

TSTE12 Design of Digital Systems
Lecture 2
Kent Palmkvist

2022-08-30TSTE12 Design of Digital Systems, Lecture 2 2

Agenda

• Practical issues

• Introduction to VHDL

– Simple design examples

2022-08-30TSTE12 Design of Digital Systems, Lecture 2 3

TSTE12 Practical Issues

• Make sure you are registered to the course

– Check that you have access to the lisam group room for
2022 version of the course

• Sign up for lab group

– Sign up function in the Lisam course room

– Select A or B group

2022-08-30TSTE12 Design of Digital Systems, Lecture 2 4

TSTE12 Lab info

• Lab open 05-23 each day, 7 days/week

• Lab group defined to guarantee computer access
– Unused computers available for other group

• MUX1 lab available (starting wednesday)

– Initially limited to scheduled hours

– Later access given through LiU card

• MUX2 lab also possible (but used more in other courses)

– Make sure the check with the schedule server (timeedit)
that other course not uses the lab before entering

2022-08-30TSTE12 Design of Digital Systems, Lecture 2 5

TSTE12 Deadlines Y,D,ED

• Group definitions Thursday 1 September (afternoon)

– On web, include supervisor assignment

• Friday 2 September (possible also monday 5/9): First meeting
with supervisor

– Determine project manager (contact person)

– Questions (short meeting)

• Tuesday 6 September: First version of requirement specification

• Hint: Deadline means ”no later than”, i.e., allowed to complete
tasks before these dates

2022-08-30TSTE12 Design of Digital Systems, Lecture 2 6

TSTE12 Deadlines MELE, erasmus

• Group definition Wednesday 7 September (afternoon)

– On web, include supervisor assignment

• Friday 9 September: First meeting with supervisor

– Determine project manager (contact person)

– Question (short meeting)

• Tuesday 13 September: First version of requirement specification

2022-08-30TSTE12 Design of Digital Systems, Lecture 2 7

Deciding meeting with supervisor

● Supervisors work with multiple courses

● Meeting with supervisor decided by signing up on paper list
outside his office (or other method defined by the supervisor)

– Corridor B, 2nd floor, entrance 27 (towards entrance 25)
– List shows available timeslots for meetings

● Sign up day before meeting

– Supervisors needs to know their day in the morning

Documents to be discussed must be submitted at least 24h before
the meeting time

2022-08-30TSTE12 Design of Digital Systems, Lecture 2 8

Computer system intro

• More info about the computer system at

https://www.student.liu.se/studentstod/itsupport?l=en

• Single password for all computers
– Same files and folders (home folder) for windows as well as

linux

– We use linux (CentOS 7) that is unique to MUX1 and MUX2
labs. Reason: software not supported under other OS.

2022-08-30TSTE12 Design of Digital Systems, Lecture 2 9

Computer system, remote access
• Remote access to general linux machines

– Require 2-step verification (additional step using app on phone)

– Use thinlinc protocol software (runs on windows, mac, linux)

– Use rdp protocol software (choose one linux machine)

– Use ssh/X11 protocol software and connect to a linux machine

• Graphic interface necessary (X11 protocol)

– Linux: builtin support

– Windows: mobaxterm
– Mac: xquartz

2022-08-30TSTE12 Design of Digital Systems, Lecture 2 10

Computer system in MUX lab
● Special computer setup in MUX1 and MUX2

– CentOS 7 (linux variant)

– Hardware and software different from other labs, including
libreoffice and other software

● Possible to remote login from thinlinc.edu.liu.se

– Use ssh -XC muxen1-0nn in a terminal window from a linux
machine (nn is 01-16)

– Check if someone already logged in on the computer

w

• Machines always reboots at night

2022-08-30TSTE12 Design of Digital Systems, Lecture 2 11

Summary of remote access to MUX
Home

Mux1/Mux2
Linux

CentOS 7

thinlinc.edu.liu.se

See
rpdklienter.edu.liu.se

(connect to a
linux computer)

rdp

Some linux machine
on campus

thinlinc
thinlinc
(separate software,
Windows, linux,
mac)

rdp
(built-in
windows)

University

ssh -XC muxen2-0nn

ssh -XC muxen2-0nn

ssh -XC muxen2-0nn

2022-08-30TSTE12 Design of Digital Systems, Lecture 2 12

VHDL Introduction

● VHSIC Hardware Description Language

– Very High Speed Integrated Circuits
● Developed on contract from US Dept. of Defense

● First standard created 1987. Major revisions 1993, 2008 and 2019 (minor revision
in 2000/2002 and 2007).

– Will cover 87 version first
● Additional standards has been adopted (e.g. std-logic data types, math library etc.)

