2022-08-31 16:09

TSTE12 Design of Digital Systems, Lecture 3 2022-09-01 2

Agenda

* Practical issues
- Material
- Lab 1 requirements
* Project task intro
* Introduction to VHDL, continued
- Timing
- Testbench

II LINKOPING
@ UNIVERSITY

2022-08-31 16:09

TSTE12 Design of Digital Systems, Lecture 3 2022-09-01 3

TSTE12 Deadlines Y,D,ED

* Group definitions Thursday 1 September (afternoon)
- On web, include supervisor assignment

* Friday 2 September (possible also monday 5/9): First meeting
with supervisor

- Determine project manager (contact person)
- Questions (short meeting)
* Tuesday 6 September: First version of requirement specification

* Hint: Deadline means “no later than”, i.e., allowed to complete
tasks before these dates

LINKOPING
Il.u UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 3 2022-09-01 4

TSTE12 Deadlines MELE, erasmus

* Group definition Wednesday 7 September (afternoon)
- On web, include supervisor assignment

* Friday 9 September: First meeting with supervisor
- Determine project manager (contact person)
- Question (short meeting)

* Tuesday 13 September: First version of requirement specification

LINKOPING
II.“ UNIVERSITY

2022-08-31 16:09

TSTE12 Design of Digital Systems, Lecture 3 2022-09-01 5

Shared folder problem

* Currently a configuration problem with the use of shared lab folders
* Temporary solution: Use initially a folder in your home folder
— Drawback: Limit the access of the file to the student who logged in

— Not a big problem if you work on the tutorial (the files are not needed later on)

LINKOPING
Il.u UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 3 2022-09-01 6

Useful resources

* Lab hardware description (on the linux machines)
— /courses/TSTE12/material/DE2-115_SystemCD_v3.0.6

— Lab board datasheets, schematic of hardware

LINKOPING
II.“ UNIVERSITY

2022-08-31 16:09

TSTE12 Design of Digital Systems, Lecture 3 2022-09-01 7

Lab 1 requirements

* Working design (both simulation and hardware)

* Only use sys_clk as (the only) clock signal
— This is the 100 MHz sys_clk on the board

* Testbench testing two different key sequences
— Should test after each key scan code input has been generated

— A text message in the simulator window should be displayed after each scan
code test telling the user if test was ok or failed.
* Hint: No need to count the number of received bits, or verify parity and stop bits.
Is OK to have intermediate flickering on the display while data is received

LINKOPING
Il.u UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 3 2022-09-01 8

VHDL model testingComments

» Testbench
- Standard approach

v
v

DUT

Stimuli
Analysis

- Test of design will be -
independent of simulation tool

A

* Testbench contents
- Stimuli generation
- Design under test (DUT)
- Analysis of design output

LINKOPING
II.“ UNIVERSITY

2022-08-31 16:09

TSTE12 Design of Digital Systems, Lecture 3 2022-09-01 9

Programming hardware in the lab

* FPGA can be configured from any of the computers
— Start Quartus Programmer
— Select hardware setup
— Select “Add server”

— Specify machine name to which the board is connected, use the password
described on the whiteboard at the door

* muxen2-009, muxen2-015

— Make sure the correct machine and board is defined as hardware
* Remember to check that attached computer is on

LINKOPING
Il.u UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 3 2022-09-01 10

Useful linux commands

* Remember to always work from the “mentorskal” terminal window (except for
handins)

* Sets the access rights correctly to support sharing of files within the groups (but
not between the groups)

Is -la file_or_directory
shows owner and access rights of files

chmod g+rwx filename_or_directory

let all members of the group have full access to the file or directory (allow
others to change files)

LINKOPING
II.“ UNIVERSITY

2022-08-31 16:09

TSTE12 Design of Digital Systems, Lecture 3 2022-09-01 11

Project information

* Project directory will be available for all groups

— /courses/TSTE12/proj/projgrpXX

— Access only to members of the group

— This directory must be used
* Project document templates

— /courses/TSTE12/material/project/LIPS-templates
* Project functionality

— Project directive (description) on the web

— Different priority (mandatory, selective, optional)

