09/10/2023 20:16

TSTE12 Design of Digital Systems, Lecture 7

Agenda

e Practical issues

* Algorithm level design
- Larger models
- Time multiplexing

* RTL level models
- Control units

* Gate level models

2023-09-11

2

LINKOPING
UNIVERSITY

09/10/2023 20:16

TSTE12 Design of Digital Systems, Lecture 7 2023-09-11 3

TSTE12 Deadlines Y,D,ED

* Initial version design sketch and project plan tuesday 12
September

* Weekly meetings should start
- Internal weekly meeting with transcript sent to supervisor

* Lab 2 soft deadline Wednesday 13 September at 21.00
- Lab 2 results will be checked after project end

LINKOPING
II.“ UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 7 2023-09-11 4

TSTE12 Deadlines MELE, erasmus

 First project meeting no later than today Monday 11 September
* Tuesday 12 September: First version of requirement specification

 Wednesday 13 September 21.00: Lab 1 deadline
- Pass required to be allowed continued project participation

LINKOPING
II.“ UNIVERSITY

09/10/2023 20:16

TSTE12 Design of Digital Systems, Lecture 7 2023-09-11

Handin (homework), Individual!

1** handin published today Monday 11 September

— Deadline Monday 18 September 23:30
Use only plan text editor (emacs, vi, modelsim or similar) for code entry.

Solve tasks INDIVIDUALLY

Submit answers using Lisam assignment function

- 4 different submissions for code, one for each code task
— 1 submission for all theory question answers
* Use a special terminal window when working with handins

module load TSTE12 ; TSTE12handin

LINKOPING
II.“ UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 7 2023-09-11

Algorithm level design

* Focus on functions at high
abstraction level

- Subsystems
- Algorithms to use

* Ignore timing, datapaths etc.

LINKOPING
II.“ UNIVERSITY

09/10/2023 20:16

TSTE12 Design of Digital Systems, Lecture 7 2023-09-11 7

Bigger system example

* 3 units, Add and Store, DI
Buffered Register, RAM V
EN BUFFERED
« Predefined sequence REGISTER STRE
. RESET
- Store value in buffer J DAV
- move buffer value to add and DADDR S%EE RAMADDR DATA_BUS
store unit _
- Read memory content and add to EMEN
input value READ .
- Write back result to memory WRITE
RACK I
WACK
[T RE
TSTE12 Design of Digital Systems, Lecture 7 2023-09-11 8

Bigger system example, cont.

« DATA BUS driven by all modules

- Requires a resolution function
- Preset to ZZZ to get a useful value (X will always give X)
- Note this is done in the entity! Reason: inout => Driver on the entity

entity RAM is
generic(RDEL, DISDEL,ACK_DEL,ACK_PW: TIME);
port(DATA: inout BUS1(7 downto 0):="2zzzz7zz77",;
ADDR: in MVL4_VECTOR(4 downto 0);
RD,WRITE,CS: in MVL4;
RACK, WACK: out MVL4);
end RAM;

LINKOPING
II.“ UNIVERSITY

09/10/2023 20:16

TSTE12 Design of Digital Systems, Lecture 7 2023-09-11 9

Simple RAM model

architecture SIMPLE of RAM is

begin
e Use of MVL4 MEM: process (CS,RD,WRITE)
. type MEMORY is array(® to 31) of MVL4_VECTOR(7 downto 0);
=> use drive variable MEM: MEMORY:= (others => (others => '0'));
begin
and s_ense if ¢S = '1' then
functions if RD = '1' then

DATA <= DRIVE(MEM(INTVAL(ADDR))) after RDEL;
RACK <= '1' after ACK_DEL,
'0' after ACK_DEL + ACK_PW;
elsif WRITE = '1' then
MEM (INTVAL(ADDR)):= SENSE(DATA, '1");
WACK <= '1' after ACK_DEL, '@' after ACK_DEL+ACK_PW;
end if;
else
DATA <= "zzzzzz77Z" after DISDEL;
end if;
end process MEM;
end SIMPLE;

LINKOPING
II.“ UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 7 2023-09-11 10

Bigger example, cont.

The RAM-model uses an aggregate to initialize all elements to
Zero

ADD and Store is a form of a state machine
- Go through a sequence step by step
- Execute some function in each step
- Each step ends in a wait

Divide system into datapath and control

Clock generation as earlier (loop with run)

LINKOPING
II.“ UNIVERSITY

09/10/2023 20:16

TSTE12 Design of Digital Systems, Lecture 7 2023-09-11 11

Bigger example, cont.

