08/28/2023 22:07

TSTE12 Design of Digital Systems, Lecture 2 2023-08-29 2

Agenda

* Practical issues
* Introduction to VHDL
- Simple design examples

LINKOPING
II.“ UNIVERSITY

08/28/2023 22:07

TSTE12 Design of Digital Systems, Lecture 2 2023-08-29 3

TSTE12 Practical Issues

 Make sure you are registered to the course

- Check that you have access to the lisam group room for
2023 version of the course

 Sign up for lab group
- Sign up function in the Lisam course room

- Select A or B group

LINKOPING
II.“ UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 2 2023-08-29 4

TSTE12 Lab info

* Lab open 05-23 each day, 7 days/week

* Lab group defined to guarantee computer access
- Unused computers available for other group

« MUX2 lab available (starting wednesday)
- Initially limited to scheduled hours (unlocked lab door)
- Later access given through LiU card

« MUXI1 lab also possible (but used more in other courses)

- Make sure the check with the schedule server (timeedit)
that other course not uses the lab before entering

LINKOPING
II.“ UNIVERSITY

08/28/2023 22:07

TSTE12 Design of Digital Systems, Lecture 2 2023-08-29 5

TSTE12 Deadlines Y,D,ED

* Group definitions Thursday 31 August (afternoon)

- On web, include supervisor assignment

* Friday 1 September (possible also monday 4/9): First meeting
with supervisor

- Determine project manager (contact person)
= Questions (short meeting)
* Tuesday 5 September: First version of requirement specification

* Hint: Deadline means ”“no later than”, i.e., allowed to complete
tasks before these dates

LINKOPING
II.“ UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 2 2023-08-29 6

TSTE12 Deadlines MELE, erasmus

* Group definition Wednesday 6 September (afternoon)
- On web, include supervisor assignment

* Friday 8 September: First meeting with supervisor
- Determine project manager (contact person)
= Question (short meeting)

* Tuesday 12 September: First version of requirement specification

LINKOPING
II.“ UNIVERSITY

08/28/2023 22:07

TSTE12 Design of Digital Systems, Lecture 2 2023-08-29 7

Deciding meeting with supervisor

* Supervisors work with multiple courses

* Meeting with supervisor decided by signing up on paper list
outside his office (or other method defined by the supervisor)

- Corridor B, 2" floor, entrance 27 (towards entrance 25)

- List shows available timeslots for meetings
* Sign up day before meeting

- Supervisors needs to know their day in the morning

Documents to be discussed must be submitted at least 24h before
the meeting time

LINKOPING
II.“ UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 2 2023-08-29 8

Computer system intro

* More info about the computer system at

https://liuonline.sharepoint.com/sites/student-campus-och-lok
aler/SitePages/en/Datorsalar.aspx

- Require login
 Single password for all computers

- Same files and folders (home folder) for windows as well as
linux

- We use linux (CentOS 7) that is unique to MUX1 and MUX2
labs. Reason: software not supported under other OS.

LINKOPING
II.“ UNIVERSITY

08/28/2023 22:07

TSTE12 Design of Digital Systems, Lecture 2 2023-08-29 9

Computer system, remote access

* Remote access to general linux machines
- Require 2-step verification (additional step using app on phone)
- Use thinlinc protocol software (runs on windows, mac, linux)
- Use rdp protocol software (choose one linux machine)
- Use ssh/X11 protocol software and connect to a linux machine
* Graphic interface necessary (X11 protocol)
- Linux: builtin support
- Windows: mobaxterm

- Mac: xquartz

LINKOPING
II.“ UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 2 2023-08-29 10

Computer system in MUX lab

* Special computer setup in MUX1 and MUX?2
- CentOS 7 (linux variant)

- Hardware and software different from other labs, including
libreoffice and other software
* Possible to remote login from thinlinc.edu.liu.se

- Use ssh -XC muxen2-0Onn in a terminal window from a linux
machine (nn is 01-16)

