers
* Use a special terminal window when working with handins

module load TSTE12 ; TSTE12handin
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Algorithm level design

* Focus on functions at high
abstraction level

- Subsystems
- Algorithms to use

* Ignore timing, datapaths etc.
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Bigger system example

* 3 units, Add and Store, DI
Buffered Register, RAM V
EN BUFFERED
« Predefined sequence REGISTER STRE
. RESET
- Store value in buffer J DAV
- move buffer value to add and DADDR S%EE RAMADDR DATA_BUS
store unit _
- Read memory content and add to EMEN
input value READ .
- Write back result to memory WRITE
RACK I
WACK
[T RE
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Bigger system example, cont.

« DATA BUS driven by all modules

- Requires a resolution function
- Preset to ZZZ to get a useful value (X will always give X)
- Note this is done in the entity! Reason: inout => Driver on the entity

entity RAM is
generic(RDEL, DISDEL,ACK_DEL,ACK_PW: TIME);
port(DATA: inout BUS1(7 downto 0):="2zzzz7zz77",;
ADDR: in MVL4_VECTOR(4 downto 0);
RD,WRITE,CS: in MVL4;
RACK, WACK: out MVL4);
end RAM;
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Simple RAM model

architecture SIMPLE of RAM is

begin
e Use of MVL4 MEM: process (CS,RD,WRITE)
. type MEMORY is array(® to 31) of MVL4_VECTOR(7 downto 0);
=> use drive variable MEM: MEMORY:= (others => (others => '0'));
begin
and s_ense if ¢S = '1' then
functions if RD = '1' then

DATA <= DRIVE(MEM(INTVAL(ADDR))) after RDEL;
RACK <= '1' after ACK_DEL,
'0' after ACK_DEL + ACK_PW;
elsif WRITE = '1' then
MEM (INTVAL(ADDR)):= SENSE(DATA, '1");
WACK <= '1' after ACK_DEL, '@' after ACK_DEL+ACK_PW;
end if;
else
DATA <= "zzzzzz77Z" after DISDEL;
end if;
end process MEM;
end SIMPLE;

LINKOPING
II.“ UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 7 2023-09-11 10

Bigger example, cont.

The RAM-model uses an aggregate to initialize all elements to
Zero

ADD and Store is a form of a state machine
- Go through a sequence step by step
- Execute some function in each step
- Each step ends in a wait

Divide system into datapath and control

Clock generation as earlier (loop with run)
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Bigger example, cont.

CON: process

variable DATA_REG: DATA_REG :=
MVL4_VECTOR(7 downto 0); ADD8(SENSE(DATA, '1'),DATA_REG);
begin READ <= 'O©'after CON_DEL;
if RESET = '1' then --CSO MEMEN <= '@'after CON_DEL; --Cs4
DATA <= "Zz777777"after DIS_DEL; wait for CLK_PER;
end if;  mSTmmosssosssossoosooosooosoooooo-o-o-oooe

DATA <= DRIVE(DATA_REG) after DO_DEL;

wait on DAV until DAV = '1';
WRITE <= 'l1'after CON_DEL;

EN <= '1' after CON_DEL; --CSs1 MEMEN <= '1'after CON_DEL; --CS5

wait for CLK_PER; wait on WACK until WACK ='1"';

EN <= '0' after CON_DEL; WRITE <= '©@'after CON_DEL;

DATA_REG := SENSE(DATA, '1'); --CS2 MEMEN <= 'O'after CON_DEL; --CS6

wait for CLK_PER; DATA <= "zz777777" after DIS_DEL;
__________________________________________ wait for CLK_PER;

MADDR <= DADDR after MA_DEL; end process CON;

MEMEN <= '1' after CON_DEL; --CS3

READ <= '1' after CON_DEL;
wait on RACK until RACK ='1"';
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Control state machine

« Hardware aspects on the control machine
- Wait can not be used in synthesis
- Use a manual direct translation technique

* One-hot encoding
- Simple and straight forward
- Suitable for FPGA implementation
- Low complexity decoding of state
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One-hot encoded controller