LINKOPING
Il.u UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 3 2022-09-01 12

Project directive, high priority

* Volume & balance control (atleast 10 levels each)

— Volume is logarithmic
— Simplifications are often possible

* Multiplication is generally expensive
— Amplification (factor > 1) may lead to overflow!
* A/D and D/A implemented in separate codec chip
— Supports volume control (not necessary to feed audio into FPGA)

— Still need to initialize the codec chip (implement [2C communication)

LINKOPING
II.“ UNIVERSITY

2022-08-31 16:09

TSTE12 Design of Digital Systems, Lecture 3 2022-09-01 13

Optional requirement,
medium priority
* Each project group make their own choice

— No problem if more than one group selects the same project

— Chose one or at most two medium priority requirements
* Oscilloscope

— Vertical vs horizontal
— Zoom, color coding, average
- FFT

* Complex algorithm

* Use available designs if possible

LINKOPING
Il.u UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 3 2022-09-01 14

Optional requirement,
medium priority
* Echo

— Long echo requires large memory (2MByte SRAM)
— Number representation

* 44 Khz, 20 bit, stereo => 220KByte/s

* Dynamic range, Accuracy

* 2's complement/Floating point
— Controls?

* On/off, Length, Strength

LINKOPING
II.“ UNIVERSITY

2022-08-31 16:09

TSTE12 Design of Digital Systems, Lecture 3

Optional requirement,
medium priority
* Signal level indication (logarithmic scale)

— Peak, average

— Screen update ~ 50Hz
* Do not want a flickery output

* Large number of samples to average on
* Peak indication

— move slowly towards zero

— quickly updated when large peak found

2022-09-01

15

LINKOPING
Il.u UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 3

Optional requirement,
medium priority
* Loudness, supression of mono

— Loudness control => attenuate medium frequencies
* Equalizer

— Requires understanding of digital filters
* Test filter algorithms using Matlab

* Other sound modification algorithms possible

— Reverb, Flange
— Pitch shifts

2022-09-01

16

LINKOPING
II.“ UNIVERSITY

2022-08-31 16:09

TSTE12 Design of Digital Systems, Lecture 3 2022-09-01 17

Big hall simulation (reverb)

* Principle: Echoes from walls and objects

Arnplitude .
P http://www.soundonsound.com/sos/octO1/articles/advancedreverbl.asp
High frequency decay
In most real rooms, the high
i \,.F-"’ Iraquancies will decay faster than
k tha low fraquanoiss
|
Impudse \'_
such as a e
handelap ST
Rt ool
I Il :
Time
Initial Ea
Delay Heﬂ;ﬂtﬂjng Later Densa Raflections
II u LINKOPING
() UNIVERSITY
TSTE12 Design of Digital Systems, Lecture 3 2022-09-01 18

Reverb, cont.

* Three parts of the sound
— Direct path
— Early reflections
— Decaying mix of reflexions
* Time in the echoes are short
— Example: 5, 10, 20, 30, 45, 60, 75 ms versions added

— Create attenuated feedback

LINKOPING
II.“ UNIVERSITY

2022-08-31 16:09

TSTE12 Design of Digital Systems, Lecture 3 2022-09-01 19

Optional requirement, low priority

* Try to think of a lot of optional features
— Color coding, background image
— Animations, different VGA screen backgrounds
— Special keys to use (e.g., arrow keys)
— Change parameters at run time

— Additional volume/balance steps

* Try to optimize the size of the design

* Many clock cycles between input samples

LINKOPING
Il.u UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 3 2022-09-01 20

Process statement

[LABEL:] process (SENSITIVITY_SIGNAL_LIST)
-- constants, types, subtypes, subprograms
-- variables (NO signals)
begin
-- sequential statements
end process;

* Process always executed once at simulation start. Then whenever events occur on
signals in the sensitivity list

* Variables are static

— Initialized at simulation start

— Keep their values between process activations

LINKOPING
II.“ UNIVERSITY

2022-08-31 16:09

TSTE12 Design of Digital Systems, Lecture 3 2022-09-01 21

Process statements, cont.