CON: process

variable DATA_REG: DATA_REG :=
MVL4_VECTOR(7 downto 0); ADD8(SENSE(DATA, '1'),DATA_REG);
begin READ <= 'O©'after CON_DEL;
if RESET = '1' then --CSO MEMEN <= '@'after CON_DEL; --Cs4
DATA <= "Zz777777"after DIS_DEL; wait for CLK_PER;
end if; mSTmmosssosssossoosooosooosoooooo-o-o-oooe

DATA <= DRIVE(DATA_REG) after DO_DEL;

wait on DAV until DAV = '1';
WRITE <= 'l1'after CON_DEL;

EN <= '1' after CON_DEL; --CSs1 MEMEN <= '1'after CON_DEL; --CS5

wait for CLK_PER; wait on WACK until WACK ='1"';

EN <= '0' after CON_DEL; WRITE <= '©@'after CON_DEL;

DATA_REG := SENSE(DATA, '1'); --CS2 MEMEN <= 'O'after CON_DEL; --CS6

wait for CLK_PER; DATA <= "zz777777" after DIS_DEL;
__ wait for CLK_PER;

MADDR <= DADDR after MA_DEL; end process CON;

MEMEN <= '1' after CON_DEL; --CS3

READ <= '1' after CON_DEL;
wait on RACK until RACK ='1"';

LINKOPING
II.“ UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 7 2023-09-11 12

Control state machine

« Hardware aspects on the control machine
- Wait can not be used in synthesis
- Use a manual direct translation technique

* One-hot encoding
- Simple and straight forward
- Suitable for FPGA implementation
- Low complexity decoding of state

LINKOPING
II.“ UNIVERSITY

09/10/2023 20:16

TSTE12 Design of Digital Systems, Lecture 7 2023-09-11 13

One-hot encoded controller

NR
A) EN READ
cso /I\ /r
6 cs2 cs3
cs D Sgq co YR, D Q D
co_ c1_| cst | ez c3_
CLK —] qQ ’— F R Q ,7 R Q " R Q
DAV CLK NR CLK NR CLK NR
s i WRITE
— NDAV
RK cS4 cs5 T
ONE —D Qq D Qq D q
c1o_ c4_ c5_
RACK —> R Q R Q R Q
RESET @o——? Q Q
Cs4 CLK NR CLK NR
RESET —[>o— NR
C17 WK Cs6
DAV—{>O—NDAV ONE — D Q D6
WACK —> R Q R Q
cs3 RESET (1)
CS5 MEMEN Csé D——j) CLK NR
LINKOPING
II.“ UNIVERSITY
TSTE12 Design of Digital Systems, Lecture 7 2023-09-11 14

Control step classes

* Automatic increase
- From step c, to c,,, after some time

* Handshake
- Wait for DAV, CS1 => EN = 1, Buffer resets DAV when EN =1

» Asynchronous stepping

- CS3 to CS4: Wait for external RACK edge, RACK may be shorter than 1
clock period!

LINKOPING
II.“ UNIVERSITY

09/10/2023 20:16

TSTE12 Design of Digital Systems, Lecture 7 2023-09-11 15

Hardware vs Behavioral model

* Important to have same behavior of hardware and VHDL model

* Reset behavior is different

The model only checks for reset in CS0O
Hardware checked reset everywhere

Different behavior between model and HW! Bad.
Add reset check in every control step

LINKOPING
II.“ UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 7 2023-09-11 16

Why single clock domainn

* Reset problems

- Even single clock domain should synchronize asynchronous reset inputs
- Must guarantee that whole circuit releases from reset at the same time

« Communication problems
- Possible race between data and clock
- Metastability

LINKOPING
II.“ UNIVERSITY

09/10/2023 20:16

TSTE12 Design of Digital Systems, Lecture 7

Control branching

* Want a control machine able to handle conditional

execution of sequences
- Similar to hierarchical finite state machine (FSM)

- VHDL cannot do jumps, only breaking loops

« Working implementation approach

- Sequences in individual processes
- Check at end of process which process to start next

* Output signals from state machine
- Require Resolution function as assignment done in