NR
A) EN READ
cso /I\ /r
6 cs2 cs3
cs D Sgq co YR, D Q D
co_ c1_| cst | ez c3_
CLK —] qQ ’— F R Q ,7 R Q " R Q
DAV CLK NR CLK NR CLK NR
s i WRITE
— NDAV
RK cS4 cs5 T
ONE —D Qq D Qq D q
c1o_ c4_ c5_
RACK —> R Q R Q R Q
RESET @o——? Q Q
Cs4 CLK NR CLK NR
RESET —[>o— NR
C17 WK Cs6
DAV—{>O—NDAV ONE — D Q D6
WACK —> R Q R Q
cs3 RESET (1)
CS5 MEMEN Csé D——j) CLK NR
LINKOPING
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Control step classes

* Automatic increase
- From step c, to c,,, after some time

* Handshake
- Wait for DAV, CS1 => EN = 1, Buffer resets DAV when EN =1

» Asynchronous stepping

- CS3 to CS4: Wait for external RACK edge, RACK may be shorter than 1
clock period!
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Hardware vs Behavioral model

* Important to have same behavior of hardware and VHDL model

* Reset behavior is different

The model only checks for reset in CS0O
Hardware checked reset everywhere

Different behavior between model and HW! Bad.
Add reset check in every control step
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Why single clock domainn

* Reset problems

- Even single clock domain should synchronize asynchronous reset inputs
- Must guarantee that whole circuit releases from reset at the same time

« Communication problems
- Possible race between data and clock
- Metastability
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II.“ UNIVERSITY



09/10/2023 20:16

TSTE12 Design of Digital Systems, Lecture 7

Control branching

* Want a control machine able to handle conditional

execution of sequences
- Similar to hierarchical finite state machine (FSM)

- VHDL cannot do jumps, only breaking loops

« Working implementation approach

- Sequences in individual processes
- Check at end of process which process to start next

* Output signals from state machine
- Require Resolution function as assignment done in

2023-09-11 17

/

\\\ "// NG /
Each processes
should control

multiple processes (need to turn off non-active processes)

signal S

o x=1/  \ x=0
| y 4
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B: process

Control branching using multiple

processes

architecture TWO of WAIT_STEPS is

signal TRIGGERB, TRIGGERBA,
TRIGGERC, TRIGGERCA: DOT1 :="'0",

signal SINT: RINTEGER register;

begin
SINT <= null;

wait on TRIGGERB;
SINT <= 2;

wait for CLK_DEL;
SINT <= 3;

wait for CLK_DEL;

SINT <= null;
TRIGGERBA <= not(TRIGGERBA);

---Step 2

---Step 3

begin
A: process end process B;
begin
SINT <= null; C: process
wait on RUN,TRIGGERBA, TRIGGERCA until RUN =1, begin
SINT <= 0; ---Step 0 SINT <= null;
wait for CLK_DEL; wait on TRIGGERC;
SINT <=1; ---Step 1 SINT <= 4; ---Step 4
wait for CLK_DEL; wait for CLK_DEL;
SINT <= null; SINT <=5; ---Step 5
if X ="'1"then wait for CLK_DEL;
TRIGGERB <= not(TRIGGERB); SINT <= null;
else TRIGGERCA <= not(TRIGGERCA);
TRIGGERC <= not(TRIGGERC); end process C;
end if; S <= SINT,
end process A; end TWO:
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Time multiplexing

* Problem: Multiple processes driving one signal
- Multiple drivers (one for each process)
- Want to enable separate drivers at non-overlapping intervals

- Assigned signal value should keep the value even after driver enable
removed (memory function)

- Use signal type containing a resolution function

* Remember: This is NOT for synthesis

19

LINKOPING
II.“ UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 7 2023-09-11

Time Multiplexing, non-working

entity TIME_MUX is
generic(DEL1,DEL2: TIME);

* Two-phase clock port(PHASE_ONE,PHASE_TWO: in MVL4;
i Z: out DOTX :='0%;
- One pulse each alternating end TIME_MUX;
. architecture PROCESS_IF_0 of TIME_MUX is
* Resolved output signal Z begin
- Allows multiple assignment Eg'g-iHONEiproceSS(PHASE-ONE)
if PHASE_ONE ="'1' then
* Problem 7 <='0" after DELL;
. dif;
- Z ='X’ when PH TWO assign "1’ end plrocess;
- Assignment from PH ONE will |EF)’H__TWO:|orocess(PHASE_TWO)='1')
egin
not turn off if PHASE_TWO = "1’ then
- Each driver always outputs last o L after DEL,
assigned value end PH_TWO;

end PROCESS_IF_0;