* Can combine process statements with structural code in the same
architecture

* Processes without a sensitivity list will automatically restart at the
end of a process

- Must have some way to stop simulation/wait some time to
avoid an infinite loop (simulation appear to be hanged)

* Processes can not both have a sensitivy list and wait statements in
the same process

LINKOPING
Il.u UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 3 2022-09-01 22

Sequential code

* Processes and subprograms have sequential code
- One statement after another is executed in order
- Most similar to “ordinary” computer code

— Simulation time does not increase while executing the
statements

* Exception is the wait statement

LINKOPING
II.“ UNIVERSITY

2022-08-31 16:09

TSTE12 Design of Digital Systems, Lecture 3

Sequential control statements: wait

* Used in processes and subprograms

* Examples
wait on x,y until z=0 for 100 ns;
-- wait until event on x or y while z#0 or max 100 ns)
wait for 100 ns;
wait on a,b,c; -- wait for at least one event on a, b or c
wait until z=0;
wait; -- infinite wait

2022-09-01

23

LINKOPING
UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 3

Sequential control: if

if CONDITIONT1 then

-- sequence of statements 1
elsif CONDITION?2 then

-- sequence of statements 2

-- any number of elsif clauses
else

-- last sequence of statements
end if;

* Indentation not important (not like python)

2022-09-01

* CONDITION must return boolean (not enough with a bit)

24

LINKOPING
UNIVERSITY

2022-08-31 16:09

TSTE12 Design of Digital Systems, Lecture 3

Sequential control: case

case EXPRESSION is

end case;

2022-09-01 25

when CHOICE1 => -- sequence of statements1
when CHOICE2 => -- sequence of statements 2
when others => -- last sequence of statements

* All possible choices must be covered once

— Others catch all choices not covered earlier

* Choices may be a list (e.g., when 0|1|2 =>)

LINKOPING
Il.u UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 3

Sequential control: loop

for NAME in RANGE loop
-- sequence of operations
end loop;

while CONDITION loop

-- sequence of operations
end loop;
loop

-- sequence of statements
end loop;

2022-09-01 26

* Controlling loop behavior
next [loop_label] [when CONDITION];
— Skip the rest of the loop body

exit [loop_label] [when CONDITION];

- Terminate the loop

LINKOPING
II.“ UNIVERSITY

2022-08-31 16:09

TSTE12 Design of Digital Systems, Lecture 3 2022-09-01 27

Various statements

Null

* Used to complete syntax requirement, e.g. in case statements
when a choice should not do anything.

LINKOPING
Il.u UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 3 2022-09-01 28

Subprograms

* Functions and procedures

* Declared in declaration region of architecture, process, block, or
other subprograms.

* Variables are dynamic (initialized at every call)

* Functions
- Always returns a value (must be used in an expression)
- Never modifies its parameters (all parameters are inputs)
- No side effects allowed

- Can not contain wait statements

LINKOPING
II.“ UNIVERSITY

2022-08-31 16:09

TSTE12 Design of Digital Systems, Lecture 3 2022-09-01 29

Functions

function FUNCTION_NAME (FORMAL_PARAMETER_DECLARATIONS)
return RETURN_TYPE is
-- constant and variable declarations (NO signals)
begin
-- sequential statements
return (RETURN_VALUE);
end FUNCTION_NAME;

* Must always return a defined value

LINKOPING
Il.u UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 3 2022-09-01 30

Procedures

procedure PROCEDURE_NAME
(FORMAL_PARAMETER_DECLARATIONS)
-- Procedure declaration part
-- constant and variable declarations (NO signals)
begin
-- sequential statements
end PROCEDURE_NAME;

* Formal parameters can be in, out, or inout (default in)
* May contain wait statements (but not if called from a function)
* Procedures can modify its formal parameters (no return value)

LINKOPING
II.“ UNIVERSITY

2022-08-31 16:09

TSTE12 Design of Digital Systems, Lecture 3 2022-09-01 31

Libraries

* All design units are stored in libraries. Accessing a library requires definition.
library LIBRARY_NAME;
— How this is done in the file system is not defined in VHDL
* Libraries have only logical names