2023-09-11 17

/

\\\ "// NG /
Each processes
should control

multiple processes (need to turn off non-active processes)

signal S

o x=1/ \ x=0
| y 4

LINKOPING
II.“ UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 7

2023-09-11 18

B: process

Control branching using multiple

processes

architecture TWO of WAIT_STEPS is

signal TRIGGERB, TRIGGERBA,
TRIGGERC, TRIGGERCA: DOT1 :="'0",

signal SINT: RINTEGER register;

begin
SINT <= null;

wait on TRIGGERB;
SINT <= 2;

wait for CLK_DEL;
SINT <= 3;

wait for CLK_DEL;

SINT <= null;
TRIGGERBA <= not(TRIGGERBA);

---Step 2

---Step 3

begin
A: process end process B;
begin
SINT <= null; C: process
wait on RUN,TRIGGERBA, TRIGGERCA until RUN =1, begin
SINT <= 0; ---Step 0 SINT <= null;
wait for CLK_DEL; wait on TRIGGERC;
SINT <=1; ---Step 1 SINT <= 4; ---Step 4
wait for CLK_DEL; wait for CLK_DEL;
SINT <= null; SINT <=5; ---Step 5
if X ="'1"then wait for CLK_DEL;
TRIGGERB <= not(TRIGGERB); SINT <= null;
else TRIGGERCA <= not(TRIGGERCA);
TRIGGERC <= not(TRIGGERC); end process C;
end if; S <= SINT,
end process A; end TWO:

LINKOPING
II.“ UNIVERSITY

09/10/2023 20:16

TSTE12 Design of Digital Systems, Lecture 7 2023-09-11

Time multiplexing

* Problem: Multiple processes driving one signal
- Multiple drivers (one for each process)
- Want to enable separate drivers at non-overlapping intervals

- Assigned signal value should keep the value even after driver enable
removed (memory function)

- Use signal type containing a resolution function

* Remember: This is NOT for synthesis

19

LINKOPING
II.“ UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 7 2023-09-11

Time Multiplexing, non-working

entity TIME_MUX is
generic(DEL1,DEL2: TIME);

* Two-phase clock port(PHASE_ONE,PHASE_TWO: in MVL4;
i Z: out DOTX :='0%;
- One pulse each alternating end TIME_MUX;
. architecture PROCESS_IF_0 of TIME_MUX is
* Resolved output signal Z begin
- Allows multiple assignment Eg'g-iHONEiproceSS(PHASE-ONE)
if PHASE_ONE ="'1' then
* Problem 7 <='0" after DELL;
. dif;
- Z ='X’ when PH TWO assign "1’ end plrocess;
- Assignment from PH ONE will |EF)’H__TWO:|orocess(PHASE_TWO)='1')
egin
not turn off if PHASE_TWO = "1’ then
- Each driver always outputs last o L after DEL,
assigned value end PH_TWO;

end PROCESS_IF_0;

20

LINKOPING
II.“ UNIVERSITY

09/10/2023 20:16

TSTE12 Design of Digital Systems, Lecture 7 2023-09-11 21

Time multiplexing, cont.

signal ZINT: DOTX register; begin
- Assignment of null begin if PHASE_TWO = '1' then
i i ZINT <='1' after DEL2;
disables driver PH_ONE: process(PHASE_ONE) olse
- Keyword register in bigin A ZINT <= null;
signal declaration if PHASE_ONE = 1" then end if;
g ZINT <="0" after DEL1; end process PH_TWO;
* defines what else
happen when all Z(le_fT <=null; Z <= ZINT;
: end if;
driver are null end process PH_ONE; end PROC NULL:
g1 —]
‘or —

Q— 2

cC qQ
7 g; D—J—D Latch

LINKOPING
II.“ UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 7 2023-09-11 22

Time multiplexing, cont.

architecture PROC_NULL of TIME_MUX is PH_TWO: process(PHASE_TWO)

* Use bus instead of signal zZINT: DOTX bus; begin
; begin if PHASE_TWO ='1' then
rengter ZINT <="1" after DEL2;
- Default resolution PH_ONE: process(PHASE_ONE) else
; ; begin ZINT <= null;
function used if not "5l op oNE = 1 then end if:
driven ZINT <="'0' after DEL1; end process PH_TWO;
. ; else
Resolution ZINT <= null; Z <= ZINT;
function recieves end if
an empty input end process PH_ONE;ﬂl] end PROC_NULL;
- MVLA4 resolution o0 —
function start with [—
'Z’ value! I M
ﬂz] ﬂl

g2

LINKOPING
II.“ UNIVERSITY

09/10/2023 20:16

TSTE12 Design of Digital Systems, Lecture 7 2023-09-11 23

Time multiplexing, cont.

