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Agenda

* Practical issues
- Material
- Lab 1 requirements
* Project task intro
* Introduction to VHDL, continued
- Timing
- Testbench
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TSTE12 Deadlines Y,D,ED

* Group definitions Thursday 1 September (afternoon)
- On web, include supervisor assignment

* Friday 2 September (possible also monday 5/9): First meeting
with supervisor

- Determine project manager (contact person)
- Questions (short meeting)
* Tuesday 6 September: First version of requirement specification

* Hint: Deadline means “no later than”, i.e., allowed to complete
tasks before these dates
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TSTE12 Deadlines MELE, erasmus

* Group definition Wednesday 7 September (afternoon)
- On web, include supervisor assignment

* Friday 9 September: First meeting with supervisor
- Determine project manager (contact person)
- Question (short meeting)

* Tuesday 13 September: First version of requirement specification
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Shared folder problem

* Currently a configuration problem with the use of shared lab folders
* Temporary solution: Use initially a folder in your home folder
— Drawback: Limit the access of the file to the student who logged in

— Not a big problem if you work on the tutorial (the files are not needed later on)
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Useful resources

* Lab hardware description (on the linux machines)
— /courses/TSTE12/material/DE2-115_SystemCD_v3.0.6

— Lab board datasheets, schematic of hardware
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Lab 1 requirements

* Working design (both simulation and hardware)

* Only use sys_clk as (the only) clock signal
— This is the 100 MHz sys_clk on the board

* Testbench testing two different key sequences
— Should test after each key scan code input has been generated

— A text message in the simulator window should be displayed after each scan
code test telling the user if test was ok or failed.
* Hint: No need to count the number of received bits, or verify parity and stop bits.
Is OK to have intermediate flickering on the display while data is received
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VHDL model testingComments

» Testbench
- Standard approach

v
v

DUT

Stimuli
Analysis

- Test of design will be -
independent of simulation tool

A

* Testbench contents
- Stimuli generation
- Design under test (DUT)
- Analysis of design output
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Programming hardware in the lab

* FPGA can be configured from any of the computers
— Start Quartus Programmer
— Select hardware setup
— Select “Add server”

— Specify machine name to which the board is connected, use the password
described on the whiteboard at the door

* muxen2-009, muxen2-015

— Make sure the correct machine and board is defined as hardware
* Remember to check that attached computer is on
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Useful linux commands

* Remember to always work from the “mentorskal” terminal window (except for
handins)

* Sets the access rights correctly to support sharing of files within the groups (but
not between the groups)

Is -la file_or_directory
shows owner and access rights of files

chmod g+rwx filename_or_directory

let all members of the group have full access to the file or directory (allow
others to change files)
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Project information

* Project directory will be available for all groups

— /courses/TSTE12/proj/projgrpXX

— Access only to members of the group

— This directory must be used
* Project document templates

— /courses/TSTE12/material/project/LIPS-templates
* Project functionality

— Project directive (description) on the web

— Different priority (mandatory, selective, optional)
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Project directive, high priority

* Volume & balance control (atleast 10 levels each)

— Volume is logarithmic
— Simplifications are often possible

* Multiplication is generally expensive
— Amplification (factor > 1) may lead to overflow!
* A/D and D/A implemented in separate codec chip
— Supports volume control (not necessary to feed audio into FPGA)

— Still need to initialize the codec chip (implement [2C communication)
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Optional requirement,
medium priority
* Each project group make their own choice

— No problem if more than one group selects the same project

— Chose one or at most two medium priority requirements
* Oscilloscope

— Vertical vs horizontal
— Zoom, color coding, average
- FFT

* Complex algorithm

* Use available designs if possible
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Optional requirement,
medium priority
* Echo

— Long echo requires large memory (2MByte SRAM)
— Number representation

* 44 Khz, 20 bit, stereo => 220KByte/s

* Dynamic range, Accuracy

* 2's complement/Floating point
— Controls?

* On/off, Length, Strength
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Optional requirement,
medium priority
* Signal level indication (logarithmic scale)

— Peak, average

— Screen update ~ 50Hz
* Do not want a flickery output

* Large number of samples to average on
* Peak indication

— move slowly towards zero

— quickly updated when large peak found

2022-09-01
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Optional requirement,
medium priority
* Loudness, supression of mono

— Loudness control => attenuate medium frequencies
* Equalizer

— Requires understanding of digital filters
* Test filter algorithms using Matlab

* Other sound modification algorithms possible

— Reverb, Flange
— Pitch shifts

2022-09-01
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Big hall simulation (reverb)

* Principle: Echoes from walls and objects

Arnplitude .
P http://www.soundonsound.com/sos/octO1/articles/advancedreverbl.asp
High frequency decay
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Reverb, cont.