● Most popular in Europe

2022-08-30TSTE12 Design of Digital Systems, Lecture 2 13

Remember

VHDL was initially intended to be used as a

SPECIFICATION/DESCRIPTION

language, not for direct synthesis! Its strength is that it
allows an executable description/specification to be
created!

2022-08-30TSTE12 Design of Digital Systems, Lecture 2 14

VHDL Basic Features

● Influenced by ADA

● Object based, not object oriented

– Hide information, no inheritance
● VHDL is a complete computer language

● The language is strongly typed

● It allows concurrent events

● Focuses on digital hardware (Analog extensions exist, VHDL-AMS)

● Should be portable between different computer platforms. (source code only)

2022-08-30TSTE12 Design of Digital Systems, Lecture 2 15

VHDL Comments

• Remember to add comments

-- comments starts with double dashes
-- each comment continues to the end of line

• Use comments to document your design

• Special form know as Pragmas

– Control simulation and synthesis tools

– Vendor depend (no defined standard)
– Example: --pragma translate_off

2022-08-30TSTE12 Design of Digital Systems, Lecture 2 16

VHDL Basic Building Block

● The common building block is called an entity

● Design entities consists of two parts

– Entity definition describing the interface

– Architecture describing internals
● possible to have multiple architectures for a single entity definition
● Internals not accessible from the outside

● Common to divide these two parts into separate files

● Hierarchy allows reuse of entities and hiding of detail

2022-08-30TSTE12 Design of Digital Systems, Lecture 2 17

VHDL Entity definition

● Example

entity ONES_CNT is

port (A : in BIT_VECTOR(2 downto 0);

 C : out BIT_VECTOR(1 downto 0));

end ONES_CNT;

● Fully specified interface

– Datatype

– Direction

– Names

A C

ONES_CNT

3 bit 2 bit

NO information about how it works!

NO information about how it is implemented!

2022-08-30TSTE12 Design of Digital Systems, Lecture 2 18

VHDL Architecture dataflow example

• Architecture describes internal function of an entity

• Here, boolean equations
are used to describe
the expected behavour

• Both equations are
evaluated at the same
time

• Note parenthesis around
expressions!

– AND and OR have equal precedence

architecture DATA_FLOW of ONES_CNT is
 begin
 C(1) <= (A(1) and A(0)) or (A(2) and A(0))
 or (A(2) and A(1));
 C(0) <= (A(2) and not A(1) and not A(0))
 or (not A(2) and not A(1) and A(0))
 or (A(2) and A(1) and A(0))
 or (not A(2) and A(1) and not A(0));
end DATA_FLOW;

Name of
corresponding
entity

2022-08-30TSTE12 Design of Digital Systems, Lecture 2 19

VHDL Architecture structure example

• Build function using other
building blocks (entities)

• Reuse of basic gates

• Hierarchy

– First declare
components
(interfaces)

– Then instantiate
them (connect
them together)

architecture STRUCTURAL of ONES_COUNT is

component XOR_GATE
port (X,Y : in bit; O : out bit);

end component;

component NAND_GATE
port (X,Y : in bit; O : out bit);

end component

signal I1, I2, I3 : bit;

begin

U1 : XOR_GATE port map(A(0),A(1),I1);
U2 : XOR_GATE port map(I1,A(2),C(0));
U3 : NAND_GATE port map(A(0),A(1),I2);
U4 : NAND_GATE port map(A(2),I1,I3);
U5 : NAND_GATE port map(I2,I3,C(1));

end STRUCTURAL;

=1

&

=1

&
&

A(0)

C(1)

C(0)A(1)
A(2)

U5

U1 U2

U3
U4

I2
I3

I1

2022-08-30TSTE12 Design of Digital Systems, Lecture 2 20

VHDL Architecture declaration

• Describes whats inside the entity

architecture ARCHITECTURE_NAME of ENTITY_NAME is

 -- Architecture declaration section

 -- types, subtypes, constants, subprograms, components

 -- Signals declared here (NO variables)

begin

 -- concurrent statements

end ARCHITECTURE_NAME;

2022-08-30TSTE12 Design of Digital Systems, Lecture 2 21

VHDL Architecture, subcomponents

● Mapping signals to component ports

– Implicit (by position)

– Explicit example

U2 : XOR_GATE port map (O => C(0), X => I1, Y => A(2));

entity NAND_GATE is
port (X,Y : in bit

 O : out bit);
end NAND_GATE;

architecture BEHAV of NAND_GATE is
begin

O <= X NAND Y;
end BEHAV;

entity XOR_GATE is
port (X,Y : in bit;

 O : out bit);
end XOR_GATE;

architecture BEHAV of XOR_GATE is
begin

O <= X XOR Y;
end BEHAV;

2022-08-30TSTE12 Design of Digital Systems, Lecture 2 22

VHDL Architecture, sequential code

• Behavioral description

– Map input to output

• Sequential code using
a process

• Not clear how it would
be implemented

– Should a counter and
adder be used?