20
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Time multiplexing, cont.

signal ZINT: DOTX register; begin
- Assignment of null  begin if PHASE_TWO = '1' then
i i ZINT <='1' after DEL2;
disables driver PH_ONE: process(PHASE_ONE) olse
- Keyword register in bigin A ZINT <= null;
signal declaration if PHASE_ONE = 1" then end if;
g ZINT <="0" after DEL1; end process PH_TWO;
* defines what else
happen when all Z(le_fT <=null; Z <= ZINT;
: end if;
driver are null end process PH_ONE; end PROC NULL:
g1 —]
‘or —

Q— 2

cC  qQ
7 g; D—J—D Latch

LINKOPING
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Time multiplexing, cont.

architecture PROC_NULL of TIME_MUX is PH_TWO: process(PHASE_TWO)

* Use bus instead of signal zZINT: DOTX bus; begin
; begin if PHASE_TWO ='1' then
rengter ZINT <="1" after DEL2;
- Default resolution PH_ONE: process(PHASE_ONE) else
; ; begin ZINT <= null;
function used if not "5l op oNE = 1 then end if:
driven ZINT <="'0' after DEL1; end process PH_TWO;
. ; else
Resolution ZINT <= null; Z <= ZINT;
function recieves end if
an empty input end process PH_ONE;ﬂl ] end PROC_NULL;
- MVLA4 resolution o0 —
function start with [ —
'Z’ value! I M
ﬂz ] ﬂl

g2
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Time multiplexing, cont.

i entity TIME_MUX is PH_TWO: PHASE_TWO
. Wltl:lOllt the use of generic(DEL1,DEL2: TIME); e process(| - )
Register/Bus. port(PHASE_ONE,PHASE_TWO: in if PHASE_ TWO = "1 then
) MVL4; bu . 72 <="1"after DEL2;
» Separate signals, o 5 outter MVL4): end i
heck 'OUIET t en MU end process PH_TWO;
check 'Q 0 architecture QUIET MUX of TIME_MUX is
find active signal PH1,PH2,71,Z2: MVL4; Z <= 71 when not Z1'quiet else
. begin Z2 when not Z2'quiet else
assignment Z:
PH_ONE: process(PHASE_ONE)
begin end QUIET_MUX;

if PHASE_ONE ='1' then
Z1 <="'0" after DEL1,;
end if;
end process PH_ONE;
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Register transfer level (RTL)

« At this level can the following aspects be analysed

- Compare timing between different units at register level
* Delay in subfunctions, etc.
- Resource allocation
* Number of buses, registers, processing elements etc.

Scheduling (when to perform an operation)

Control structure (e.g., microcoded control units)

Bus design
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Difference between behavior and
dataflow descriptions  «useeer s

COM: in BIT_VECTOR(® to 1);
INP: in BIT_VECTOR(O to 7));

® BehaVioral mOde]. end REG_SYS;
- System with two registers and an adder architecture ALG of REG SYS is
- Behavior description does not indicate be;f{g”al R1,R2: BIT_VECTOR(® to 7);
how operations are performed
. process(C)
- Command selects operation begin
. if C='1' then
- Only signals that corresponds to saved case COM is
data when "00" => R1 <= INP;
when "01" => R2 <= INP;
when "10" => R1 <= ADD8(R1,R2);
when "11" =>
R1 <= ADD8(R1, INC8(not(R2)));
end case;
end if;

end process;

end ALG;
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Behavioral vs Dataflow, cont.