* Three parts of the sound
— Direct path
— Early reflections
— Decaying mix of reflexions
* Time in the echoes are short
— Example: 5, 10, 20, 30, 45, 60, 75 ms versions added

— Create attenuated feedback
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Optional requirement, low priority

* Try to think of a lot of optional features
— Color coding, background image
— Animations, different VGA screen backgrounds
— Special keys to use (e.g., arrow keys)
— Change parameters at run time

— Additional volume/balance steps

* Try to optimize the size of the design

* Many clock cycles between input samples
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Process statement

[LABEL:] process (SENSITIVITY_SIGNAL_LIST)
-- constants, types, subtypes, subprograms
-- variables (NO signals)
begin
-- sequential statements
end process;

* Process always executed once at simulation start. Then whenever events occur on
signals in the sensitivity list

* Variables are static

— Initialized at simulation start

— Keep their values between process activations
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Process statements, cont.

* Can combine process statements with structural code in the same
architecture

* Processes without a sensitivity list will automatically restart at the
end of a process

- Must have some way to stop simulation/wait some time to
avoid an infinite loop (simulation appear to be hanged)

* Processes can not both have a sensitivy list and wait statements in
the same process
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Sequential code

* Processes and subprograms have sequential code
- One statement after another is executed in order
- Most similar to “ordinary” computer code

— Simulation time does not increase while executing the
statements

* Exception is the wait statement
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Sequential control statements: wait

* Used in processes and subprograms

* Examples
wait on x,y until z=0 for 100 ns;
-- wait until event on x or y while z#0 or max 100 ns)
wait for 100 ns;
wait on a,b,c; -- wait for at least one event on a, b or c
wait until z=0;
wait; -- infinite wait

2022-09-01
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Sequential control: if

if CONDITIONT1 then

-- sequence of statements 1
elsif CONDITION?2 then

-- sequence of statements 2

-- any number of elsif clauses
else

-- last sequence of statements
end if;

* Indentation not important (not like python)

2022-09-01

* CONDITION must return boolean (not enough with a bit)
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Sequential control: case

case EXPRESSION is

end case;
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when CHOICE1 => -- sequence of statements1
when CHOICE2 => -- sequence of statements 2
when others => -- last sequence of statements

* All possible choices must be covered once

— Others catch all choices not covered earlier

* Choices may be a list (e.g., when 0|1|2 =>)
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Sequential control: loop

for NAME in RANGE loop
-- sequence of operations
end loop;

while CONDITION loop

-- sequence of operations
end loop;
loop

-- sequence of statements
end loop;
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* Controlling loop behavior
next [loop_label] [when CONDITION];
— Skip the rest of the loop body

exit [loop_label] [when CONDITION];

- Terminate the loop

LINKOPING
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Various statements

Null

* Used to complete syntax requirement, e.g. in case statements
when a choice should not do anything.
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Subprograms

* Functions and procedures

* Declared in declaration region of architecture, process, block, or
other subprograms.

* Variables are dynamic (initialized at every call)

* Functions
- Always returns a value (must be used in an expression)
- Never modifies its parameters (all parameters are inputs)
- No side effects allowed

- Can not contain wait statements
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Functions

function FUNCTION_NAME (FORMAL_PARAMETER_DECLARATIONS)
return RETURN_TYPE is
-- constant and variable declarations (NO signals)
begin
-- sequential statements
return (RETURN_VALUE);
end FUNCTION_NAME;

* Must always return a defined value
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Procedures

procedure PROCEDURE_NAME
(FORMAL_PARAMETER_DECLARATIONS)
-- Procedure declaration part
-- constant and variable declarations (NO signals)
begin
-- sequential statements
end PROCEDURE_NAME;

* Formal parameters can be in, out, or inout (default in)
* May contain wait statements (but not if called from a function)
* Procedures can modify its formal parameters (no return value)
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Libraries

* All design units are stored in libraries. Accessing a library requires definition.
library LIBRARY_NAME;
— How this is done in the file system is not defined in VHDL
* Libraries have only logical names

— Simulator and synthesis uses tool-dependent mappings from logical to physical
directories (possible including binary format file)

— Allows VHDL source code to be run on different platforms without rewrite

* Two predefined libraries: WORK STD
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Packages

* Used in similar way to header files or libraries in other languages
— Repeat declarations and definitions
* Divided into the declaration and body

— Declaration part consists of visible declarations when using the package

* Constants, types, subprograms
— Declaratation parts contains subprogram names and parameter list, but no code
— Body is visible only within the package. Includes the code for the subprograms

— Only one possible body definition
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Package example

package HANDY 1is
subtype BITVECT3 is BIT_VECTOR(O to 2);
subtype BITVECT2 is BIT_VECTOR(O to 1);
function MAJ3(X: BIT_VECTOR(O to 2) return BIT;