— Simulator and synthesis uses tool-dependent mappings from logical to physical
directories (possible including binary format file)

— Allows VHDL source code to be run on different platforms without rewrite

* Two predefined libraries: WORK STD

LINKOPING
Il.u UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 3 2022-09-01 32

Packages

* Used in similar way to header files or libraries in other languages
— Repeat declarations and definitions
* Divided into the declaration and body

— Declaration part consists of visible declarations when using the package

* Constants, types, subprograms
— Declaratation parts contains subprogram names and parameter list, but no code
— Body is visible only within the package. Includes the code for the subprograms

— Only one possible body definition

LINKOPING
II.“ UNIVERSITY

2022-08-31 16:09

TSTE12 Design of Digital Systems, Lecture 3 2022-09-01

Package example

package HANDY 1is
subtype BITVECT3 is BIT_VECTOR(O to 2);
subtype BITVECT2 is BIT_VECTOR(O to 1);
function MAJ3(X: BIT_VECTOR(O to 2) return BIT;

--- Other declarations ----------

end HANDY

package body HANDY is
function MAJ3(X: BIT_VECTOR(O to 2))
return BIT is
begin
return (X(0) and X(1)) or (X(0) and X(2)) or (X(1) and X(2));
end MAJ3;

--- Other subprogram declarations --------

end HANDY,

33

LINKOPING
Il.u UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 3 2022-09-01

VHDL cont., Packages

* Packages included in a design by the use clause

* use LIBRARY_NAME.PACKAGE_NAME.ELEMENT_ NAME;

— Element name ALL matches complete body declaration
* Standard packages: std.standard

— boolean, bit, character, severity level, string, bit_vector, time

— Automatically included

* Packages and libraries used to add new functionality to the language

— Additional datatypes to support e.g., tristate levels, mathematical functions, etc.

34

LINKOPING
II.“ UNIVERSITY

2022-08-31 16:09

TSTE12 Design of Digital Systems, Lecture 3 2022-09-01 35

Packages, 1164 standard

 IEEE.STD LOGIC 1164

- std logic data types, overloaded boolean functions, conversion functions,
edge detection functions

 IEEE.NUMERIC STD

- Opverloaded arithmetic functions for std logic vector and conversion
functions to/from integer

- Defines UNSIGNED and SIGNED datatypes

* Can be converted to/from std logic vector through typecast, e.g.,
std_logic_vector signal <= std logic vector(unsigned vectorsignal)

 IEEE.NUMERIC BIT

- Allows numeric processing of bitvectors

KT
TSTE12 Design of Digital Systems, Lecture 3 2022-09-01 36
* Defines which entity in a library architecture STRUCTURAL of ONES_COUNT is
should be used in the structural component XOR GATE
COde port (X,Y : in bit; O : out bit);
end component;
* Structural example: How to know component NAND_GATE _
. . port (X,Y : in bit; O : out bit);
which gate is used? end component
- Component declaration name does signal I1, I2, I3 : bit;
not need to exist begin
- Assume names are XOR2 and NAND?2 ULl : XOR_GATE port map(A(0),A(1),I1);
U2 : XOR_GATE port map(I1,A(2),C(0));
: U3 : NAND_GATE port map(A(0),A(1),I2);
* Conﬁguratlon maps between U4 : NAND_GATE port map(A(2),I1,I3);
entity and architecture in library US : NAND_GATE port map(12,13,C(1));
and component name in structure end STRUCTURAL;

LINKOPING
II.“ UNIVERSITY

2022-08-31 16:09

TSTE12 Design of Digital Systems, Lecture 3 2022-09-01 37

C O N ﬁ g U ra ti O N architecture STRUCTURAL of ONES_COUNT is

component XOR_GATE
example port (X,Y : in bit; O : out bit);
end component;
. component NAND_GATE
* Add configuration statement port (X,Y : in bit; 0 : out bit);

. end component
to select exact instance and
for Ul : XOR_GATE use entity work.xor2(behav);

arChlteCture fO]f' eaCh for U2 : XOR_GATE use entity work.xor2(behav);
: for U3 : NAND_GATE use entity work.nand2(behav);
lnStance' for U4 : NAND_GATE use entity work.nandZ(behav);