- Check if someone already logged in on the computer
w

 Machines always reboots at night

LINKOPING
II.“ UNIVERSITY

08/28/2023 22:07

TSTE12 Design of Digital Systems, Lecture 2 2023-08-29 11

Summary of remote access to MUX

Home ‘ University
hini ' thinlin ssh -XC muxen2-0nn
thinlinc thinlinc.edu.liu.se “
(separate software, ‘
Windows, linux, } \i
mac)
| rdp See Mux1/Mux2
rdp ; rpdklienter.edu.liu.se | > Linux
(built-in | (connect to a ssh -XC muxen2-0nn CentOS 7
windows) | linux computer)
} Some linux machine |
\ on campus ssh -XC muxen2-0nn
|
\
LINKOPING
Ilo“ UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 2 2023-08-29 12

VHDL Introduction

VHSIC Hardware Description Language

— Very High Speed Integrated Circuits
Developed on contract from US Dept. of Defense

First standard created 1987. Major revisions 1993, 2008 and 2019 (minor revision
in 2000/2002, 2008, and 2019).

— Will cover 87 version first
Additional standards has been adopted (e.g. std-logic data types, math library etc.)

Most popular in Europe

LINKOPING
II.“ UNIVERSITY

08/28/2023 22:07

TSTE12 Design of Digital Systems, Lecture 2 2023-08-29 13

Remember

VHDL was initially intended to be used as a
SPECIFICATION/DESCRIPTION

language, not for direct synthesis! Its strength is that it
allows an executable description/specification to be
created!

LINKOPING
II.“ UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 2 2023-08-29 14

VHDL Basic Features

* Influenced by ADA
* Object based, not object oriented

— Hide information, no inheritance
* VHDL is a complete computer language

* The language is strongly typed
* It allows concurrent events
* Focuses on digital hardware (Analog extensions exist, VHDL-AMS)

* Should be portable between different computer platforms. (source code only)

LINKOPING
II.“ UNIVERSITY

08/28/2023 22:07

TSTE12 Design of Digital Systems, Lecture 2 2023-08-29 15

VHDL Comments

« Remember to add comments

-- comments starts with double dashes
-- each comment continues to the end of line

* Use comments to document your design

» Special form know as Pragmas
- Control simulation and synthesis tools
- Vendor depend (no defined standard)
- Example: --pragma translate_off

LINKOPING
II.“ UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 2 2023-08-29 16

VHDL Basic Building Block

* The common building block is called an entity
* Design entities consists of two parts

— Entity definition describing the interface

— Architecture describing internals
* possible to have multiple architectures for a single entity definition

* Internals not accessible from the outside
* Common to divide these two parts into separate files

* Hierarchy allows reuse of entities and hiding of detail

LINKOPING
II.“ UNIVERSITY

08/28/2023 22:07

TSTE12 Design of Digital Systems, Lecture 2 2023-08-29 17

VHDL Entity definition

* Example
3 bit 2 bit
entity ONES_CNT is el A cl_,
port (A : in BIT_VECTOR(2 downto 0);
C : out BIT_VECTOR(1 downto 0)); ONES_CNT
end ONES_CNT;

* Fully specified interface

— Datatype
NO information about how it works!
— Direction
NO information about how it is implemented!
— Names
I,
TSTE12 Design of Digital Systems, Lecture 2 2023-08-29 18
Name of _
* Architecture describes internal function of an entity g‘r’]g@s"o”d'”g
* Here, boolean equations e
are used to describe architecture DATA_FLOW of ONES_CNT is
th ted beh begin
€ expected behavour C(1) <= (A(1) and A(0)) or (A(2) and A(0))
. . or (A(2) and A(1));
Both equations are C(0) <= (A(2) and not A(1) and not A(0))
evaluated at the same or (not A(2) and not A(1) and A(0))
time or (A(2) and A(1) and A(0))

or (not A(2) and A(1) and not A(0));
* Note parenthesis around end DATA_FLOW;
expressions!