--- Other declarations ----------

end HANDY

package body HANDY is
function MAJ3(X: BIT_VECTOR(O to 2))
return BIT is
begin
return (X(0) and X(1)) or (X(0) and X(2)) or (X(1) and X(2));
end MAJ3;

--- Other subprogram declarations --------

end HANDY,

33
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VHDL cont., Packages

* Packages included in a design by the use clause

* use LIBRARY_NAME.PACKAGE_NAME.ELEMENT_ NAME;

— Element name ALL matches complete body declaration
* Standard packages: std.standard

— boolean, bit, character, severity level, string, bit_vector, time

— Automatically included

* Packages and libraries used to add new functionality to the language

— Additional datatypes to support e.g., tristate levels, mathematical functions, etc.

34
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Packages, 1164 standard

 IEEE.STD LOGIC 1164

- std logic data types, overloaded boolean functions, conversion functions,
edge detection functions

 IEEE.NUMERIC STD

- Opverloaded arithmetic functions for std logic vector and conversion
functions to/from integer

- Defines UNSIGNED and SIGNED datatypes

* Can be converted to/from std logic vector through typecast, e.g.,
std_logic_vector signal <= std logic vector(unsigned vectorsignal)

 IEEE.NUMERIC BIT

- Allows numeric processing of bitvectors

KT
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* Defines which entity in a library architecture STRUCTURAL of ONES_COUNT is
should be used in the structural component XOR GATE
COde port (X,Y : in bit; O : out bit);
end component;
* Structural example: How to know component NAND_GATE _
. . port (X,Y : in bit; O : out bit);
which gate is used? end component
- Component declaration name does signal I1, I2, I3 : bit;
not need to exist begin
- Assume names are XOR2 and NAND?2 ULl : XOR_GATE port map(A(0),A(1),I1);
U2 : XOR_GATE port map(I1,A(2),C(0));
: U3 : NAND_GATE port map(A(0),A(1),I2);
* Conﬁguratlon maps between U4 : NAND_GATE port map(A(2),I1,I3);
entity and architecture in library US : NAND_GATE port map(12,13,C(1));
and component name in structure end STRUCTURAL;
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C O N ﬁ g U ra ti O N architecture STRUCTURAL of ONES_COUNT is

component XOR_GATE
example port (X,Y : in bit; O : out bit);
end component;
. component NAND_GATE
* Add configuration statement port (X,Y : in bit; 0 : out bit);

. end component
to select exact instance and
for Ul : XOR_GATE use entity work.xor2(behav);

arChlteCture fO]f' eaCh for U2 : XOR_GATE use entity work.xor2(behav);
: for U3 : NAND_GATE use entity work.nand2(behav);
lnStance' for U4 : NAND_GATE use entity work.nandZ(behav);

. for U5 : NAND_GATE use entity work.nand2(behav);
* Drawback: require

recompilation if library entity
mapping is changed

signal I1, I2, I3 : bit;
begin

Ul : XOR_GATE port map(A(0),A(1),I1);
U2 : XOR_GATE port map(I1,A(2),C(0));
U3 : NAND_GATE port map(A(0),A(1),I2);
U4 : NAND_GATE port map(A(2),I1,I3);
U5 : NAND_GATE port map(I2,I3,C(1));

end STRUCTURAL;
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Configurations, cont.

* Possible to create a configuration as a separate unit (here named
STRUCT BEHAV XOR)

configuration STRUCT_BEHAV_XOR of ONES_COUNT is

for BEHAV
for U1:XOR_GATE use entity work.EXORGATE(BEHAV);

end for;
for U2:XOR_GATE use entity work.EXORGATE(BEHAV);

end for;
end STRUCT_BEHAV_XOR;

* Multiple configurations possible for the same entity (similar to
having multiple architectures)

- Useful for testbench where both behavoral model and final netlist version
of the device should be tested
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Visibilit

* Same name may be used for multiple
purposes

- Doing this may hide some units
depending on the situation

package SIG is

signal X: INTEGER:= 1;
end SIG;
use work.SIG.all;
entity Y is

signal X: INTEGER:= 2;
end Y;

2022-09-01 39

architecture Z of Y is
signal Zz1,72,73,24,25: INTEGER:= 0O;
function R return INTEGER is
variable X: INTEGER := 3;
begin
return X; -- Returns value of 3.
end R;
begin
B: block
signal X: INTEGER := 4;
signal Z6: INTEGER := 0;
begin
Z6 <= X + Y.X;, -- 1726 =6
end block B;

P1: process
variable X: INTEGER :=5;
begin
75 <= X; -- Z5=5
wait;
end process;