* Dataflow model
- More signals (many for communication)
- Operations are registers, multiplexes, or arithmetic/logic operations
- Global decoding using signals D00 to D11
- Corresponds to a data flow graph

LINKOPING
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L ]
Behavioral vs Dataflow, cont.
architecture DF1 of REG_SYS is R2_REG: process(c) .-Register 2
signal MUX_R1,R1,R2,R2C,R2TC, MUX_ADD, SUM: begin
BIT_VECTOR(@ to 7); if (C=’1') and C’EVENT) then
signal DOO,DO1,D10,D11,R1E: BIT; if (DO1 = '1') then
R2 <= INP;
begin end if;
DOO® <= not COM(@) and not COM(1); end if;
DO1 <= not COM(@) and COM(1); ---Command Decoder end process;
D10 <= COM(@) and not COM(1);
D11 <= COM(®) and COM(1); R2C <= not R2; ---Complement
MUX_R1 <= SUM when D0OO = 'Q@' else INP; --Reg 1 Mux R2TC <= INC8(R2C); - _-Increment
R1E <= D00 or D160 or D11; MUX_ADD <= R2TC when D11 = '1' else R2; ---Adder Mux
SUM <= ADD8(R1,MUX_ADD); ---Adder
R1_REG: process(C) -- Register 1
begin end DF1;
if (C='1") and C’'EVENT) then
if (R1E = '1') then
R1 <= MUX_R1;
end if;
end if;
end process;
LINKOPING
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Described Dataflow implementation
* One-to-one mapping
MUX_R1 <= SUM when D0OO = '0'
INP COM(O) COM(1) COM(O) INP R1E COM(1) else INP;
| R1E <= DOO or D10 or D11;
J R2DEL = R1_REG: process(C) begin
SEL N & if (c='1’) and C’EVENT and
DO . MUX_R1 c DIN =5 MADDDEL (R1E='1") then
D1 ] ] - R1 <= MUX_R1;
MUX R1DEL DOUT RRE SEL “ end if; end process;
MR1DEL ) = R2 DO R2_REG: process(C) begin
. A D1 z if (C='1") and C’EVENT and
oL DIN 8 CoND MUX (DO1="1") then
DOUT | R1E| & R2 <= INP;
R2C end if; end process;
R2C <= not R2;
k1 R1EDEL INC R2TC R2TC <= INC8(R2C);
MUX_ADD MUX_ADD <= R2TC when D11 = '1'
| else R2;
- ADDER ADDDEL  RRIDEL SUM <= ADD8(R1, MUX_ADD);
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Control units

* Hard wired
- Moore (output only dependent on state)
- Mealy (output dependent on state and input)
- Fast
- Custom designed

* Microcoded
- Cheap
- Standardized (easy to reuse)

29
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Microcoded control unit

* General structure
- AG = Adress generator
- MAR = Memory Adress Register
- MIR = Memory Instruction register

F——next
address
d/ information

status
signals
M — control
AG i signals
R

next current
address address

-1 g
-4 =}--)
L]

30
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Microcoded control unit

« Advantages

Easy to create a generic design

Only ROM contents needs to be replaced
Easy to change existing design

Short design time (low design cost)

May use compiler to create ROM contents

Drawbacks
- Slower in many cases (ROM must be read)
Only Moore type of controllers

- Small controllers are more expensive due to extra register and ROM

- Must be designed for worst case regarding required features

2023-09-11

31
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Microcoded control unit, example

PCout

» Controller for an extremly small RISC processor
4 register (PC, R, MDR, MIR)

Lo
- 1 subtraction unit - oo
7 7\1 y
- Some multiplexers and busses e /QX\/ .
o= r ADDER i
- Use the same add unit both for instruction operation and Kin L
|

PC update
Cost: 9 clock cycles per instruction

MDRout _
e

* Only one instruction: subtract with branch on

2023-09-11

Rin —————
<> R
7

D> DR K<

32

PCin
=

MDRin

negative result T
- 3 byte instruction N

‘ &—— READ

* 1st operand address, 2nd operand address, branch address VENORY

BUS_B
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Controller for structure

PCout —————— PCin
< PC K3

* One instruction execution T

0. PCout,Zin,MARin,READ,ZEND | ‘ﬁf*;
. MDRout,MARin,READ b,
. MDRout,Rin ‘%\\/ %
. Pcout,Cin,PCin,MARin,READ ! M|>< N
. MDRout,MARin,READ 2]
. MDRout,COMP,Cin,Nin, MDRin, WRITE T o
. PCout,Cin,PCin,MARin,READ N
. PCout,Cin,PCin, NNEND BT