- AND and OR have equal precedence

LINKOPING
II.“ UNIVERSITY

08/28/2023 22:07

TSTE12 Design of Digital Systems, Lecture 2 2023-08-29 19

VHDL Architecture structure example

architecture STRUCTURAL of ONES_COUNT is

 Build function using other component XOR_GATE

building blocks (entities) port (X,Y : in bit; 0 : out bit);
end component;
¢ Reuse Of baS]'C gates component NAND_GATE
. port (X,Y : in bit; O : out bit);
® Hlerarchy end component

AQ Ul U2

- First declare @ signal I1, I2, I3 : bit;
components 4 oy e
(interfaces) E- > & E’ UL : XOR_GATE port map(A(0),A(1),11);

U2 : XOR_GATE port map(I1,A(2),C(0));
. . U3 : NAND_GATE port map(A(0),A(1),I2);
- Then instantiate U4 : NAND_ GATE port map(A(2),T1,13);

them (ConneCt U5 : NAND_GATE port map(I2,I3,C(1));
them together) end STRUCTURAL;

LINKOPING
II.“ UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 2 2023-08-29 20

VHDL Architecture declaration

* Describes whats inside the entity

architecture ARCHITECTURE_NAME of ENTITY NAME is
-- Architecture declaration section
-- types, subtypes, constants, subprograms, components
-- Signals declared here (NO variables)
begin
-- concurrent statements
end ARCHITECTURE_NAME;

LINKOPING
II.“ UNIVERSITY

08/28/2023 22:07

TSTE12 Design of Digital Systems, Lecture 2

VHDL Architecture,

2023-08-29 21

subcomponents

* Mapping signals to component ports

- Implicit (by position)
- Explicit example

U2 : XOR_GATE port map (O => C(0), X => 11, Y => A(2));

entity NAND_GATE 1is
port (X,Y : in bit
0 : out bit);
end NAND_GATE;

architecture BEHAV of NAND_GATE is

entity XOR_GATE is
port (X,Y : in bit;
0 : out bit);
end XOR_GATE;

architecture BEHAV of XOR_GATE is

begin begin
0 <= X NAND Y, 0 <= X XOR Y;
end BEHAV; end BEHAV,;
LINKOPING
IIQ“ UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 2

VHDL Architecture,

* Behavioral description
- Map input to output

* Sequential code using
a process

* Not clear how it would
be implemented

- Should a counter and
adder be used?

2023-08-29 22

sequential code

architecture ALGORITHMIC of ONES_CNT is
begin
process(A)
variable NUM: INTEGER range 0 to 3;
begin
NUM := 0;
for I in 0 to 2 loop
if A(I) = '1' then
NUM := NUM + 1;

end if;
end loop;
case NUM is
when 0 => C <= “00”";
when 1 => C <= “01”";
when 2 => C <= “10”;
when 3 => C <= “11”";
end case;

end process;
end ALGORITHMIC;

LINKOPING
II.“ UNIVERSITY

08/28/2023 22:07

TSTE12 Design of Digital Systems, Lecture 2 2023-08-29 23

Examples so far

* Three types of examples so far
- Basic logic gates (boolean equations)
- Flipflop (very simple small process) previous lecture
- Interconnect gates and flipflops using structure
* Should now be able to create small designs
- Still manual steps (create Karnoughmaps, state graphs)
- Not using the power of the language and synthesis tools

LINKOPING
II.“ UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 2 2023-08-29 24

VHDL Basics

* Character set: 7-bit ASCII (extended in 1993)

- Avoid strange character (e.g. &, &, 6 etc.)
* Terminate statements with ;
- It is not separating statements, it is ending a statement
* Identifiers (names)
Start with a letter
Include only letters, digits and isolated

Last character must be a digit or a letter

- No case sensitivity

LINKOPING
II.“ UNIVERSITY

08/28/2023 22:07

TSTE12 Design of Digital Systems, Lecture 2 2023-08-29 25

VHDL characters and strings

* Character literals

- One character between two apostrophe delimiter

7 7

* Example: ’a’,

* String literal "hej hopp " & "i lingonskogen”

!