architecture ALGORITHMIC of ONES_CNT is
begin
 process(A)
 variable NUM: INTEGER range 0 to 3;
 begin
 NUM := 0;
 for I in 0 to 2 loop
 if A(I) = '1' then
 NUM := NUM + 1;
 end if;
 end loop;
 case NUM is
 when 0 => C <= “00”;
 when 1 => C <= “01”;
 when 2 => C <= “10”;
 when 3 => C <= “11”;
 end case;
 end process;
end ALGORITHMIC;

2022-08-30TSTE12 Design of Digital Systems, Lecture 2 23

Examples so far

• Three types of examples so far

– Basic logic gates (boolean equations)
– Flipflop (very simple small process)
– Interconnect gates and flipflops using structure

• Should now be able to create small designs
– Still manual steps (create Karnoughmaps, state graphs)
– Not using the power of the language and synthesis tools

2022-08-30TSTE12 Design of Digital Systems, Lecture 2 24

VHDL Basics
• Character set: 7-bit ASCII (extended in 1993)

– Avoid strange character (e.g. å, ä, ö etc.)

• Terminate statements with ;

– It is not separating statements, it is ending a statement

• Identifiers (names)

– Start with a letter

– Include only letters, digits and isolated _

– Last character must be a digit or a letter

– No case sensitivity

2022-08-30TSTE12 Design of Digital Systems, Lecture 2 25

VHDL characters and strings

• Character literals

– One character between two apostrophe delimiter
● Example: ’a’, ’ ’

• String literal

– Characters between ”

– Length equal to number of characters

– Not possible to span multiple lines
● Use concatenation using & operator instead

”hej hopp ” & ”i lingonskogen”

”hej hopp i lingonskogen”

2022-08-30TSTE12 Design of Digital Systems, Lecture 2 26

VHDL Bit strings

• Special case of strings

– Base specifier can be used
● B (binary), O (octal), X (hexadecimal)

– Examples (different values)
● B”101101101”, ”11101011101”, X”DE”

• Viewed as string of bits, has no associated value

– Example: X”C” is viewed as ”1100”

2022-08-30TSTE12 Design of Digital Systems, Lecture 2 27

VHDL Numeric Values
• Integers

– Does not have a base point

– Examples: 5, 27, 23E5

• Real

– Has always a base point

– Examples: 5.0, 0.0, 2.3E-5

• Based literals
– Has a base specification [2, 16]
– Examples: 16#FfF#, 4#3.33333#e5

2022-08-30TSTE12 Design of Digital Systems, Lecture 2 28

VHDL Data Types
• Strictly enforced data types (strongly typed language)

– No automatic translation between types

– Not allowed to mix datatypes in expressions

– Helps avoid programming errors

– Can create your own data types

• Subtypes

– Type plus constraint

– Limit the set of allowed values

– Example: Natural is a subtype of integers

2022-08-30TSTE12 Design of Digital Systems, Lecture 2 29

VHDL Data Types, cont.
• Scalar Data types

– Simple, single values

– Enumerations, integers, physical, real

• Composite
– Array (includes vectors)
– Record

• Access

– Pointers

• File

2022-08-30TSTE12 Design of Digital Systems, Lecture 2 30

Predefined Data Types

• Defined enumerations

• Predefined operations (and, or, etc.) exist for bit and boolean

type boolean is (FALSE, TRUE);
type bit is ('0', '1');
type character is (
 NUL,SOH,STX,ETX,EOT,ENQ,ACK,BEL,BS,HT,LF,VT,FF,CR,SO,SI,
 DLE,DC1,DC2,DC3,DC4,NAK,SYN,ETB,CAN,EM,SUB,ESC,FSP,GSP,RSP,USP,
 ' ','!','”','#','$','%','&',''','(',')','*','+',',','-','.','/',
 '0','1','2','3','4','5','6','7','8','9',':',';','<','=','>','?',
 '@','A','B','C','D','E','F','G','H','I','J','K','L','M','N','O',
 'P','Q','R','S','T','U','V','W','X','Y','Z','[','\',']','^','_',
 '`','a','b','c','d','e','f','g','h','i','j','k','l','m','n','o',
 'p','q','r','s','t','u','v','w','x','y','z','{','|','}','~',DEL);
type severity_level is (NOTE, WARNING, ERROR, FAILURE);

2022-08-30TSTE12 Design of Digital Systems, Lecture 2 31

VHDL Enumerations and Attributes
● Example: Type COLOR is (red, orange, green);

● Each element has a position (0 to the left, integer increment)
– Initial values of enumeration (if not specified) is always 'left

value
● Example: Bit variables and signals default to '0'

● Attributes can be give properties of a type or variable

– Based on the position of the element in the enumeration
– 'pos, 'val, 'left, 'right, 'high, 'low, 'succ, 'pred