i entity TIME_MUX is PH_TWO: PHASE_TWO
. Wltl:lOllt the use of generic(DEL1,DEL2: TIME); e process(| -)
Register/Bus. port(PHASE_ONE,PHASE_TWO: in if PHASE_ TWO = "1 then
) MVL4; bu . 72 <="1"after DEL2;
» Separate signals, o 5 outter MVL4): end i
heck 'OUIET t en MU end process PH_TWO;
check 'Q 0 architecture QUIET MUX of TIME_MUX is
find active signal PH1,PH2,71,Z2: MVL4; Z <= 71 when not Z1'quiet else
. begin Z2 when not Z2'quiet else
assignment Z:
PH_ONE: process(PHASE_ONE)
begin end QUIET_MUX;

if PHASE_ONE ='1' then
Z1 <="'0" after DEL1,;
end if;
end process PH_ONE;

LINKOPING
II.“ UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 7 2023-09-11 24

Register transfer level (RTL)

« At this level can the following aspects be analysed

- Compare timing between different units at register level
* Delay in subfunctions, etc.
- Resource allocation
* Number of buses, registers, processing elements etc.

Scheduling (when to perform an operation)

Control structure (e.g., microcoded control units)

Bus design

LINKOPING
II.“ UNIVERSITY

09/10/2023 20:16

TSTE12 Design of Digital Systems, Lecture 7 2023-09-11 25

Difference between behavior and
dataflow descriptions «useeer s

COM: in BIT_VECTOR(® to 1);
INP: in BIT_VECTOR(O to 7));

® BehaVioral mOde]. end REG_SYS;
- System with two registers and an adder architecture ALG of REG SYS is
- Behavior description does not indicate be;f{g”al R1,R2: BIT_VECTOR(® to 7);
how operations are performed
. process(C)
- Command selects operation begin
. if C='1' then
- Only signals that corresponds to saved case COM is
data when "00" => R1 <= INP;
when "01" => R2 <= INP;
when "10" => R1 <= ADD8(R1,R2);
when "11" =>
R1 <= ADD8(R1, INC8(not(R2)));
end case;
end if;

end process;

end ALG;

LINKOPING
II.“ UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 7 2023-09-11 26

Behavioral vs Dataflow, cont.

* Dataflow model
- More signals (many for communication)
- Operations are registers, multiplexes, or arithmetic/logic operations
- Global decoding using signals D00 to D11
- Corresponds to a data flow graph

LINKOPING
II.“ UNIVERSITY

09/10/2023 20:16

TSTE12 Design of Digital Systems, Lecture 7 2023-09-11 27
L]
Behavioral vs Dataflow, cont.
architecture DF1 of REG_SYS is R2_REG: process(c) .-Register 2
signal MUX_R1,R1,R2,R2C,R2TC, MUX_ADD, SUM: begin
BIT_VECTOR(@ to 7); if (C=’1') and C’EVENT) then
signal DOO,DO1,D10,D11,R1E: BIT; if (DO1 = '1') then
R2 <= INP;
begin end if;
DOO® <= not COM(@) and not COM(1); end if;
DO1 <= not COM(@) and COM(1); ---Command Decoder end process;
D10 <= COM(@) and not COM(1);
D11 <= COM(®) and COM(1); R2C <= not R2; ---Complement
MUX_R1 <= SUM when D0OO = 'Q@' else INP; --Reg 1 Mux R2TC <= INC8(R2C); - _-Increment
R1E <= D00 or D160 or D11; MUX_ADD <= R2TC when D11 = '1' else R2; ---Adder Mux
SUM <= ADD8(R1,MUX_ADD); ---Adder
R1_REG: process(C) -- Register 1
begin end DF1;
if (C='1") and C’'EVENT) then
if (R1E = '1') then
R1 <= MUX_R1;
end if;
end if;
end process;
LINKOPING
II.“ UNIVERSITY
TSTE12 Design of Digital Systems, Lecture 7 2023-09-11 28
Described Dataflow implementation
* One-to-one mapping
MUX_R1 <= SUM when D0OO = '0'
INP COM(O) COM(1) COM(O) INP R1E COM(1) else INP;
| R1E <= DOO or D10 or D11;
J R2DEL = R1_REG: process(C) begin
SEL N & if (c='1’) and C’EVENT and
DO . MUX_R1 c DIN =5 MADDDEL (R1E='1") then
D1]] - R1 <= MUX_R1;
MUX R1DEL DOUT RRE SEL “ end if; end process;
MR1DEL) = R2 DO R2_REG: process(C) begin
. A D1 z if (C='1") and C’EVENT and
oL DIN 8 CoND MUX (DO1="1") then
DOUT | R1E| & R2 <= INP;
R2C end if; end process;
R2C <= not R2;
k1 R1EDEL INC R2TC R2TC <= INC8(R2C);
MUX_ADD MUX_ADD <= R2TC when D11 = '1'
| else R2;
- ADDER ADDDEL RRIDEL SUM <= ADD8(R1, MUX_ADD);

