

TSTE12 Design of Digital Systems
Lecture 3
Kent Palmkvist

2022-09-01TSTE12 Design of Digital Systems, Lecture 3 2

Agenda

• Practical issues

– Material

– Lab 1 requirements

• Project task intro

• Introduction to VHDL, continued

– Timing

– Testbench

2022-08-31 16:09

2022-09-01TSTE12 Design of Digital Systems, Lecture 3 3

TSTE12 Deadlines Y,D,ED

• Group definitions Thursday 1 September (afternoon)

– On web, include supervisor assignment

• Friday 2 September (possible also monday 5/9): First meeting
with supervisor

– Determine project manager (contact person)

– Questions (short meeting)

• Tuesday 6 September: First version of requirement specification

• Hint: Deadline means ”no later than”, i.e., allowed to complete
tasks before these dates

2022-09-01TSTE12 Design of Digital Systems, Lecture 3 4

TSTE12 Deadlines MELE, erasmus

• Group definition Wednesday 7 September (afternoon)

– On web, include supervisor assignment

• Friday 9 September: First meeting with supervisor

– Determine project manager (contact person)

– Question (short meeting)

• Tuesday 13 September: First version of requirement specification

2022-08-31 16:09

2022-09-01TSTE12 Design of Digital Systems, Lecture 3 5

Shared folder problem

● Currently a configuration problem with the use of shared lab folders

● Temporary solution: Use initially a folder in your home folder

– Drawback: Limit the access of the file to the student who logged in

– Not a big problem if you work on the tutorial (the files are not needed later on)

2022-09-01TSTE12 Design of Digital Systems, Lecture 3 6

Useful resources

● Lab hardware description (on the linux machines)

– /courses/TSTE12/material/DE2-115_SystemCD_v3.0.6
– Lab board datasheets, schematic of hardware

2022-08-31 16:09

2022-09-01TSTE12 Design of Digital Systems, Lecture 3 7

Lab 1 requirements
● Working design (both simulation and hardware)

● Only use sys_clk as (the only) clock signal

– This is the 100 MHz sys_clk on the board

● Testbench testing two different key sequences

– Should test after each key scan code input has been generated

– A text message in the simulator window should be displayed after each scan
code test telling the user if test was ok or failed.

● Hint: No need to count the number of received bits, or verify parity and stop bits.
Is OK to have intermediate flickering on the display while data is received

2022-09-01TSTE12 Design of Digital Systems, Lecture 3 8

VHDL model testingComments

• Testbench

– Standard approach

– Test of design will be
independent of simulation tool

• Testbench contents

– Stimuli generation

– Design under test (DUT)

– Analysis of design output

S
tim

ul
i

DUT

A
n

a
ly

si
s

2022-08-31 16:09

2022-09-01TSTE12 Design of Digital Systems, Lecture 3 9

Programming hardware in the lab

● FPGA can be configured from any of the computers

– Start Quartus Programmer

– Select hardware setup

– Select “Add server”

– Specify machine name to which the board is connected, use the password
described on the whiteboard at the door

● muxen2-009, muxen2-015

– Make sure the correct machine and board is defined as hardware
● Remember to check that attached computer is on

2022-09-01TSTE12 Design of Digital Systems, Lecture 3 10

Useful linux commands
● Remember to always work from the “mentorskal” terminal window (except for

handins)

● Sets the access rights correctly to support sharing of files within the groups (but
not between the groups)

ls -la file_or_directory
shows owner and access rights of files

chmod g+rwx filename_or_directory

let all members of the group have full access to the file or directory (allow
others to change files)

2022-08-31 16:09

2022-09-01TSTE12 Design of Digital Systems, Lecture 3 11

Project information
● Project directory will be available for all groups

– /courses/TSTE12/proj/projgrpXX

– Access only to members of the group

– This directory must be used

● Project document templates

– /courses/TSTE12/material/project/LIPS-templates

● Project functionality

– Project directive (description) on the web

– Different priority (mandatory, selective, optional)

2022-09-01TSTE12 Design of Digital Systems, Lecture 3 12

Project directive, high priority
● Volume & balance control (atleast 10 levels each)

– Volume is logarithmic

– Simplifications are often possible
● Multiplication is generally expensive

– Amplification (factor > 1) may lead to overflow!

