

TSTE12 Design of Digital Systems
Lecture 7
Kent Palmkvist

2022-09-12TSTE12 Design of Digital Systems, Lecture 07 2

Agenda

• Practical issues

• Algorithm level design
– Larger models
– Time multiplexing

• RTL level models
– Control units

• Gate level models

2022-09-11 22:07

2022-09-12TSTE12 Design of Digital Systems, Lecture 07 3

TSTE12 Deadlines Y,D,ED
• Initial version design sketch and project plan tuesday 13

September

• Weekly meetings should start
– Internal weekly meeting with transcript sent to supervisor

• Lab 2 soft deadline Wednesday 14 September at 21.00
– Lab 2 results will be checked after project end

2022-09-12TSTE12 Design of Digital Systems, Lecture 07 4

TSTE12 Deadlines MELE, erasmus

• First project meeting no later than today Monday 12 September

• Tuesday 13 September: First version of requirement specification

• Wednesday 14 September 21.00: Lab 1 deadline
– Pass required to be allowed continued project participation

2022-09-11 22:07

2022-09-12TSTE12 Design of Digital Systems, Lecture 07 5

Handin (homework), Individual!
● 1st handin published today Monday 12 September

– Deadline Monday 19 September 23:30
● Use only plan text editor (emacs, vi, modelsim or similar) for code entry.

● Solve tasks INDIVIDUALLY

● Submit answers using Lisam assignment function

– 4 different submissions for code, one for each code task
– 1 submission for all theory question answers

● Use a special terminal window when working with handins

module load TSTE12 ; TSTE12handin

2022-09-12TSTE12 Design of Digital Systems, Lecture 07 6

Algorithm level design

● Focus on functions at high
abstraction level

– Subsystems

– Algorithms to use

● Ignore timing, datapaths etc.

2022-09-11 22:07

2022-09-12TSTE12 Design of Digital Systems, Lecture 07 7

Bigger system example

● 3 units, Add and Store,
Buffered Register, RAM

● Predefined sequence
– Store value in buffer
– move buffer value to add and

store unit
– Read memory content and add to

input value
– Write back result to memory

2022-09-12TSTE12 Design of Digital Systems, Lecture 07 8

Bigger system example, cont.

● DATA_BUS driven by all modules
– Requires a resolution function
– Preset to ZZZ to get a useful value (X will always give X)
– Note this is done in the entity! Reason: inout => Driver on the entity

entity RAM is
 generic(RDEL,DISDEL,ACK_DEL,ACK_PW: TIME);
 port(DATA: inout BUS1(7 downto 0):="ZZZZZZZZ";
 ADDR: in MVL4_VECTOR(4 downto 0);
 RD,WRITE,CS: in MVL4;
 RACK,WACK: out MVL4);
end RAM;

2022-09-11 22:07

2022-09-12TSTE12 Design of Digital Systems, Lecture 07 9

Simple RAM model

● Use of MVL4
=> use drive
and sense
functions

architecture SIMPLE of RAM is
begin
 MEM: process (CS,RD,WRITE)
 type MEMORY is array(0 to 31) of MVL4_VECTOR(7 downto 0);
 variable MEM: MEMORY:= (others => (others => '0'));
 begin
 if CS = '1' then
 if RD = '1' then
 DATA <= DRIVE(MEM(INTVAL(ADDR))) after RDEL;
 RACK <= '1' after ACK_DEL,
 '0' after ACK_DEL + ACK_PW;
 elsif WRITE = '1' then
 MEM (INTVAL(ADDR)):= SENSE(DATA,'1');
 WACK <= '1' after ACK_DEL, '0' after ACK_DEL+ACK_PW;
 end if;
 else
 DATA <= "ZZZZZZZZ" after DISDEL;
 end if;
 end process MEM;
end SIMPLE;

2022-09-12TSTE12 Design of Digital Systems, Lecture 07 10

Bigger example, cont.