LINKOPING
II.“ UNIVERSITY

09/10/2023 20:16

TSTE12 Design of Digital Systems, Lecture 7 2023-09-11

Control units

* Hard wired
- Moore (output only dependent on state)
- Mealy (output dependent on state and input)
- Fast
- Custom designed

* Microcoded
- Cheap
- Standardized (easy to reuse)

29

LINKOPING
II.“ UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 7 2023-09-11

Microcoded control unit

* General structure
- AG = Adress generator
- MAR = Memory Adress Register
- MIR = Memory Instruction register

F——next
address
d/ information

status
signals
M — control
AG i signals
R

next current
address address

-1 g
-4 =}--)
L]

30

LINKOPING
II.“ UNIVERSITY

09/10/2023 20:16

TSTE12 Design of Digital Systems, Lecture 7

Microcoded control unit

« Advantages

Easy to create a generic design

Only ROM contents needs to be replaced
Easy to change existing design

Short design time (low design cost)

May use compiler to create ROM contents

Drawbacks
- Slower in many cases (ROM must be read)
Only Moore type of controllers

- Small controllers are more expensive due to extra register and ROM

- Must be designed for worst case regarding required features

2023-09-11

31

LINKOPING
UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 7

Microcoded control unit, example

PCout

» Controller for an extremly small RISC processor
4 register (PC, R, MDR, MIR)

Lo
- 1 subtraction unit - oo
7 7\1 y
- Some multiplexers and busses e /QX\/ .
o= r ADDER i
- Use the same add unit both for instruction operation and Kin L
|

PC update
Cost: 9 clock cycles per instruction

MDRout _
e

* Only one instruction: subtract with branch on

2023-09-11

Rin —————
<> R
7

D> DR K<

32

PCin
=

MDRin

negative result T
- 3 byte instruction N

‘ &—— READ

* 1st operand address, 2nd operand address, branch address VENORY

BUS_B

LINKOPING
UNIVERSITY

09/10/2023 20:16

TSTE12 Design of Digital Systems, Lecture 7 2023-09-11 33

Controller for structure

PCout —————— PCin
< PC K3

* One instruction execution T

0. PCout,Zin,MARin,READ,ZEND | ‘ﬁf*;
. MDRout,MARin,READ b,
. MDRout,Rin ‘%\\/ %
. Pcout,Cin,PCin,MARin,READ ! M|>< N
. MDRout,MARin,READ 2]
. MDRout,COMP,Cin,Nin, MDRin, WRITE T o
. PCout,Cin,PCin,MARin,READ N
. PCout,Cin,PCin, NNEND BT

8. MDRout,Pcin v

K—— READ
MEMORY

® 2].OOpS, 0-7 or 0-8 | <—— WRITE
huics,

N OOl WN e

TSTE12 Design of Digital Systems, Lecture 7 2023-09-11 34

Control with two jumps, microcoded

———————— The microinstructions ROM --------------——————__
ROM: process (C)
type SQ ARRAY is array(0 to 8,0 to 8) of BIT;