Z1 <= work.SIG.X; -- zZ1=1

72 <= X; -- Z2=2

Z3 <= R; -- 23=3

Z4 <= B.X; -- Z4=4
end Z;
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Advanced feature: Overloading

* Can change meaning of literals, names of operators, functions, and procedures

* Correct version found by matching both name and parameter types

* If multiple identical declarations => latest visible one is used

* Useful feature for extending the language to support new datatypes or functions

— E.g. extend to support complex valued real numbers

* IEEE standard 1164 is an example of this

— Defines new datatypes as well as how comparison, assignments, arithmetic is

done using these datatypes
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IEEE std logic 1164 package

* Define a new datatype type std_ulogic is ('u', -- uninitialized
and support functions 'x', -- forcing unknown
'e', ~-- forcing ©O
- the std logic data type "1', -- fqrcir_lg 1
= Overloads all common functions '\/Z\I' rooTT \T’;’SE imﬁﬁgzﬂce
. . .-
used for bits and bitvectors '1', -- weak 0
* AND, OR, NOT, XOR 'h', -- weak 1
. <> =etc bt -- don't care
);

= Conversion functions between
std_logic and bit

* Netlists generated by synthesis use std_logic for all signals

[T R
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Overloading example
* Example: Want to support type MvL4 is ('X', 'e', '1', 'z');

new data type . .
yp function “and” (L, R: MVL4) return MVL4 is

- — -- Declare a two-dimensional table type.
<=
F<=(AandB)or type MVL4_TABLE is array (MVL4,MVL4) of MVL4;
(C and D); -- truth table for “and” function
* new version constant table_AND: MVL4_TABLE :=
of and -] X 0 1 7
— Uses table lookup with (('X', 'e', 'x', 'X"), o X
non-numeric indexes (‘e', 'e', 'e', 'e"), -- | 0|
(le, IOII '1', le), - | 1 |
— Index number is based (X, e, XX, X)) - 2
iti in definiti begin
on position in definition return table AND(L,R):
enumeration of MVL4 end “and”;
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File 1/0

* Possible to read or write a file (1993 allow both on same file)
* Formatted IO

- Not generally human readable (platform dependent)

TEXT 10

- Human readable

* Special package includes definitions
- STD.TEXTIO

- Functions for open file, read a complete line, and read individual data
from the line
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Later revisions

* Mostly simplifications and additional function support
* 1993:

- 8-bit ASCII, identifier restrictions relaxed, declarations simplifications
- Shared variables (global variables outside processes).

- Improved reporting in assert statements

* 2008:
- Simplified sensitivity lists (keyword all to include all signals used)
- Simplified conditions, allow bit and std logic values as result of condition

- Read of output ports on entity
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VHDL timing and concurrency

* Simulation of concurrent events (hardware) on a sequential
computer

* Must have the same result from simulation independent of
execution order of individual event

* Delay is an important property of hardware that must be
simulated
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Signals vs Variables

* Electronic signals can not change values in 0 seconds

- Always slopes on voltages going from 0 to 1

* Common sequential code assumes variables are updated before
next statement is executed

* Expect different result depending on if variables or signals are
used

* Both variables and signals can be used in synthesized code
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Signal vs Variable example

* Inputs with changing value at different times
X: 1 4 S5 5 3
Y: 2 2 2 3 2
Z: 0 3 2 2 2
initial tl t1+2  tl+4  t1+6

* Result depends on if signals or variables as assigned

AS <= X*Y after 2 ns; AV = X*Y,
BS <= AS+Z after 2 ns; BV :=AV +7Z;
AS: 2 2 8 10 15 AV: 2 8 10 15 6
BS: 2 2 5 10 12 BvV: 2 11 12 17 8
initial tl t1+2 t1+4 t1+6 initial tl t1+2 t1+4 t1+6
Iwses,
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Signal assignment with delta delay

* Minimum delay is a delta delay

* Delta delay is > 0 s but much smaller than the minimum
timestep of the simulator

X:1 4 4
Y: 2 2 2
3
tl

w N A~

Z: 0 3
initial t1
AS <= X*Y;
BS <= AS+Z;
AS: 2 2 8 8
BS: 2 2

—_

+delta t1+2*delta

9}
—_
—_
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Delta delay

* Can not be explicitly specified

* Delta delays will never add up to a simulation delay in seconds
(standard time)

* Sometimes referred to as Macro (simulation time) and micro
(delta delays) timing.

* Time may stand still in simulation by continuous signal updates
- Example: process triggered by a signal that it is updating
- Combinatorial loops without macro delay in assignments

- Delta delay is increasing but not the simulation time
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Simulation models

* Delta delay only

- Functional verification of models

* Standard time unit delay only
- Validate system timing
* Mixed
- Delta delay where delay is not important

- Standard time unit delay where delay is significant

- Study system timing
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