● The RAM-model uses an aggregate to initialize all elements to
zero

● ADD and Store is a form of a state machine
– Go through a sequence step by step
– Execute some function in each step
– Each step ends in a wait

● Divide system into datapath and control

● Clock generation as earlier (loop with run)

2022-09-11 22:07

2022-09-12TSTE12 Design of Digital Systems, Lecture 07 11

Bigger example, cont.
CON: process
 variable DATA_REG:
 MVL4_VECTOR(7 downto 0);
 begin
 if RESET = '1' then --CS0
 DATA <= "ZZZZZZZZ"after DIS_DEL;
 end if;
 wait on DAV until DAV = '1';
--
 EN <= '1' after CON_DEL; --CS1
 wait for CLK_PER;
--
 EN <= '0' after CON_DEL;
 DATA_REG := SENSE(DATA,'1'); --CS2
 wait for CLK_PER;
--
 MADDR <= DADDR after MA_DEL;
 MEMEN <= '1' after CON_DEL; --CS3
 READ <= '1' after CON_DEL;
 wait on RACK until RACK ='1';
--

 DATA_REG :=
 ADD8(SENSE(DATA,'1'),DATA_REG);
 READ <= '0'after CON_DEL;
 MEMEN <= '0'after CON_DEL; --CS4
 wait for CLK_PER;
--
 DATA <= DRIVE(DATA_REG) after DO_DEL;
 WRITE <= '1'after CON_DEL;
 MEMEN <= '1'after CON_DEL; --CS5
 wait on WACK until WACK ='1';
--
 WRITE <= '0'after CON_DEL;
 MEMEN <= '0'after CON_DEL; --CS6
 DATA <= "ZZZZZZZZ" after DIS_DEL;
 wait for CLK_PER;
end process CON;

2022-09-12TSTE12 Design of Digital Systems, Lecture 07 12

Control state machine

● Hardware aspects on the control machine
– Wait can not be used in synthesis
– Use a manual direct translation technique

● One-hot encoding
– Simple and straight forward
– Suitable for FPGA implementation
– Low complexity decoding of state

2022-09-11 22:07

2022-09-12TSTE12 Design of Digital Systems, Lecture 07 13

One-hot encoded controller

2022-09-12TSTE12 Design of Digital Systems, Lecture 07 14

Control step classes

● Automatic increase
– From step ci to ci+1 after some time

● Handshake
– Wait for DAV, CS1 => EN = 1, Buffer resets DAV when EN = 1

● Asynchronous stepping
– CS3 to CS4: Wait for external RACK edge, RACK may be shorter than 1

clock period!

2022-09-11 22:07

2022-09-12TSTE12 Design of Digital Systems, Lecture 07 15

Hardware vs Behavioral model

● Important to have same behavior of hardware and VHDL model

● Reset behavior is different
– The model only checks for reset in CS0
– Hardware checked reset everywhere
– Different behavior between model and HW! Bad.
– Add reset check in every control step

2022-09-12TSTE12 Design of Digital Systems, Lecture 07 16

Why single clock domainn

● Reset problems
– Even single clock domain should synchronize asynchronous reset inputs
– Must guarantee that whole circuit releases from reset at the same time

● Communication problems
– Possible race between data and clock
– Metastability

2022-09-11 22:07

2022-09-12TSTE12 Design of Digital Systems, Lecture 07 17

Control branching

● Want a control machine able to handle conditional
execution of sequences
– Similar to hierarchical finite state machine (FSM)
– VHDL cannot do jumps, only breaking loops

● Working implementation approach
– Sequences in individual processes
– Check at end of process which process to start next

● Output signals from state machine
– Require Resolution function as assignment done in

multiple processes (need to turn off non-active processes)

Proc_A

Proc_B Proc_C

Each processes
should control
signal S

X=1 X=0

2022-09-12TSTE12 Design of Digital Systems, Lecture 07 18

Control branching using multiple
processes

architecture TWO of WAIT_STEPS is

 signal TRIGGERB,TRIGGERBA,
 TRIGGERC,TRIGGERCA: DOT1 := '0';
 signal SINT: RINTEGER register;

begin

A: process
 begin
 SINT <= null;
 wait on RUN,TRIGGERBA,TRIGGERCA until RUN = '1';
 SINT <= 0; ---Step 0
 wait for CLK_DEL;
 SINT <= 1; ---Step 1
 wait for CLK_DEL;
 SINT <= null;
 if X = '1' then
 TRIGGERB <= not(TRIGGERB);
 else
 TRIGGERC <= not(TRIGGERC);
 end if;
 end process A;

B: process
 begin
 SINT <= null;
 wait on TRIGGERB;
 SINT <= 2; ---Step 2
 wait for CLK_DEL;
 SINT <= 3; ---Step 3
 wait for CLK_DEL;
 SINT <= null;
 TRIGGERBA <= not(TRIGGERBA);
 end process B;