"hej hopp i lingonskogen”

- Characters between ”
- Length equal to number of characters

- Not possible to span multiple lines
* Use concatenation using & operator instead

LINKOPING
II.“ UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 2 2023-08-29 26

VHDL Bit strings

» Special case of strings
- Base specifier can be used
* B (binary), O (octal), X (hexadecimal)
- Examples (different values)
* B”101101101”,711101011101”, X”"DE”
* Viewed as string of bits, has no associated value

- Example: X”C” is viewed as “1100”

LINKOPING
II.“ UNIVERSITY

08/28/2023 22:07

TSTE12 Design of Digital Systems, Lecture 2

VHDL Numeric Values

* Integers
- Does not have a base point
- Examples: 5, 27, 23Eb5
* Real
- Has always a base point
- Examples: 5.0, 0.0, 2.3E-5
» Based literals
- Has a base specification [2, 16]
- Examples: 16#FfF#, 4#3.33333#e5

2023-08-29 27

LINKOPING
UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 2

VHDL Data Types

« Strictly enforced data types (strongly typed language)
- No automatic translation between types

Not allowed to mix datatypes in expressions
- Helps avoid programming errors
- Can create your own data types
* Subtypes
- Type plus constraint
- Limit the set of allowed values

- Example: Natural is a subtype of integers

2023-08-29 28

LINKOPING
UNIVERSITY

08/28/2023 22:07

TSTE12 Design of Digital Systems, Lecture 2

VHDL Data Types, cont.

e Scalar Data types
- Simple, single values
- Enumerations, integers, physical, real
 Composite
- Array (includes vectors)
- Record
* Access
- Pointers
* File

2023-08-29

29

LINKOPING
UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 2

Predefined Data Types

* Defined enumerations
type boolean is (FALSE, TRUE);
type bit is ('e', '1');
type character is (

2023-08-29

NUL, SOH, STX, ETX, EOT, ENQ, ACK, BEL, BS, HT, LF, VT, FF, CR, SO, SI,
DLE, DC1,DC2,DC3, DC4, NAK, SYN, ETB, CAN, EM, SUB, ESC, FSP, GSP, RSP, USP,

! ! l!l v
'0':'1',
'@','AI,
IPI 1 1
l‘l’lgl’
lpl’lql’
14 14

,l#l,l$|,l%|,|&|,l|l,l(l,|)l,l*l,l+l 1 !
I2I,l3|’I4I,l5|,|6|,l7l,l8l,|9l,l:l,l;l,l<l,
IBI,ICII|DI,|E|,|F|,IGI,IH|,|II,
IRII lSl,ITI,lU|,|V|,IWI, le,|Yl,
Ibl,ICII|dl,|e|’|f|’lgl’lh|’|il,
Irl,ISIIItI,lu|’|V|’lWl,lX|’|yl,

'Z', ,
ljl,lkl,lll,
'Z','{I,Illl

l_l,lllll/l,
|:|,|>|, ,
'M','N','O',
|]| AT 1

|m|,|n|,|61,
1 |’|~|, ’.
L ,DEL);

type severity level is (NOTE, WARNING, ERROR, FAILURE);

* Predefined operations (and, or, etc.) exist for bit and boolean

30

LINKOPING
UNIVERSITY

08/28/2023 22:07

TSTE12 Design of Digital Systems, Lecture 2 2023-08-29 31

VHDL Enumerations and Attributes

* Example: Type COLOR is (red, orange, green);
* Each element has a position (0 to the left, integer increment)

- Initial values of enumeration (if not specified) is always 'left
value

* Example: Bit variables and signals default to '0'
* Attributes can be give properties of a type or variable

- Based on the position of the element in the enumeration
- 'pos, 'val, 'left, 'right, 'high, 'low, 'succ, 'pred

* Example: COLOR'pos(GREEN) = 2
- Possible to create user-defined attributes

LINKOPING
II.“ UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 2 2023-08-29 32

Numeric Data types

* Integers
- Range is implementation dependent
* Minimum 32 bits (-2147483647 to 21483647)
* Subtypes usually used to catch errors and help synthesis
* Real
- Range is implementation dependent (at least 32 bits)

- This range is to small for many simulation purposes (e.g.
communication systems)

LINKOPING
II.“ UNIVERSITY

08/28/2023 22:07

TSTE12 Design of Digital Systems, Lecture 2 2023-08-29 33

VHDL Numeric Data types examples

» User defined types

type COUNTER is range 0 to 100;
subtype LOW RANGE is COUNTER range 0 to 50;
type REG is range 0 to 100;

» Strongly type language => impossible to e.g. calculate addition of
a REG type variable with a COUNTER type variable.