● A/D and D/A implemented in separate codec chip

– Supports volume control (not necessary to feed audio into FPGA)

– Still need to initialize the codec chip (implement I2C communication)

2022-08-31 16:09

2022-09-01TSTE12 Design of Digital Systems, Lecture 3 13

Optional requirement,
medium priority

● Each project group make their own choice

– No problem if more than one group selects the same project

– Chose one or at most two medium priority requirements
● Oscilloscope

– Vertical vs horizontal

– Zoom, color coding, average

– FFT
● Complex algorithm
● Use available designs if possible

2022-09-01TSTE12 Design of Digital Systems, Lecture 3 14

Optional requirement,
medium priority

● Echo

– Long echo requires large memory (2MByte SRAM)

– Number representation
● 44 Khz, 20 bit, stereo => 220KByte/s
● Dynamic range, Accuracy
● 2's complement/Floating point

– Controls?
● On/off, Length, Strength

2022-08-31 16:09

2022-09-01TSTE12 Design of Digital Systems, Lecture 3 15

Optional requirement,
medium priority

● Signal level indication (logarithmic scale)

– Peak, average

– Screen update ~ 50Hz
● Do not want a flickery output
● Large number of samples to average on

● Peak indication

– move slowly towards zero

– quickly updated when large peak found

2022-09-01TSTE12 Design of Digital Systems, Lecture 3 16

Optional requirement,
medium priority

● Loudness, supression of mono

– Loudness control => attenuate medium frequencies
● Equalizer

– Requires understanding of digital filters
● Test filter algorithms using Matlab

● Other sound modification algorithms possible

– Reverb, Flange

– Pitch shifts

–

2022-08-31 16:09

2022-09-01TSTE12 Design of Digital Systems, Lecture 3 17

Big hall simulation (reverb)
● Principle: Echoes from walls and objects

http://www.soundonsound.com/sos/oct01/articles/advancedreverb1.asp

2022-09-01TSTE12 Design of Digital Systems, Lecture 3 18

Reverb, cont.
● Three parts of the sound

– Direct path

– Early reflections

– Decaying mix of reflexions

● Time in the echoes are short

– Example: 5, 10, 20, 30, 45, 60, 75 ms versions added

– Create attenuated feedback

2022-08-31 16:09

2022-09-01TSTE12 Design of Digital Systems, Lecture 3 19

Optional requirement, low priority
● Try to think of a lot of optional features

– Color coding, background image

– Animations, different VGA screen backgrounds

– Special keys to use (e.g., arrow keys)

– Change parameters at run time

– Additional volume/balance steps

–
● Try to optimize the size of the design

● Many clock cycles between input samples

2022-09-01TSTE12 Design of Digital Systems, Lecture 3 20

Process statement
[LABEL:] process (SENSITIVITY_SIGNAL_LIST)

 -- constants, types, subtypes, subprograms
 -- variables (NO signals)
begin
 -- sequential statements
end process;

● Process always executed once at simulation start. Then whenever events occur on
signals in the sensitivity list

● Variables are static

– Initialized at simulation start

– Keep their values between process activations

2022-08-31 16:09

2022-09-01TSTE12 Design of Digital Systems, Lecture 3 21

Process statements, cont.