C: process
 begin
 SINT <= null;
 wait on TRIGGERC;
 SINT <= 4; ---Step 4
 wait for CLK_DEL;
 SINT <= 5; ---Step 5
 wait for CLK_DEL;
 SINT <= null;
 TRIGGERCA <= not(TRIGGERCA);
 end process C;
 S <= SINT;

end TWO;

2022-09-11 22:07

2022-09-12TSTE12 Design of Digital Systems, Lecture 07 19

Time multiplexing

● Problem: Multiple processes driving one signal
– Multiple drivers (one for each process)
– Want to enable separate drivers at non-overlapping intervals
– Assigned signal value should keep the value even after driver enable

removed (memory function)
– Use signal type containing a resolution function

● Remember: This is NOT for synthesis

2022-09-12TSTE12 Design of Digital Systems, Lecture 07 20

Time Multiplexing, non-working

● Two-phase clock
– One pulse each alternating

● Resolved output signal Z
– Allows multiple assignment

● Problem
– Z = ’X’ when PH_TWO assign ’1’
– Assignment from PH_ONE will

not turn off
– Each driver always outputs last

assigned value

entity TIME_MUX is
 generic(DEL1,DEL2: TIME);
 port(PHASE_ONE,PHASE_TWO: in MVL4;
 Z: out DOTX := '0');
end TIME_MUX;

architecture PROCESS_IF_0 of TIME_MUX is
begin

 PH_ONE:process(PHASE_ONE)
 begin
 if PHASE_ONE = ’1’ then
 Z <= '0' after DEL1;
 end if;
 end process;

 PH_TWO:process(PHASE_TWO)='1')
 begin
 if PHASE_TWO = ’1’ then
 Z <= '1' after DEL2;
 end if;
 end PH_TWO;

end PROCESS_IF_0;

2022-09-11 22:07

2022-09-12TSTE12 Design of Digital Systems, Lecture 07 21

Time multiplexing, cont.

● Ordinary processes
– Assignment of null

disables driver
– Keyword register in

signal declaration
● defines what

happen when all
driver are null

architecture PROC_NULL of TIME_MUX is
 signal ZINT: DOTX register;
begin

 PH_ONE: process(PHASE_ONE)
 begin
 if PHASE_ONE = '1' then
 ZINT <= '0' after DEL1;
 else
 ZINT <= null;
 end if;
 end process PH_ONE;

 PH_TWO: process(PHASE_TWO)
 begin
 if PHASE_TWO = '1' then
 ZINT <= '1' after DEL2;
 else
 ZINT <= null;
 end if;
 end process PH_TWO;

 Z <= ZINT;

end PROC_NULL;

2022-09-12TSTE12 Design of Digital Systems, Lecture 07 22

Time multiplexing, cont.

● Use bus instead of
register
– Default resolution

function used if not
driven

● Resolution
function recieves
an empty input

– MVL4 resolution
function start with
’Z’ value!

architecture PROC_NULL of TIME_MUX is
 signal ZINT: DOTX bus;
begin

 PH_ONE: process(PHASE_ONE)
 begin
 if PHASE_ONE = '1' then
 ZINT <= '0' after DEL1;
 else
 ZINT <= null;
 end if;
 end process PH_ONE;

 PH_TWO: process(PHASE_TWO)
 begin
 if PHASE_TWO = '1' then
 ZINT <= '1' after DEL2;
 else
 ZINT <= null;
 end if;
 end process PH_TWO;

 Z <= ZINT;

end PROC_NULL;

2022-09-11 22:07

2022-09-12TSTE12 Design of Digital Systems, Lecture 07 23

Time multiplexing, cont.

● Without the use of
Register/Bus.

● Separate signals,
check 'QUIET to
find active
assignment

entity TIME_MUX is
 generic(DEL1,DEL2: TIME);
 port(PHASE_ONE,PHASE_TWO: in
MVL4;
 Z: buffer MVL4);
end TIME_MUX;

architecture QUIET_MUX of TIME_MUX is
 signal PH1,PH2,Z1,Z2: MVL4;
begin

 PH_ONE: process(PHASE_ONE)
 begin
 if PHASE_ONE = '1' then
 Z1 <= '0' after DEL1;
 end if;
 end process PH_ONE;

PH_TWO: process(PHASE_TWO)
 begin
 if PHASE_TWO = '1' then
 Z2 <= '1' after DEL2;
 end if;
 end process PH_TWO;

 Z <= Z1 when not Z1'quiet else
 Z2 when not Z2'quiet else
 Z;

end QUIET_MUX;

2022-09-12TSTE12 Design of Digital Systems, Lecture 07 24

Register transfer level (RTL)