- Require some additional function defining how to translate
between these data types

LINKOPING
II.“ UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 2 2023-08-29 34

VHDL Physical Data Types

* type Time is range #####
units
fs;
ps = 1000fs;
ns = 1000ps;
us = 1000ns;
end units;

* Physical types are based on a minimal step (fs in the example above)
* Only time is predefined

— Time values must be integer multiples of the base unit. E.g. 0.5 fs does not
exist

LINKOPING
II.“ UNIVERSITY

08/28/2023 22:07

TSTE12 Design of Digital Systems, Lecture 2 2023-08-29 35

VHDL Composite Data Types

* Arrays (predefined)
Type String is array (positive range <>) of Characters;
Type bit_vector is array (natural range <>) of bit;

— <> means unconstrained range (not specified yet)

* More complex version
Type ROM_TYPE is array (natural range <>) of bit_vector(31 downto 0);

* Array attributes
— ’right, ’left, ’low, "high, ’length

* Allows for generic subroutines and designs without hardcoded dimensions

LINKOPING
II.“ UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 2 2023-08-29 36

VHDL Data Types

* Record: combines elements of different types
Type date is record
Day : integer range 1 to 31;
Month : month_name;
Year : integer range 0 to 3000;
End record;

» Access: dynamic storage (linked lists, tress etc.)
- Not covered in this course
= Only for simulation, no possible direct translation to hardware

LINKOPING
II.“ UNIVERSITY

08/28/2023 22:07

TSTE12 Design of Digital Systems, Lecture 2 2023-08-29 37

VHDL Type Marks

* Overloading of values
- Same symbol is used in multiple types
* Example: '1’ is available both in Bit and as a character
* Use type marking to remove ambiguity
- Helps tools to understand the type of the value
* Example: bit’("1’)

LINKOPING
II.“ UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 2 2023-08-29 38

VHDL Data Objects

* Constants

- Specified at compile time, never change value during
simulation

- Both value and type must be specified
* Variables

- Current value can be changed, used in sequential code
» Signals

- Objects with time dimension. Assignments does not affect the
current value, so current value can not be changed

LINKOPING
II.“ UNIVERSITY

08/28/2023 22:07

TSTE12 Design of Digital Systems, Lecture 2 2023-08-29 39

VHDL Signals and Variables

* Declared in different places
- Signals: ports on entitys, in architecture declaration

- Variables: in processes and subprograms (functions and
procedures)

* Both start with the leftmost value specified otherwise.

 Examples
- Variable REG1: BIT vector(15 downto 0) := X”"F5A2”;
- Signal Value: bit vector(5 to 7) := "0117;

LINKOPING
UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 2 2023-08-29 40

VHDL intial value, advanced version

 Example

Variable ROM A : ROM TYPE(O to 7) :=
(0 => X"FFFF_FFFF”,

5=> X"2222 CCCC”,

others=> X”0000 0000”);

 Example shows matrix initialization with an aggregate
- All rows in the ROM_A has value “00000000” except 0 and 5

- Efficient way to enter large number of values to vector/array
elements.