• Can combine process statements with structural code in the same
architecture

• Processes without a sensitivity list will automatically restart at the
end of a process

– Must have some way to stop simulation/wait some time to
avoid an infinite loop (simulation appear to be hanged)

• Processes can not both have a sensitivy list and wait statements in
the same process

2022-09-01TSTE12 Design of Digital Systems, Lecture 3 22

Sequential code

• Processes and subprograms have sequential code

– One statement after another is executed in order

– Most similar to ”ordinary” computer code
– Simulation time does not increase while executing the

statements
● Exception is the wait statement

2022-08-31 16:09

2022-09-01TSTE12 Design of Digital Systems, Lecture 3 23

Sequential control statements: wait

● Used in processes and subprograms

● Examples
wait on x,y until z=0 for 100 ns;

-- wait until event on x or y while z≠0 or max 100 ns)
wait for 100 ns;
wait on a,b,c; -- wait for at least one event on a, b or c
wait until z=0;
wait; -- infinite wait

2022-09-01TSTE12 Design of Digital Systems, Lecture 3 24

Sequential control: if

 if CONDITION1 then
 -- sequence of statements 1
elsif CONDITION2 then
 -- sequence of statements 2
 -- any number of elsif clauses
else
 -- last sequence of statements
end if;

• Indentation not important (not like python)

• CONDITION must return boolean (not enough with a bit)

2022-08-31 16:09

2022-09-01TSTE12 Design of Digital Systems, Lecture 3 25

Sequential control: case

 case EXPRESSION is
 when CHOICE1 => -- sequence of statements1
 when CHOICE2 => -- sequence of statements 2
 when others => -- last sequence of statements
end case;

• All possible choices must be covered once
– Others catch all choices not covered earlier

• Choices may be a list (e.g., when 0|1|2 =>)

2022-09-01TSTE12 Design of Digital Systems, Lecture 3 26

Sequential control: loop

 for NAME in RANGE loop
 -- sequence of operations
end loop;

 while CONDITION loop
 -- sequence of operations
end loop;

 loop
 -- sequence of statements
end loop;

● Controlling loop behavior

next [loop_label] [when CONDITION];

– Skip the rest of the loop body

exit [loop_label] [when CONDITION];

– Terminate the loop

2022-08-31 16:09

2022-09-01TSTE12 Design of Digital Systems, Lecture 3 27

Various statements

Null

• Used to complete syntax requirement, e.g. in case statements
when a choice should not do anything.

2022-09-01TSTE12 Design of Digital Systems, Lecture 3 28

Subprograms

• Functions and procedures

• Declared in declaration region of architecture, process, block, or
other subprograms.

• Variables are dynamic (initialized at every call)

• Functions

– Always returns a value (must be used in an expression)

– Never modifies its parameters (all parameters are inputs)
– No side effects allowed
– Can not contain wait statements

2022-08-31 16:09

2022-09-01TSTE12 Design of Digital Systems, Lecture 3 29

Functions

function FUNCTION_NAME (FORMAL_PARAMETER_DECLARATIONS)
return RETURN_TYPE is
 -- constant and variable declarations (NO signals)
begin
 -- sequential statements
 return (RETURN_VALUE);
end FUNCTION_NAME;

• Must always return a defined value

2022-09-01TSTE12 Design of Digital Systems, Lecture 3 30

Procedures

procedure PROCEDURE_NAME
(FORMAL_PARAMETER_DECLARATIONS)
 -- Procedure declaration part
 -- constant and variable declarations (NO signals)
begin
 -- sequential statements
end PROCEDURE_NAME;

• Formal parameters can be in, out, or inout (default in)

• May contain wait statements (but not if called from a function)

• Procedures can modify its formal parameters (no return value)

2022-08-31 16:09

2022-09-01TSTE12 Design of Digital Systems, Lecture 3 31

Libraries

● All design units are stored in libraries. Accessing a library requires definition.

library LIBRARY_NAME;

– How this is done in the file system is not defined in VHDL

● Libraries have only logical names

– Simulator and synthesis uses tool-dependent mappings from logical to physical
directories (possible including binary format file)

– Allows VHDL source code to be run on different platforms without rewrite

● Two predefined libraries: WORK STD

2022-09-01TSTE12 Design of Digital Systems, Lecture 3 32

Packages

● Used in similar way to header files or libraries in other languages

– Repeat declarations and definitions

● Divided into the declaration and body

– Declaration part consists of visible declarations when using the package
● Constants, types, subprograms