● At this level can the following aspects be analysed
– Compare timing between different units at register level

● Delay in subfunctions, etc.
– Resource allocation

● Number of buses, registers, processing elements etc.
– Scheduling (when to perform an operation)
– Control structure (e.g., microcoded control units)
– Bus design

2022-09-11 22:07

2022-09-12TSTE12 Design of Digital Systems, Lecture 07 25

Difference between behavior and
dataflow descriptions

● Behavioral model
– System with two registers and an adder
– Behavior description does not indicate

how operations are performed
– Command selects operation
– Only signals that corresponds to saved

data

entity REG_SYS is
 port(C: in BIT;
 COM: in BIT_VECTOR(0 to 1);
 INP: in BIT_VECTOR(0 to 7));
end REG_SYS;

architecture ALG of REG_SYS is
 signal R1,R2: BIT_VECTOR(0 to 7);
begin

 process(C)
 begin
 if C='1' then
 case COM is
 when "00" => R1 <= INP;
 when "01" => R2 <= INP;
 when "10" => R1 <= ADD8(R1,R2);
 when "11" =>
 R1 <= ADD8(R1,INC8(not(R2)));
 end case;
 end if;
 end process;

end ALG;

2022-09-12TSTE12 Design of Digital Systems, Lecture 07 26

Behavioral vs Dataflow, cont.

● Dataflow model
– More signals (many for communication)
– Operations are registers, multiplexes, or arithmetic/logic operations
– Global decoding using signals D00 to D11
– Corresponds to a data flow graph

2022-09-11 22:07

2022-09-12TSTE12 Design of Digital Systems, Lecture 07 27

Behavioral vs Dataflow, cont.
architecture DF1 of REG_SYS is
 signal MUX_R1,R1,R2,R2C,R2TC,MUX_ADD,SUM:
 BIT_VECTOR(0 to 7);
 signal D00,D01,D10,D11,R1E: BIT;

begin
 D00 <= not COM(0) and not COM(1);
 D01 <= not COM(0) and COM(1); ---Command Decoder
 D10 <= COM(0) and not COM(1);
 D11 <= COM(0) and COM(1);
 MUX_R1 <= SUM when D00 = '0' else INP; --Reg 1 Mux
 R1E <= D00 or D10 or D11;

R1_REG: process(C) -- Register 1
 begin
 if (C=’1’) and C’EVENT) then
 if (R1E = '1') then
 R1 <= MUX_R1;
 end if;
 end if;
 end process;

R2_REG: process(C) --Register 2
 begin
 if (C=’1’) and C’EVENT) then
 if (D01 = '1') then
 R2 <= INP;
 end if;
 end if;
 end process;

 R2C <= not R2; ---Complement
 R2TC <= INC8(R2C); ---Increment
 MUX_ADD <= R2TC when D11 = '1' else R2; ---Adder Mux
 SUM <= ADD8(R1,MUX_ADD); ---Adder

end DF1;

2022-09-12TSTE12 Design of Digital Systems, Lecture 07 28

Described Dataflow implementation

● One-to-one mapping
 MUX_R1 <= SUM when D00 = '0'
 else INP;
 R1E <= D00 or D10 or D11;
R1_REG: process(C) begin
 if (C=’1’) and C’EVENT and
 (R1E=’1’) then
 R1 <= MUX_R1;
 end if; end process;
R2_REG: process(C) begin
 if (C=’1’) and C’EVENT and
 (D01='1') then
 R2 <= INP;
 end if; end process;
 R2C <= not R2;
 R2TC <= INC8(R2C);
 MUX_ADD <= R2TC when D11 = '1'
 else R2;
 SUM <= ADD8(R1,MUX_ADD);

2022-09-11 22:07

2022-09-12TSTE12 Design of Digital Systems, Lecture 07 29

Control units

● Hard wired
– Moore (output only dependent on state)
– Mealy (output dependent on state and input)
– Fast
– Custom designed

● Microcoded
– Cheap
– Standardized (easy to reuse)

2022-09-12TSTE12 Design of Digital Systems, Lecture 07 30

Microcoded control unit

● General structure
– AG = Adress generator
– MAR = Memory Adress Register
– MIR = Memory Instruction register

2022-09-11 22:07

2022-09-12TSTE12 Design of Digital Systems, Lecture 07 31

Microcoded control unit

● Advantages
– Easy to create a generic design
– Only ROM contents needs to be replaced
– Easy to change existing design
– Short design time (low design cost)
– May use compiler to create ROM contents