8. MDRout,Pcin v

K—— READ
MEMORY

® 2 ].OOpS, 0-7 or 0-8 | <—— WRITE
huics,

N OOl WN e
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Control with two jumps, microcoded

———————— The microinstructions ROM --------------——————__
ROM: process (C)
type SQ ARRAY is array(0 to 8,0 to 8) of BIT;

« All control steps described | ConStARC RN SOARRAYS L com
in a ROM table MDR_OUT,MAR_IN,N_IN,R_IN, PC_IN,ZEND,C_IN,WRITE,NNEND,micins
((ror, ‘1Y, 'o', 'o', 'o', '1', '0', '0', '0'), --0
(r1v, ‘1Y, 'o', 'o', 'o', '0', '0', '0', '0'), --1
* Easy to understand (0, ave e o avs tors vaen rovs vy, 3
(r1v, ‘1Y, to', ‘o', ‘o', '0', '0', '0', '0'), --4
d 1 1 1 1 1 1 1 1 1 1 1 1 1 il 1 1 1 il -
* Easy to redesign TP RTINS
(ror, oY, 'o', '0', '1', '0', '1', '0', '1'), --7
(r1v, o', ‘o', 'o0', '1', '0', '0', '0', '0'));--8
begin
MDR_OUT <= MEM (INTVAL(C) ,0) after ROM_DEL;
MAR_IN <= MEM (INTVAL(C) ,1) after ROM_DEL;
N_IN <= MEM (INTVAL (C) ,2) after ROM_DEL;
R_IN <= MEM (INTVAL (C) ,3) after ROM_DEL;
PC_IN <= MEM (INTVAL (C) ,4) after ROM_DEL;
ZEND <= MEM (INTVAL(C),5) after ROM_DEL;
C_IN <= MEM (INTVAL(C) ,6) after ROM_DEL;
WRITE <= MEM (INTVAL(C) ,7) after ROM_DEL;
NNEND = MEM (INTVAL (C) ,8) after ROM_DEL;

end process ROM;
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URISC controller, Mealy

--Hard Wired Control Unit

--Decoder
--First Stage Decoding
o Inc]_ea_r Sequence STO <= not C(2) and not C(1) and not C(0) after AND_DEL;

ST1 <= not C(2

and not C(1) and C(0) after AND_ DEL;
. ST2 <= not C(2) and C(1) and not C(0) after AND_DEL;
° Hard to modlfy ST3 <= not C(2) and C(1) and C(0) after AND_DEL;
ST4 <= C(2) and not C(1) and not C(0) after AND_DEL;
) and not C(1) and C(0) after AND_DEL;
)

ST5 <= C(2
° ST6 <= C(2) and C(1l) and not C(0) after AND_DEL;
FaSter ST7 <= C(2) and C(1) and C(0) after AND_DEL;

--Second Stage Decoding
ST07 <= STO or ST7 after OR_DEL;
ST25 <= ST2 or ST5 after OR_DEL;
ST36 <= ST3 or ST6 after OR_DEL;
ST57 <= ST5 or ST7 after OR_DEL;
ST78 <= ST7 or C(3) after OR_DEL;
--Control Signals
PC_OUT <= (ST07 or ST36) and not C(3)
after (OR_DEL + AND_DEL) ;
C_IN <= 8T36 or ST57 after OR_DEL;
PC_IN <= ST36 or ST78 after OR_DEL;
MAR_IN <= not (ST25 or ST78) after (OR_DEL + INV_DEL);
MDR_OUT <=not PC_OUT after INV DEL;
READ <= MAR_IN; COMP <= ST5; N_IN <= ST5; MDR_IN <= ST5;
WRITE <= ST5; R_IN <= ST2; ZIN <= STO; ZEND <=STO0;
NNEND <= ST7;
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More on microcoded controllers

 Lecture 11 will cover more details on microcoded controller
structures
- Introduces also lab 3

* Lab 3 includes an example of a microcoded controller structure
- Controller used to control a user interface and a datapath

- Y and D program students have seen this approach in computer
technology courses

* Used there for creating machine instruction implementations

LINKOPING
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Gate level simulation

« All designs will eventually reach the gate level

* Need accuracy to allow check of timing requirements
- Setup time on flip-flops
- Clock signals
- Races, hazards
- Glitch example (inverter + and with rising edge input)

* Models must be efficient
- Large number of gates
- Slow simulation due to accuracy
+ Still much faster than spice simulation

37
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How accurate can a gate model be?