* Example: Set a bit vector to all 0: REG1 <= (others => '0’);

LINKOPING
UNIVERSITY

08/28/2023 22:07

TSTE12 Design of Digital Systems, Lecture 2 2023-08-29 41

VHDL Assignments

* Variable assignment uses :=
- Example: A :=5;
« Signal assignment uses <=

- Assign a new value sometime in the future (never change
current value)
- Examples:
* X1 <="1" after 10 ns;

e X2 <="1" after 2 ns, e L

0’ after 10 ns, t+2ns t+10ns t+30ns
1’ after 30 ns;

LINKOPING
II.“ UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 2 2023-08-29 42

VHDL Signal Attributes

'active — transaction in current simulation cycle (update, may be same value as
previous value)

'event — event in current simulation cycle (new value, different from previous
value)

— Commonly used to detect clock edges (see flipflop model)
'stable(tval) — no events (last tval time units)

'quit(tval) — no transaction for tval time units
'last_active — how long time since last change

'delayed — value of signal delayed

LINKOPING
II.“ UNIVERSITY

08/28/2023 22:07

TSTE12 Design of Digital Systems, Lecture 2 2023-08-29 43

VHDL Operators

** abs not (highest precedence)
* / mod rem
+ - (signing) = Equal
& /= Not equal to

- > Greater then
=/=<<=>>= >= Greater than or equal
and or nand nor xor (lowest precedence) < Less than

<= Less than or equal
* Equal precedence

-~ AORBANDC #AOR (BAND C)
* All associative except nand, nor

~ (X1 nand X2) nand X3 # X1 nand (X2 nand X3) # not (X1 and X2 and X3)

LINKOPING
UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 2 2023-08-29 44

VHDL Operators, cont.

* Comparisons and +, -, & must have same base type for both
objects

- No type casting is done
* Operator & is concatenating one-dimensional arrays
 Mod and rem only works with integers

* Physical data can be multiplied by real or integer
- E.g. double a delay by time*2

« ** is the exponential operator, abs is the absolute value operator

* Logic not operator only works on bit and boolean

LINKOPING
UNIVERSITY

08/28/2023 22:07

TSTE12 Design of Digital Systems, Lecture 2 2023-08-29 45

Sequential vs Concurrent code

Sequential code is the common programmers view on programs

- Single point of control, executing one statement after another
* Concurrent code

- All statements computed at the same time

- No way to know in which order a sequential computer
executes statements

The architecture body contains only concurrent code

The process, functions and procedures contains only sequential
code

LINKOPING
II.“ UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 2 2023-08-29 46

Concurrent assignment

LABEL: SIGNAL_NAME <= [transport]
WAVEFORM1 when CONDITIONI1 else
WAVEFORM?2 when CONDITION?2 else

WAVEFORMnN when CONDITIONN else
WAVEFORMg;

— Can also be described by sequential signal assignment in a process
— Example: C <= A or B;

— Transport will be discussed later

LINKOPING
II.“ UNIVERSITY

08/28/2023 22:07

TSTE12 Design of Digital Systems, Lecture 2 2023-08-29 47

Concurrent signal assignment: Select

LABEL: with EXPRESSION select

SIGNAL_NAME <= [transport]
WAVEFORM1 when CHOICES]1,
WAVEFORM2 when CHOICES?2,

WAVEFORMn when CHOICESn,
WAVEFORMq when others;

« All possible result of expression must must be included exactly
ones in a choice.

* Choices may be a list (e.g., when 0|1|2,)

LINKOPING
II.“ UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 2 2023-08-29 48

Assert statement

* Only way to get a text message to the user of the code

- Used mainly for error detection
Assert Boolean_ EXPRESSION
Report “Message_string”

Severity SEVERITY_LEVEL

* If expression is false then report. Severity levels are note,
warning, error, failure

- Simulation may stop depending on settings
* Concurrent version allows a label in front
LABEL: assert Boolean EXPRESSION

LINKOPING
II.“ UNIVERSITY

08/28/2023 22:07

TSTE12 Design of Digital Systems, Lecture 2 2023-08-29 49

Process statement

[LABEL:] process (SENSITIVITY_SIGNAL_LIST)
-- constants, types, subtypes, subprograms
-- variables (NO signals)
begin
-- sequential statements
end process;

* Process always executed once at simulation start. Then whenever events occur on
signals in the sensitivity list

* Variables are static

— Initialized at simulation start

— Keep their values between process activations

LINKOPING
II.“ UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 2 2023-08-29 50

Process statements, cont.