● Drawbacks
– Slower in many cases (ROM must be read)

● Only Moore type of controllers
– Small controllers are more expensive due to extra register and ROM
– Must be designed for worst case regarding required features

2022-09-12TSTE12 Design of Digital Systems, Lecture 07 32

Microcoded control unit, example

● Controller for an extremly small RISC processor
– 4 register (PC, R, MDR, MIR)
– 1 subtraction unit
– Some multiplexers and busses
– Use the same add unit both for instruction operation and

PC update
– Cost: 9 clock cycles per instruction

● Only one instruction: subtract with branch on
negative result
– 3 byte instruction

● 1st operand address, 2nd operand address, branch address

2022-09-11 22:07

2022-09-12TSTE12 Design of Digital Systems, Lecture 07 33

Controller for structure

● One instruction execution
0. PCout,Zin,MARin,READ,ZEND
1. MDRout,MARin,READ

2. MDRout,Rin
3. Pcout,Cin,PCin,MARin,READ

4. MDRout,MARin,READ
5. MDRout,COMP,Cin,Nin,MDRin,WRITE

6. PCout,Cin,PCin,MARin,READ
7. PCout,Cin,PCin,NNEND

8. MDRout,Pcin

● 2 loops, 0-7 or 0-8

2022-09-12TSTE12 Design of Digital Systems, Lecture 07 34

Control with two jumps, microcoded

● All control steps described
in a ROM table

● Easy to understand

● Easy to redesign

2022-09-11 22:07

2022-09-12TSTE12 Design of Digital Systems, Lecture 07 35

URISC controller, Mealy

● Inclear sequence

● Hard to modify

● Faster

2022-09-12TSTE12 Design of Digital Systems, Lecture 07 36

More on microcoded controllers

● Lecture 11 will cover more details on microcoded controller
structures
– Introduces also lab 3

● Lab 3 includes an example of a microcoded controller structure
– Controller used to control a user interface and a datapath
– Y and D program students have seen this approach in computer

technology courses
● Used there for creating machine instruction implementations

2022-09-11 22:07

2022-09-12TSTE12 Design of Digital Systems, Lecture 07 37

Gate level simulation

● All designs will eventually reach the gate level

● Need accuracy to allow check of timing requirements
– Setup time on flip-flops
– Clock signals
– Races, hazards
– Glitch example (inverter + and with rising edge input)

● Models must be efficient
– Large number of gates
– Slow simulation due to accuracy

● Still much faster than spice simulation

2022-09-12TSTE12 Design of Digital Systems, Lecture 07 38

How accurate can a gate model be?

● Example: 2 input OR-gate

Entity OR2 IS
 Port (I1, I2 : in bit; O : out bit);
END OR2;
Architecture DELTA_DEL of OR2 IS
BEGIN
 O <= I1 OR I2;
END DELTA_DEL;
Architecture FIXED_DEL OF OR2 IS
BEGIN
 O <= I1 OR I2 after 3 ns;
END FIXED_DEL;

ENTITY OR2G IS

 Generic (DEL: TIME)M
 Port (I1, I2 : in bit; O : out

bit);
END OR2G;
Architecture GNR_DEL of

OR2G IS
BEGIN
 O <= I1 OR I2 after DEL;
END GNR_DEL;

2022-09-11 22:07

2022-09-12TSTE12 Design of Digital Systems, Lecture 07 39

Model accuracy

● Models are better and better, but not good enough
– Multiple timing models required
– typical delay, max, min

● Want single model, only changing one constant
– Timing_CONTROL
– Set one constant to define type of timing (min, max, typical)

2022-09-12TSTE12 Design of Digital Systems, Lecture 07 40

Code example
package TIMING_CONTROL is
 type TIMING is (MIN,MAX,TYP,DELTA);
 constant TIMING_SEL: TIMING := TYP;
 function T_CHOICE(TIMING_SEL: TIMING;
 TMIN,TMAX,TTYP: TIME)
 return TIME;
end TIMING_CONTROL;

package body TIMING_CONTROL is
 function T_CHOICE(TIMING_SEL: TIMING;
 TMIN,TMAX,TTYP: TIME)
 return TIME is
 begin
 case TIMING_SEL is
 when DELTA => return 0 ns;
 when TYP => return TTYP;
 when MAX => return TMAX;
 when MIN => return TMIN;
 end case;
 end T_CHOICE;
end TIMING_CONTROL;

use work.TIMING_CONTROL.all;
entity OR2_TV is
 generic(TMIN,TMAX,TTYP: TIME);
 port(I1,I2: in BIT; O: out BIT);
end OR2_TV;

architecture VAR_T of OR2_TV is
begin
 O <= I1 or I2 after T_CHOICE(TIMING_SEL,
 TMIN,TMAX,TTYP);
end VAR_T;