« Example: 2 input OR-gate

38

Entity OR2 IS ENTITY OR2G IS

Port (I1, 12 : in bit; O : out bit); Generic (DEL: TIME)M
END OR?2; in bi

’ Port (I1, 12 : in bit; O : out

Architecture DELTA_DEL of OR2 IS lg)irt)'( o o
BEG_IN ' END OR2G;
O<=110RI2; Architecture GNR_DEL of
END DELTA_DEL; OR2G IS
Architecture FIXED_DEL OF OR2 IS BEGIN
BEGI_N ' O <=11 OR 12 after DEL;

O <=11 OR 12 after 3 ns; END GNR_DEL,

END FIXED_DEL;

LINKOPING
II.“ UNIVERSITY



09/10/2023 20:16

TSTE12 Design of Digital Systems, Lecture 7

Model accuracy

2023-09-11 39

* Models are better and better, but not good enough

- Multiple timing models required
- typical delay, max, min

* Want single model, only changing one constant

- Timing CONTROL

- Set one constant to define type of timing (min, max, typical)

LINKOPING
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Code example

use work. TIMING_CONTROL.all;

entity OR2_TV is
generic(TMIN,TMAX,TTYP: TIME);
port(11,12: in BIT; O: out BIT);

end OR2_TV,

architecture VAR_T of OR2_TV is
begin
O <=11 or 12 after T_CHOICE(TIMING_SEL,
TMIN, TMAX,TTYP);
end VAR_T;

2023-09-11 40

package TIMING_CONTROL is
type TIMING is (MIN,MAX, TYP,DELTA);
constant TIMING_SEL: TIMING :=TYP;
function T_CHOICE(TIMING_SEL: TIMING;
TMIN,TMAX,TTYP: TIME)
return TIME;
end TIMING_CONTROL;

package body TIMING_CONTROL is
function T_CHOICE(TIMING_SEL: TIMING;
TMIN, TMAX,TTYP: TIME)
return TIME is
begin
case TIMING_SEL is
when DELTA => return 0 ns;
when TYP => return TTYP;
when MAX => return TMAX;
when MIN => return TMIN;
end case;
end T_CHOICE;
end TIMING_CONTROL;
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Additional timing details

e Timi . . entity OR2GV is
Iming 1s asymmetric generic(TPLH, TPHL: TIME);

- Different rise and fall times port(11,12: in BIT; O: out BIT);

end OR2GV,;
- Needs modeling
architecture VAR_DEL of OR2GV is
begin
process(11,12)
variable OR_NEW,OR_OLD:BIT;
begin
OR_NEW :=11or 12;
if OR_NEW ='1"and OR_OLD ="'0' then
O <= OR_NEW after TPLH;
elsif OR_NEW ='0'and OR_OLD ="1" then
O <= OR_NEW after TPHL;
end if;
OR_OLD := OR_NEW;
end process;
end VAR_DEL;
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Load dependency

* Every attached gate input slows the output speed
- Large fan-out
- Load is gate dependent
* Number of transistor gates connected
¢ Size of transistors on input gate

* Each connection corresponds to a small delay
- Model each individual input wire delay
- Gate delay included in output wire delay

* Not good enough still
- Delay depends on edge slope, temperature, etc.
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Common model used in synopsis
library compiler
* Drorar = D; + Dg + Dy + D¢

* D, = Intrinsic delay inherent in gate and independent of
where/how it is used

Dy = Slope delay caused by ramp time of the input signal

e D; Transition delay caused by loading of the output pin
(apprOX Rdriver (Cwire+cpin))

e D. Connect media delay to an input pin (wire delay).
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Different max and min

Roriver Ryre
AN AN
» Wire delay (D) more complicated ﬁ *j—c chz J—;CN
- Worst case Worst Case
- Dest case —AR’\NE_—:[_—_TH:[T’V{AMA
- Balanced Lo ycmgc‘ ;rq ;;CN
» Technology library o
- Large amount of information Cwa C T
- Usually described as tables _/\R/VV\_L | M_n_ L
- Sometimes described as polynomial coefficients JC ey, T
Ryme/N
Cwm@ C@
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Back annotation