– Declaratation parts contains subprogram names and parameter list, but no code

– Body is visible only within the package. Includes the code for the subprograms

– Only one possible body definition

2022-08-31 16:09

2022-09-01TSTE12 Design of Digital Systems, Lecture 3 33

Package example
package HANDY is
 subtype BITVECT3 is BIT_VECTOR(0 to 2);
 subtype BITVECT2 is BIT_VECTOR(0 to 1);
 function MAJ3(X: BIT_VECTOR(0 to 2) return BIT;

 --- Other declarations ----------

end HANDY

package body HANDY is
 function MAJ3(X: BIT_VECTOR(0 to 2))
 return BIT is
 begin
 return (X(0) and X(1)) or (X(0) and X(2)) or (X(1) and X(2));
 end MAJ3;

 --- Other subprogram declarations --------

end HANDY;

2022-09-01TSTE12 Design of Digital Systems, Lecture 3 34

VHDL cont., Packages

● Packages included in a design by the use clause

● use LIBRARY_NAME.PACKAGE_NAME.ELEMENT_NAME;

– Element name ALL matches complete body declaration
● Standard packages: std.standard

– boolean, bit, character, severity level, string, bit_vector, time

– Automatically included

● Packages and libraries used to add new functionality to the language
– Additional datatypes to support e.g., tristate levels, mathematical functions, etc.

2022-08-31 16:09

2022-09-01TSTE12 Design of Digital Systems, Lecture 3 35

Packages, 1164 standard
● IEEE.STD_LOGIC_1164

– std_logic data types, overloaded boolean functions, conversion functions,
edge detection functions

● IEEE.NUMERIC_STD
– Overloaded arithmetic functions for std_logic_vector and conversion

functions to/from integer

– Defines UNSIGNED and SIGNED datatypes
● Can be converted to/from std_logic_vector through typecast, e.g.,

std_logic_vector_signal <= std_logic_vector(unsigned_vectorsignal)

● IEEE.NUMERIC_BIT
– Allows numeric processing of bitvectors

2022-09-01TSTE12 Design of Digital Systems, Lecture 3 36

Configurations
● Defines which entity in a library

should be used in the structural
code

● Structural example: How to know
which gate is used?
– Component declaration name does

not need to exist

– Assume names are XOR2 and NAND2

● Configuration maps between
entity and architecture in library
and component name in structure

architecture STRUCTURAL of ONES_COUNT is

component XOR_GATE
port (X,Y : in bit; O : out bit);

end component;

component NAND_GATE
port (X,Y : in bit; O : out bit);

end component

signal I1, I2, I3 : bit;

begin

U1 : XOR_GATE port map(A(0),A(1),I1);
U2 : XOR_GATE port map(I1,A(2),C(0));
U3 : NAND_GATE port map(A(0),A(1),I2);
U4 : NAND_GATE port map(A(2),I1,I3);
U5 : NAND_GATE port map(I2,I3,C(1));

end STRUCTURAL;

2022-08-31 16:09

2022-09-01TSTE12 Design of Digital Systems, Lecture 3 37

Configuration
example

● Add configuration statement
to select exact instance and
architecture for each
instance.

● Drawback: require
recompilation if library entity
mapping is changed

architecture STRUCTURAL of ONES_COUNT is

component XOR_GATE
port (X,Y : in bit; O : out bit);

end component;

component NAND_GATE
port (X,Y : in bit; O : out bit);

end component

for U1 : XOR_GATE use entity work.xor2(behav);
 for U2 : XOR_GATE use entity work.xor2(behav);
 for U3 : NAND_GATE use entity work.nand2(behav);
 for U4 : NAND_GATE use entity work.nand2(behav);
 for U5 : NAND_GATE use entity work.nand2(behav);

signal I1, I2, I3 : bit;

begin

U1 : XOR_GATE port map(A(0),A(1),I1);
U2 : XOR_GATE port map(I1,A(2),C(0));
U3 : NAND_GATE port map(A(0),A(1),I2);
U4 : NAND_GATE port map(A(2),I1,I3);
U5 : NAND_GATE port map(I2,I3,C(1));

end STRUCTURAL;