« All control steps described | ConStARC RN SOARRAYS L com
in a ROM table MDR_OUT,MAR_IN,N_IN,R_IN, PC_IN,ZEND,C_IN,WRITE,NNEND,micins
((ror, ‘1Y, 'o', 'o', 'o', '1', '0', '0', '0'), --0
(r1v, ‘1Y, 'o', 'o', 'o', '0', '0', '0', '0'), --1
* Easy to understand (0, ave e o avs tors vaen rovs vy, 3
(r1v, ‘1Y, to', ‘o', ‘o', '0', '0', '0', '0'), --4
d 1 1 1 1 1 1 1 1 1 1 1 1 1 il 1 1 1 il -
* Easy to redesign TP RTINS
(ror, oY, 'o', '0', '1', '0', '1', '0', '1'), --7
(r1v, o', ‘o', 'o0', '1', '0', '0', '0', '0'));--8
begin
MDR_OUT <= MEM (INTVAL(C) ,0) after ROM_DEL;
MAR_IN <= MEM (INTVAL(C) ,1) after ROM_DEL;
N_IN <= MEM (INTVAL (C) ,2) after ROM_DEL;
R_IN <= MEM (INTVAL (C) ,3) after ROM_DEL;
PC_IN <= MEM (INTVAL (C) ,4) after ROM_DEL;
ZEND <= MEM (INTVAL(C),5) after ROM_DEL;
C_IN <= MEM (INTVAL(C) ,6) after ROM_DEL;
WRITE <= MEM (INTVAL(C) ,7) after ROM_DEL;
NNEND = MEM (INTVAL (C) ,8) after ROM_DEL;

end process ROM;

LINKOPING
II.“ UNIVERSITY

09/10/2023 20:16

TSTE12 Design of Digital Systems, Lecture 7 2023-09-11 35

URISC controller, Mealy

--Hard Wired Control Unit

--Decoder
--First Stage Decoding
o Inc]_ea_r Sequence STO <= not C(2) and not C(1) and not C(0) after AND_DEL;

ST1 <= not C(2

and not C(1) and C(0) after AND_ DEL;
. ST2 <= not C(2) and C(1) and not C(0) after AND_DEL;
° Hard to modlfy ST3 <= not C(2) and C(1) and C(0) after AND_DEL;
ST4 <= C(2) and not C(1) and not C(0) after AND_DEL;
) and not C(1) and C(0) after AND_DEL;
)

ST5 <= C(2
° ST6 <= C(2) and C(1l) and not C(0) after AND_DEL;
FaSter ST7 <= C(2) and C(1) and C(0) after AND_DEL;

--Second Stage Decoding
ST07 <= STO or ST7 after OR_DEL;
ST25 <= ST2 or ST5 after OR_DEL;
ST36 <= ST3 or ST6 after OR_DEL;
ST57 <= ST5 or ST7 after OR_DEL;
ST78 <= ST7 or C(3) after OR_DEL;
--Control Signals
PC_OUT <= (ST07 or ST36) and not C(3)
after (OR_DEL + AND_DEL) ;
C_IN <= 8T36 or ST57 after OR_DEL;
PC_IN <= ST36 or ST78 after OR_DEL;
MAR_IN <= not (ST25 or ST78) after (OR_DEL + INV_DEL);
MDR_OUT <=not PC_OUT after INV DEL;
READ <= MAR_IN; COMP <= ST5; N_IN <= ST5; MDR_IN <= ST5;
WRITE <= ST5; R_IN <= ST2; ZIN <= STO; ZEND <=STO0;
NNEND <= ST7;

LINKOPING
II.“ UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 7 2023-09-11 36

More on microcoded controllers

 Lecture 11 will cover more details on microcoded controller
structures
- Introduces also lab 3

* Lab 3 includes an example of a microcoded controller structure
- Controller used to control a user interface and a datapath

- Y and D program students have seen this approach in computer
technology courses

* Used there for creating machine instruction implementations

LINKOPING
II.“ UNIVERSITY

09/10/2023 20:16

TSTE12 Design of Digital Systems, Lecture 7 2023-09-11

Gate level simulation

« All designs will eventually reach the gate level

* Need accuracy to allow check of timing requirements
- Setup time on flip-flops
- Clock signals
- Races, hazards
- Glitch example (inverter + and with rising edge input)

* Models must be efficient
- Large number of gates
- Slow simulation due to accuracy
+ Still much faster than spice simulation

37

LINKOPING
II.“ UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 7 2023-09-11

How accurate can a gate model be?