. for U5 : NAND_GATE use entity work.nand2(behav);
* Drawback: require

recompilation if library entity
mapping is changed

signal I1, I2, I3 : bit;
begin

Ul : XOR_GATE port map(A(0),A(1),I1);
U2 : XOR_GATE port map(I1,A(2),C(0));
U3 : NAND_GATE port map(A(0),A(1),I2);
U4 : NAND_GATE port map(A(2),I1,I3);
U5 : NAND_GATE port map(I2,I3,C(1));

end STRUCTURAL;

LINKOPING
Il.u UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 3 2022-09-01 38

Configurations, cont.

* Possible to create a configuration as a separate unit (here named
STRUCT BEHAV XOR)

configuration STRUCT_BEHAV_XOR of ONES_COUNT is

for BEHAV
for U1:XOR_GATE use entity work.EXORGATE(BEHAV);

end for;
for U2:XOR_GATE use entity work.EXORGATE(BEHAV);

end for;
end STRUCT_BEHAV_XOR;

* Multiple configurations possible for the same entity (similar to
having multiple architectures)

- Useful for testbench where both behavoral model and final netlist version
of the device should be tested

LINKOPING
II.“ UNIVERSITY

2022-08-31 16:09

TSTE12 Design of Digital Systems, Lecture 3
Visibilit

* Same name may be used for multiple
purposes

- Doing this may hide some units
depending on the situation

package SIG is

signal X: INTEGER:= 1;
end SIG;
use work.SIG.all;
entity Y is

signal X: INTEGER:= 2;
end Y;

2022-09-01 39

architecture Z of Y is
signal Zz1,72,73,24,25: INTEGER:= 0O;
function R return INTEGER is
variable X: INTEGER := 3;
begin
return X; -- Returns value of 3.
end R;
begin
B: block
signal X: INTEGER := 4;
signal Z6: INTEGER := 0;
begin
Z6 <= X + Y.X;, -- 1726 =6
end block B;

P1: process
variable X: INTEGER :=5;
begin
75 <= X; -- Z5=5
wait;
end process;

Z1 <= work.SIG.X; -- zZ1=1

72 <= X; -- Z2=2

Z3 <= R; -- 23=3

Z4 <= B.X; -- Z4=4
end Z;

LINKOPING
Il.u UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 3

2022-09-01 40

Advanced feature: Overloading

* Can change meaning of literals, names of operators, functions, and procedures

* Correct version found by matching both name and parameter types

* If multiple identical declarations => latest visible one is used

* Useful feature for extending the language to support new datatypes or functions

— E.g. extend to support complex valued real numbers

* IEEE standard 1164 is an example of this

— Defines new datatypes as well as how comparison, assignments, arithmetic is

done using these datatypes

LINKOPING
II.“ UNIVERSITY

2022-08-31 16:09

TSTE12 Design of Digital Systems, Lecture 3 2022-09-01 41

IEEE std logic 1164 package

* Define a new datatype type std_ulogic is ('u', -- uninitialized
and support functions 'x', -- forcing unknown
'e', ~-- forcing ©O
- the std logic data type "1', -- fqrcir_lg 1
= Overloads all common functions '\/Z\I' rooTT \T’;’SE imﬁﬁgzﬂce
. . .-
used for bits and bitvectors '1', -- weak 0
* AND, OR, NOT, XOR 'h', -- weak 1
. <> =etc bt -- don't care
);

= Conversion functions between
std_logic and bit

* Netlists generated by synthesis use std_logic for all signals

[T R
TSTE12 Design of Digital Systems, Lecture 3 2022-09-01 42
Overloading example
* Example: Want to support type MvL4 is ('X', 'e', '1', 'z');

new data type . .
yp function “and” (L, R: MVL4) return MVL4 is

- — -- Declare a two-dimensional table type.
<=
F<=(AandB)or type MVL4_TABLE is array (MVL4,MVL4) of MVL4;
(C and D); -- truth table for “and” function
* new version constant table_AND: MVL4_TABLE :=
of and -] X 0 1 7
— Uses table lookup with (('X', 'e', 'x', 'X"), o X
non-numeric indexes (‘e', 'e', 'e', 'e"), -- | 0|
(le, IOII '1', le), - | 1 |
— Index number is based (X, e, XX, X)) - 2
iti in definiti begin
on position in definition return table AND(L,R):
enumeration of MVL4 end “and”;