2022-09-01TSTE12 Design of Digital Systems, Lecture 3 38

Configurations, cont.
● Possible to create a configuration as a separate unit (here named

STRUCT_BEHAV_XOR)
configuration STRUCT_BEHAV_XOR of ONES_COUNT is

for BEHAV
for U1:XOR_GATE use entity work.EXORGATE(BEHAV);
end for;
for U2:XOR_GATE use entity work.EXORGATE(BEHAV);

end for;
end STRUCT_BEHAV_XOR;

● Multiple configurations possible for the same entity (similar to
having multiple architectures)
– Useful for testbench where both behavoral model and final netlist version

of the device should be tested

2022-08-31 16:09

2022-09-01TSTE12 Design of Digital Systems, Lecture 3 39

Visibility

● Same name may be used for multiple
purposes
– Doing this may hide some units

depending on the situation

package SIG is
 signal X: INTEGER:= 1;
end SIG;

use work.SIG.all;
entity Y is
 signal X: INTEGER:= 2;
end Y;

architecture Z of Y is
 signal Z1,Z2,Z3,Z4,Z5: INTEGER:= 0;
 function R return INTEGER is
 variable X: INTEGER := 3;
 begin
 return X; -- Returns value of 3.
 end R;
begin
 B: block
 signal X: INTEGER := 4;
 signal Z6: INTEGER := 0;
 begin
 Z6 <= X + Y.X; -- Z6 = 6
 end block B;

P1: process
 variable X: INTEGER :=5;
 begin
 Z5 <= X; -- Z5=5
 wait;
 end process;

 Z1 <= work.SIG.X; -- Z1=1
 Z2 <= X; -- Z2=2
 Z3 <= R; -- Z3=3
 Z4 <= B.X; -- Z4=4
end Z;

2022-09-01TSTE12 Design of Digital Systems, Lecture 3 40

Advanced feature: Overloading

● Can change meaning of literals, names of operators, functions, and procedures

● Correct version found by matching both name and parameter types

● If multiple identical declarations => latest visible one is used

● Useful feature for extending the language to support new datatypes or functions

– E.g. extend to support complex valued real numbers

● IEEE standard 1164 is an example of this

– Defines new datatypes as well as how comparison, assignments, arithmetic is
done using these datatypes

2022-08-31 16:09

2022-09-01TSTE12 Design of Digital Systems, Lecture 3 41

IEEE std_logic_1164 package

● Define a new datatype
and support functions
– the std_logic data type

– Overloads all common functions
used for bits and bitvectors

● AND, OR, NOT, XOR
● <, >, = etc.

– Conversion functions between
std_logic and bit

● Netlists generated by synthesis use std_logic for all signals

 type std_ulogic is ('u', -- uninitialized
 'x', -- forcing unknown
 '0', -- forcing 0
 '1', -- forcing 1
 'z', -- high impedance
 'w', -- weak unknown
 'l', -- weak 0
 'h', -- weak 1
 '-' -- don't care
);

2022-09-01TSTE12 Design of Digital Systems, Lecture 3 42

Overloading example
● Example: Want to support

new data type

– F <= (A and B) or
 (C and D);

● new version
of and

– Uses table lookup with
non-numeric indexes

– Index number is based
on position in definition
enumeration of MVL4

type MVL4 is ('X', '0', '1', 'Z');

function “and” (L, R: MVL4) return MVL4 is
 -- Declare a two-dimensional table type.
 type MVL4_TABLE is array (MVL4,MVL4) of MVL4;
 -- truth table for “and” function
 constant table_AND: MVL4_TABLE :=
 -- ----------------------------------
 -- | X 0 1 Z
 -- ----------------------------------
 (('X', '0', 'X', 'X'), -- | X |
 ('0', '0', '0', '0'), -- | 0 |
 ('X', '0', '1', 'X'), -- | 1 |
 ('X', '0', 'X', 'X')); -- | Z |
begin
 return table_AND(L,R);
end “and”;