« Example: 2 input OR-gate

38

Entity OR2 IS ENTITY OR2G IS

Port (I1, 12 : in bit; O : out bit); Generic (DEL: TIME)M
END OR?2; in bi

’ Port (I1, 12 : in bit; O : out

Architecture DELTA_DEL of OR2 IS lg)irt)'(o o
BEG_IN ' END OR2G;
O<=110RI2; Architecture GNR_DEL of
END DELTA_DEL; OR2G IS
Architecture FIXED_DEL OF OR2 IS BEGIN
BEGI_N ' O <=11 OR 12 after DEL;

O <=11 OR 12 after 3 ns; END GNR_DEL,

END FIXED_DEL;

LINKOPING
II.“ UNIVERSITY

09/10/2023 20:16

TSTE12 Design of Digital Systems, Lecture 7

Model accuracy

2023-09-11 39

* Models are better and better, but not good enough

- Multiple timing models required
- typical delay, max, min

* Want single model, only changing one constant

- Timing CONTROL

- Set one constant to define type of timing (min, max, typical)

LINKOPING
II.“ UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 7

Code example

use work. TIMING_CONTROL.all;

entity OR2_TV is
generic(TMIN,TMAX,TTYP: TIME);
port(11,12: in BIT; O: out BIT);

end OR2_TV,

architecture VAR_T of OR2_TV is
begin
O <=11 or 12 after T_CHOICE(TIMING_SEL,
TMIN, TMAX,TTYP);
end VAR_T;

2023-09-11 40

package TIMING_CONTROL is
type TIMING is (MIN,MAX, TYP,DELTA);
constant TIMING_SEL: TIMING :=TYP;
function T_CHOICE(TIMING_SEL: TIMING;
TMIN,TMAX,TTYP: TIME)
return TIME;
end TIMING_CONTROL;

package body TIMING_CONTROL is
function T_CHOICE(TIMING_SEL: TIMING;
TMIN, TMAX,TTYP: TIME)
return TIME is
begin
case TIMING_SEL is
when DELTA => return 0 ns;
when TYP => return TTYP;
when MAX => return TMAX;
when MIN => return TMIN;
end case;
end T_CHOICE;
end TIMING_CONTROL;

LINKOPING
II.“ UNIVERSITY

09/10/2023 20:16

TSTE12 Design of Digital Systems, Lecture 7 2023-09-11 41

Additional timing details

e Timi . . entity OR2GV is
Iming 1s asymmetric generic(TPLH, TPHL: TIME);

- Different rise and fall times port(11,12: in BIT; O: out BIT);

end OR2GV,;
- Needs modeling
architecture VAR_DEL of OR2GV is
begin
process(11,12)
variable OR_NEW,OR_OLD:BIT;
begin
OR_NEW :=11or 12;
if OR_NEW ='1"and OR_OLD ="'0' then
O <= OR_NEW after TPLH;
elsif OR_NEW ='0'and OR_OLD ="1" then
O <= OR_NEW after TPHL;
end if;
OR_OLD := OR_NEW;
end process;
end VAR_DEL;

LINKOPING
II.“ UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 7 2023-09-11 42

Load dependency

* Every attached gate input slows the output speed
- Large fan-out
- Load is gate dependent
* Number of transistor gates connected
¢ Size of transistors on input gate

* Each connection corresponds to a small delay
- Model each individual input wire delay
- Gate delay included in output wire delay

* Not good enough still
- Delay depends on edge slope, temperature, etc.

LINKOPING
II.“ UNIVERSITY

09/10/2023 20:16

TSTE12 Design of Digital Systems, Lecture 7 2023-09-11 43

Common model used in synopsis
library compiler
* Drorar = D; + Dg + Dy + D¢

* D, = Intrinsic delay inherent in gate and independent of
where/how it is used

Dy = Slope delay caused by ramp time of the input signal

e D; Transition delay caused by loading of the output pin
(apprOX Rdriver (Cwire+cpin))

e D. Connect media delay to an input pin (wire delay).

LINKOPING
II.“ UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 7 2023-09-11 44

Different max and min

Roriver Ryre
AN AN
» Wire delay (D) more complicated ﬁ *j—c chz J—;CN
- Worst case Worst Case
- Dest case —AR’\NE_—:[_—_TH:[T’V{AMA
- Balanced Lo ycmgc‘ ;rq ;;CN
» Technology library o
- Large amount of information Cwa C T
- Usually described as tables _/\R/VV_L | M_n_ L
- Sometimes described as polynomial coefficients JC ey, T
Ryme/N
Cwm@ C@

LINKOPING
II.“ UNIVERSITY

09/10/2023 20:16

TSTE12 Design of Digital Systems, Lecture 7 2023-09-11 45

Back annotation

* The process of abstraction

- adding more details to a high level model by analyzing a lower abstraction
level model