* Can combine process statements with structural code in the same
architecture

* Processes without a sensitivity list will automatically restart at the
end of a process

- Must have some way to stop simulation/wait some time to
avoid an infinite loop (simulation appear to be hanged)

* Processes can not both have a sensitivy list and wait statements in
the same process

LINKOPING
II.“ UNIVERSITY

08/28/2023 22:07

TSTE12 Design of Digital Systems, Lecture 2 2023-08-29

Sequential code

* Processes and subprograms have sequential code
- One statement after another is executed in order
- Most similar to “ordinary” computer code

- Simulation time does not increase while executing the
statements

* Exception is the wait statement

51

LINKOPING
II.“ UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 2 2023-08-29

Sequential control statements: wait

* Used in processes and subprograms

* Examples
wait on x,y until z=0 for 100 ns;
-- wait until event on x or y while z#0 or max 100 ns)
wait for 100 ns;
wait on a,b,c; -- wait for at least one event on a, b or c
wait until z=0;
wait; -- infinite wait

52

LINKOPING
II.“ UNIVERSITY

08/28/2023 22:07

TSTE12 Design of Digital Systems, Lecture 2 2023-08-29 53

Sequential control: if

if CONDITION1 then

-- sequence of statements 1
elsif CONDITION? then

-- sequence of statements 2

-- any number of elsif clauses
else

-- last sequence of statements
end if;

* Indentation not important (not like python)
* CONDITION must return boolean (not enough with a bit)

LINKOPING
II.“ UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 2 2023-08-29 54

Sequential control: case

case EXPRESSION is
when CHOICE1 => -- sequence of statements1
when CHOICE2 => -- sequence of statements 2
when others => -- last sequence of statements
end case;

« All possible choices must be covered once
- Others catch all choices not covered earlier
* Choices may be a list (e.g., when 0|1|2 =>)

LINKOPING
II.“ UNIVERSITY

08/28/2023 22:07

TSTE12 Design of Digital Systems, Lecture 2

2023-08-29 55

Sequential control: loop

for NAME in RANGE loop
-- sequence of operations
end loop;

while CONDITION loop
-- sequence of operations
end loop;

loop
-- sequence of statements
end loop;

* Controlling loop behavior
next [loop_label] [when CONDITION];
— Skip the rest of the loop body

exit [loop_label] [when CONDITION];

— Terminate the loop

LINKOPING
II.“ UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 2

Various statements

Null

2023-08-29 56

* Used to complete syntax requirement, e.g. in case statements
when a choice should not do anything.

LINKOPING
II.“ UNIVERSITY

08/28/2023 22:07

TSTE12 Design of Digital Systems, Lecture 2 2023-08-29 57

Subprograms

* Functions and procedures

* Declared in declaration region of architecture, process, block, or
other subprograms.

 Variables are dynamic (initialized at every call)

* Functions
- Always returns a value (must be used in an expression)
- Never modifies its parameters (all parameters are inputs)
- No side effects allowed

- Can not contain wait statements

LINKOPING
II.“ UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 2 2023-08-29 58

Functions

function FUNCTION_NAME (FORMAL_PARAMETER_DECLARATIONS)
return RETURN_TYPE is
-- constant and variable declarations (NO signals)
begin
-- sequential statements
return (RETURN_VALUE);
end FUNCTION_NAME;

* Must always return a defined value

LINKOPING
II.“ UNIVERSITY

08/28/2023 22:07

TSTE12 Design of Digital Systems, Lecture 2 2023-08-29

Procedures

procedure PROCEDURE_NAME
(FORMAL_PARAMETER_DECLARATIONS)
-- Procedure declaration part
-- constant and variable declarations (NO signals)
begin
-- sequential statements
end PROCEDURE_NAME;

* Formal parameters can be in, out, or inout (default in)
* May contain wait statements (but not if called from a function)
* Procedures can modify its formal parameters (no return value)

59

LINKOPING
II.“ UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 2 2023-08-29

Next Lecture

 Introduction to lab equipment and lab 1 requirements
- Testbench
* Timing and signal functionality

60

LINKOPING
II.“ UNIVERSITY

08/28/2023 22:07