2022-08-31 16:09

2022-09-01TSTE12 Design of Digital Systems, Lecture 3 43

File I/O

● Possible to read or write a file (1993 allow both on same file)

● Formatted IO
– Not generally human readable (platform dependent)

● TEXT IO
– Human readable

● Special package includes definitions
– STD.TEXTIO

– Functions for open file, read a complete line, and read individual data
from the line

2022-09-01TSTE12 Design of Digital Systems, Lecture 3 44

Later revisions

● Mostly simplifications and additional function support

● 1993:
– 8-bit ASCII, identifier restrictions relaxed, declarations simplifications

– Shared variables (global variables outside processes).

– Improved reporting in assert statements

● 2008:
– Simplified sensitivity lists (keyword all to include all signals used)

– Simplified conditions, allow bit and std_logic values as result of condition

– Read of output ports on entity

2022-08-31 16:09

2022-09-01TSTE12 Design of Digital Systems, Lecture 3 45

VHDL timing and concurrency

● Simulation of concurrent events (hardware) on a sequential
computer

● Must have the same result from simulation independent of
execution order of individual event

● Delay is an important property of hardware that must be
simulated

2022-09-01TSTE12 Design of Digital Systems, Lecture 3 46

Signals vs Variables

● Electronic signals can not change values in 0 seconds
– Always slopes on voltages going from 0 to 1

● Common sequential code assumes variables are updated before
next statement is executed

● Expect different result depending on if variables or signals are
used

● Both variables and signals can be used in synthesized code

2022-08-31 16:09

2022-09-01TSTE12 Design of Digital Systems, Lecture 3 47

Signal vs Variable example

● Inputs with changing value at different times

● Result depends on if signals or variables as assigned

X: 1 4 5 5 3
Y: 2 2 2 3 2
Z: 0 3 2 2 2
initial t1 t1+2 t1+4 t1+6

AS <= X*Y after 2 ns;
BS <= AS+Z after 2 ns;
AS: 2 2 8 10 15
BS: 2 2 5 10 12
 initial t1 t1+2 t1+4 t1+6

AV := X*Y;
BV := AV + Z;
AV: 2 8 10 15 6
BV: 2 11 12 17 8
 initial t1 t1+2 t1+4 t1+6

2022-09-01TSTE12 Design of Digital Systems, Lecture 3 48

Signal assignment with delta delay

● Minimum delay is a delta delay

● Delta delay is > 0 s but much smaller than the minimum
timestep of the simulator

X: 1 4 4 4
Y: 2 2 2 2
Z: 0 3 3 3
initial t1 t1+delta t1+2*delta
AS <= X*Y;
BS <= AS+Z;
AS: 2 2 8 8
BS: 2 2 5 11

2022-08-31 16:09

2022-09-01TSTE12 Design of Digital Systems, Lecture 3 49

Delta delay

● Can not be explicitly specified

● Delta delays will never add up to a simulation delay in seconds
(standard time)

● Sometimes referred to as Macro (simulation time) and micro
(delta delays) timing.

● Time may stand still in simulation by continuous signal updates
– Example: process triggered by a signal that it is updating

– Combinatorial loops without macro delay in assignments

– Delta delay is increasing but not the simulation time

2022-09-01TSTE12 Design of Digital Systems, Lecture 3 50

Simulation models

● Delta delay only
– Functional verification of models

● Standard time unit delay only
– Validate system timing

● Mixed
– Delta delay where delay is not important

– Standard time unit delay where delay is significant

– Study system timing

2022-08-31 16:09

2022-08-31 16:09