- Example: Layout information used to generate timing information in a
gate netlist
* Standardized way: SDF
- Add timing info from layout to gate level
- Useful for general timing requirements and properties)
- Delays module path, device, interconnect, and port

LINKOPING
II.“ UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 7 2023-09-11 46

SDF file format

* Timing checks: setup, hold, (CELL
. (CELLTYPE "DFF")
recovery, removal, skew, width, (INSTANCE top/b/c)
. (DELAY
period, and no change (ABSOLUTE
. . . (IOPATH (posedge clk) q (2:3:4) (5:6:7))

* Timing constraints: path, skew, | (ORT el (2:3:4) (5:6:7))

period, sum, and diff)

(TIMINGCHECK
] o 1 (SETUPHOLD d (posed: 1k) (3:4:5) (-1:-1:-1))

* Each trippel defines min, typical, o

and max delay)
- One for positive edge
- One for negative edge

LINKOPING
II.“ UNIVERSITY

09/10/2023 20:16

TSTE12 Design of Digital Systems, Lecture 7 2023-09-11 47

SDF File format, cont.

» Design/instance-specific or type/library-specific data
* Timing environment:

» intended operating timing environment

* Scaling, environmental, and technology parameters

* Incremental delay builds on the previous models timing by
adding/subtracting timing information

* Absolute replaces timing information

LINKOPING
II.“ UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 7 2023-09-11 48

Gate models of increasing
complexity
* Creating accurate library models is time consuming

* Delay, timechecks etc. can be done in many different ways

* A standard has evolved that defines what parameters to use
- Simplifies back annotation
- Allows for accelerated models (hard-coded)

LINKOPING
II.“ UNIVERSITY

09/10/2023 20:16

TSTE12 Design of Digital Systems, Lecture 7 2023-09-11 49

VITAL models of gates

-- BEHAVIOR SECTION
VITALBehavior : process (A_ipd, B_ipd, C_ipd, D_ipd)
-- functionality results

° Three pa]_"ts: Input d.e].a.}f, Funct]_ona]_ VARIABLE Results: STD_LOGIC_VECTOR(1 to 1):=(others => 'X');

ALIAS Y _zd : STD_LOGIC is Results(1);

and Path de]_ay -- output glitch detection variables
VARIABLE Y GlitchData : VitalGlitchDataType;
begin
library IEEE; -- Functionality Section
use IEEE.VITAL Primitives.all; Y zd := (NOT ((D_ipd) AND ((B_ipd) OR (A_ipd) OR C_ipd))));
library LIBVUOF; -- Path Delay Section
use LIBVUOF.VTABLES.all; VitalPathDelay01l (
architecture VITAL of ONAND is OutSignal => Y,
attribute VITAL_LEVEL1 of VITAL : architecture is TRUE; GlitchData => Y GlitchData,
SIGNAL A_ipd : STD_ULOGIC := 'X'; OutSignalName => "Y",
SIGNAL B_ipd : STD_ULOGIC := 'X'; OutTemp => Y_zd,
SIGNAL C_ipd : STD_ULOGIC := 'X'; Paths => (0 => (A_ipd'last_event, tpd_A Y, TRUE),
SIGNAL D_ipd : STD_ULOGIC := 'X'; 1 => (B_ipd'last_event, tpd B Y, TRUE)
begin 2 => (C_ipd'last_event, tpd C Y, TRUE),
-- INPUT PATH DELAYS 3 => (D_ipd'last_event, tpd D_Y, TRUE)),
WireDelay : block Mode => OnDetect,
begin Xon => Xon,
VitalWireDelay (A_ipd, A, tipd A); MsgOn => MsgoOn,
VitalWireDelay (B_ipd, B, tipd B); MsgSeverity => WARNING) ;
VitalWireDelay (C_ipd, C, tipd_C); end process;
VitalWireDelay (D_ipd, D, tipd D) ; end VITAL;
end block;
II “ LINKOPING
[) UNIVERSITY
TSTE12 Design of Digital Systems, Lecture 7 2023-09-11 50

Detection of timing errors

* Input path delay: Transport delay dependent on previous value
and wire delay

* Functional part. Boolean expression or lookup tables for fast
simulation

« Path delay: output delay, glitch handling

* Models often includes error detection
- Short spikes, short setup/hold timing etc.
- Unacceptable values (Z or X)

- Unacceptable input combinations (both set and reset active on SR
flipflop)

LINKOPING
II.“ UNIVERSITY

09/10/2023 20:16