LINKOPING
II.“ UNIVERSITY

2022-08-31 16:09

TSTE12 Design of Digital Systems, Lecture 3 2022-09-01 43

File 1/0

* Possible to read or write a file (1993 allow both on same file)
* Formatted IO

- Not generally human readable (platform dependent)

TEXT 10

- Human readable

* Special package includes definitions
- STD.TEXTIO

- Functions for open file, read a complete line, and read individual data
from the line

LINKOPING
Il.u UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 3 2022-09-01 44

Later revisions

* Mostly simplifications and additional function support
* 1993:

- 8-bit ASCII, identifier restrictions relaxed, declarations simplifications
- Shared variables (global variables outside processes).

- Improved reporting in assert statements

* 2008:
- Simplified sensitivity lists (keyword all to include all signals used)
- Simplified conditions, allow bit and std logic values as result of condition

- Read of output ports on entity

LINKOPING
II.“ UNIVERSITY

2022-08-31 16:09

TSTE12 Design of Digital Systems, Lecture 3 2022-09-01 45

VHDL timing and concurrency

* Simulation of concurrent events (hardware) on a sequential
computer

* Must have the same result from simulation independent of
execution order of individual event

* Delay is an important property of hardware that must be
simulated

LINKOPING
Il.u UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 3 2022-09-01 46

Signals vs Variables

* Electronic signals can not change values in 0 seconds

- Always slopes on voltages going from 0 to 1

* Common sequential code assumes variables are updated before
next statement is executed

* Expect different result depending on if variables or signals are
used

* Both variables and signals can be used in synthesized code

LINKOPING
II.“ UNIVERSITY

2022-08-31 16:09

TSTE12 Design of Digital Systems, Lecture 3 2022-09-01 47

Signal vs Variable example

* Inputs with changing value at different times
X: 1 4 S5 5 3
Y: 2 2 2 3 2
Z: 0 3 2 2 2
initial tl t1+2 tl+4 t1+6

* Result depends on if signals or variables as assigned

AS <= X*Y after 2 ns; AV = X*Y,
BS <= AS+Z after 2 ns; BV :=AV +7Z;
AS: 2 2 8 10 15 AV: 2 8 10 15 6
BS: 2 2 5 10 12 BvV: 2 11 12 17 8
initial tl t1+2 t1+4 t1+6 initial tl t1+2 t1+4 t1+6
Iwses,
TSTE12 Design of Digital Systems, Lecture 3 2022-09-01 48

Signal assignment with delta delay

* Minimum delay is a delta delay

* Delta delay is > 0 s but much smaller than the minimum
timestep of the simulator

X:1 4 4
Y: 2 2 2
3
tl

w N A~

Z: 0 3
initial t1
AS <= X*Y;
BS <= AS+Z;
AS: 2 2 8 8
BS: 2 2

—_

+delta t1+2*delta

9}
—_
—_

LINKOPING
II.“ UNIVERSITY

2022-08-31 16:09

TSTE12 Design of Digital Systems, Lecture 3 2022-09-01 49

Delta delay

* Can not be explicitly specified

* Delta delays will never add up to a simulation delay in seconds
(standard time)

* Sometimes referred to as Macro (simulation time) and micro
(delta delays) timing.

* Time may stand still in simulation by continuous signal updates
- Example: process triggered by a signal that it is updating
- Combinatorial loops without macro delay in assignments

- Delta delay is increasing but not the simulation time

LINKOPING
Il.u UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 3 2022-09-01 50

Simulation models

* Delta delay only

- Functional verification of models

* Standard time unit delay only
- Validate system timing
* Mixed
- Delta delay where delay is not important

- Standard time unit delay where delay is significant

- Study system timing

LINKOPING
II.“ UNIVERSITY

2022-08-31 16:09