2022-09-11 22:07

2022-09-12TSTE12 Design of Digital Systems, Lecture 07 41

Additional timing details

● Timing is asymmetric
– Different rise and fall times
– Needs modeling

entity OR2GV is
 generic(TPLH,TPHL: TIME);
 port(I1,I2: in BIT; O: out BIT);
end OR2GV;

architecture VAR_DEL of OR2GV is
begin
 process(I1,I2)
 variable OR_NEW,OR_OLD:BIT;
 begin
 OR_NEW := I1 or I2;
 if OR_NEW = '1' and OR_OLD = '0' then
 O <= OR_NEW after TPLH;
 elsif OR_NEW = '0' and OR_OLD = '1' then
 O <= OR_NEW after TPHL;
 end if;
 OR_OLD := OR_NEW;
 end process;
end VAR_DEL;

2022-09-12TSTE12 Design of Digital Systems, Lecture 07 42

Load dependency

● Every attached gate input slows the output speed
– Large fan-out
– Load is gate dependent

● Number of transistor gates connected
● Size of transistors on input gate

● Each connection corresponds to a small delay
– Model each individual input wire delay
– Gate delay included in output wire delay

● Not good enough still
– Delay depends on edge slope, temperature, etc.

2022-09-11 22:07

2022-09-12TSTE12 Design of Digital Systems, Lecture 07 43

Common model used in synopsis
library compiler

● DTOTAL = DI + DS + DT + DC

● DI = Intrinsic delay inherent in gate and independent of
where/how it is used

● DS = Slope delay caused by ramp time of the input signal

● DT Transition delay caused by loading of the output pin
(approx Rdriver (Cwire+Cpin))

● DC Connect media delay to an input pin (wire delay).

2022-09-12TSTE12 Design of Digital Systems, Lecture 07 44

Different max and min

● Wire delay (DC) more complicated
– Worst case
– Best case
– Balanced

● Technology library
– Large amount of information
– Usually described as tables
– Sometimes described as polynomial coefficients

2022-09-11 22:07

2022-09-12TSTE12 Design of Digital Systems, Lecture 07 45

Back annotation

● The process of abstraction
– adding more details to a high level model by analyzing a lower abstraction

level model
– Example: Layout information used to generate timing information in a

gate netlist

● Standardized way: SDF
– Add timing info from layout to gate level
– Useful for general timing requirements and properties)
– Delays module path, device, interconnect, and port

2022-09-12TSTE12 Design of Digital Systems, Lecture 07 46

SDF file format

● Timing checks: setup, hold,
recovery, removal, skew, width,
period, and no change

● Timing constraints: path, skew,
period, sum, and diff

● Each trippel defines min, typical,
and max delay
– One for positive edge
– One for negative edge

2022-09-11 22:07

2022-09-12TSTE12 Design of Digital Systems, Lecture 07 47

SDF File format, cont.

● Design/instance-specific or type/library-specific data

● Timing environment:

● intended operating timing environment

● Scaling, environmental, and technology parameters

● Incremental delay builds on the previous models timing by
adding/subtracting timing information

● Absolute replaces timing information

2022-09-12TSTE12 Design of Digital Systems, Lecture 07 48

Gate models of increasing
complexity

● Creating accurate library models is time consuming

● Delay, timechecks etc. can be done in many different ways

● A standard has evolved that defines what parameters to use
– Simplifies back annotation
– Allows for accelerated models (hard-coded)

2022-09-11 22:07

2022-09-12TSTE12 Design of Digital Systems, Lecture 07 49

VITAL models of gates

● Three parts: Input delay, Functional
and Path delay

2022-09-12TSTE12 Design of Digital Systems, Lecture 07 50

Detection of timing errors

● Input path delay: Transport delay dependent on previous value
and wire delay

● Functional part. Boolean expression or lookup tables for fast
simulation

● Path delay: output delay, glitch handling

● Models often includes error detection
– Short spikes, short setup/hold timing etc.
– Unacceptable values (Z or X)
– Unacceptable input combinations (both set and reset active on SR

flipflop)

2022-09-11 22:07

2022-09-11 22:08