* The process of abstraction

- adding more details to a high level model by analyzing a lower abstraction
level model

- Example: Layout information used to generate timing information in a
gate netlist
* Standardized way: SDF
- Add timing info from layout to gate level
- Useful for general timing requirements and properties)
- Delays module path, device, interconnect, and port

LINKOPING
II.“ UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 7 2023-09-11 46

SDF file format

* Timing checks: setup, hold, (CELL
. (CELLTYPE "DFF")
recovery, removal, skew, width, (INSTANCE top/b/c)
. (DELAY
period, and no change (ABSOLUTE
. . . (IOPATH (posedge clk) q (2:3:4) (5:6:7))

* Timing constraints: path, skew, | (ORT el (2:3:4) (5:6:7))

period, sum, and diff )

(TIMINGCHECK
] o 1 (SETUPHOLD d (posed: 1k) (3:4:5) (-1:-1:-1))

* Each trippel defines min, typical, o

and max delay )
- One for positive edge
- One for negative edge
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SDF File format, cont.

» Design/instance-specific or type/library-specific data
* Timing environment:

» intended operating timing environment

* Scaling, environmental, and technology parameters

* Incremental delay builds on the previous models timing by
adding/subtracting timing information

* Absolute replaces timing information
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Gate models of increasing
complexity
* Creating accurate library models is time consuming

* Delay, timechecks etc. can be done in many different ways

* A standard has evolved that defines what parameters to use
- Simplifies back annotation
- Allows for accelerated models (hard-coded)
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VITAL models of gates

-- BEHAVIOR SECTION
VITALBehavior : process (A_ipd, B_ipd, C_ipd, D_ipd)
-- functionality results

° Three pa]_"ts: Input d.e].a.}f, Funct]_ona]_ VARIABLE Results: STD_LOGIC_VECTOR(1 to 1):=(others => 'X');

ALIAS Y _zd : STD_LOGIC is Results(1);

and Path de]_ay -- output glitch detection variables
VARIABLE Y GlitchData : VitalGlitchDataType;
begin
library IEEE; -- Functionality Section
use IEEE.VITAL Primitives.all; Y zd := (NOT ((D_ipd) AND ((B_ipd) OR (A_ipd) OR C_ipd))));
library LIBVUOF; -- Path Delay Section
use LIBVUOF.VTABLES.all; VitalPathDelay01l (
architecture VITAL of ONAND is OutSignal => Y,
attribute VITAL_LEVEL1 of VITAL : architecture is TRUE; GlitchData => Y GlitchData,
SIGNAL A_ipd : STD_ULOGIC := 'X'; OutSignalName => "Y",
SIGNAL B_ipd : STD_ULOGIC := 'X'; OutTemp => Y_zd,
SIGNAL C_ipd : STD_ULOGIC := 'X'; Paths => (0 => (A_ipd'last_event, tpd_A Y, TRUE),
SIGNAL D_ipd : STD_ULOGIC := 'X'; 1 => (B_ipd'last_event, tpd B Y, TRUE)
begin 2 => (C_ipd'last_event, tpd C Y, TRUE),
-- INPUT PATH DELAYS 3 => (D_ipd'last_event, tpd D_Y, TRUE)),
WireDelay : block Mode => OnDetect,
begin Xon => Xon,
VitalWireDelay (A_ipd, A, tipd A); MsgOn => MsgoOn,
VitalWireDelay (B_ipd, B, tipd B); MsgSeverity => WARNING) ;
VitalWireDelay (C_ipd, C, tipd_C); end process;
VitalWireDelay (D_ipd, D, tipd D) ; end VITAL;
end block;
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Detection of timing errors

* Input path delay: Transport delay dependent on previous value
and wire delay

* Functional part. Boolean expression or lookup tables for fast
simulation

« Path delay: output delay, glitch handling

* Models often includes error detection
- Short spikes, short setup/hold timing etc.
- Unacceptable values (Z or X)

- Unacceptable input combinations (both set and reset active on SR
flipflop)
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