● Example: COLOR'pos(GREEN) = 2

– Possible to create user-defined attributes

2022-08-30TSTE12 Design of Digital Systems, Lecture 2 32

Numeric Data types

• Integers

– Range is implementation dependent
● Minimum 32 bits (-2147483647 to 21483647)
● Subtypes usually used to catch errors and help synthesis

• Real

– Range is implementation dependent (at least 32 bits)

– This range is to small for many simulation purposes (e.g.
communication systems)

2022-08-30TSTE12 Design of Digital Systems, Lecture 2 33

VHDL Numeric Data types examples

• User defined types

type COUNTER is range 0 to 100;
subtype LOW_RANGE is COUNTER range 0 to 50;
type REG is range 0 to 100;

• Strongly type language => impossible to e.g. calculate addition of
a REG type variable with a COUNTER type variable.

– Require some additional function defining how to translate
between these data types

2022-08-30TSTE12 Design of Digital Systems, Lecture 2 34

VHDL Physical Data Types
● type Time is range #####

 units
 fs;
 ps = 1000fs;
 ns = 1000ps;
 us = 1000ns;
end units;

● Physical types are based on a minimal step (fs in the example above)

● Only time is predefined

– Time values must be integer multiples of the base unit. E.g. 0.5 fs does not
exist

2022-08-30TSTE12 Design of Digital Systems, Lecture 2 35

VHDL Composite Data Types

• Arrays (predefined)
Type String is array (positive range <>) of Characters;
Type bit_vector is array (natural range <>) of bit;

– <> means unconstrained range (not specified yet)

● More complex version
Type ROM_TYPE is array (natural range <>) of bit_vector(31 downto 0);

• Array attributes

– ’right, ’left, ’low, ’high, ’length

• Allows for generic subroutines and designs without hardcoded dimensions

2022-08-30TSTE12 Design of Digital Systems, Lecture 2 36

VHDL Data Types

• Record: combines elements of different types
 Type date is record

 Day : integer range 1 to 31;
 Month : month_name;
 Year : integer range 0 to 3000;
End record;

• Access: dynamic storage (linked lists, tress etc.)

– Not covered in this course

– Only for simulation, no possible direct translation to hardware

2022-08-30TSTE12 Design of Digital Systems, Lecture 2 37

VHDL Type Marks

• Overloading of values

– Same symbol is used in multiple types
● Example: ’1’ is available both in Bit and as a character
● Use type marking to remove ambiguity

– Helps tools to understand the type of the value
● Example: bit’(’1’)

2022-08-30TSTE12 Design of Digital Systems, Lecture 2 38

VHDL Data Objects

• Constants

– Specified at compile time, never change value during
simulation

– Both value and type must be specified

• Variables

– Current value can be changed, used in sequential code

• Signals
– Objects with time dimension. Assignments does not affect the

current value, so current value can not be changed

2022-08-30TSTE12 Design of Digital Systems, Lecture 2 39

VHDL Signals and Variables

• Declared in different places

– Signals: ports on entitys, in architecture declaration
– Variables: in processes and subprograms (functions and

procedures)

• Both start with the leftmost value specified otherwise.

• Examples

– Variable REG1: BIT_vector(15 downto 0) := X”F5A2”;

– Signal Value: bit_vector(5 to 7) := ”011”;

2022-08-30TSTE12 Design of Digital Systems, Lecture 2 40

VHDL intial value, advanced version
• Example

Variable ROM_A : ROM_TYPE(0 to 7) :=
 (0 => X”FFFF_FFFF”,
 5=> X”2222_CCCC”,
 others=> X”0000_0000”);

• Example shows matrix initialization with an aggregate

– All rows in the ROM_A has value ”00000000” except 0 and 5

– Efficient way to enter large number of values to vector/array
elements.

• Example: Set a bit_vector to all 0: REG1 <= (others => ’0’);

2022-08-30TSTE12 Design of Digital Systems, Lecture 2 41

VHDL Assignments
• Variable assignment uses :=

– Example: A := 5;

• Signal assignment uses <=

– Assign a new value sometime in the future (never change
current value)

– Examples:
● X1 <= ’1’ after 10 ns;
● X2 <= ’1’ after 2 ns,

 ’0’ after 10 ns,
 ’1’ after 30 ns;

t+2ns t+30nst+10ns

X2

2022-08-30TSTE12 Design of Digital Systems, Lecture 2 42

VHDL Signal Attributes

'active – transaction in current simulation cycle (update, may be same value as
previous value)

'event – event in current simulation cycle (new value, different from previous
value)

– Commonly used to detect clock edges (see flipflop model)
'stable(tval) – no events (last tval time units)

'quit(tval) – no transaction for tval time units

'last_active – how long time since last change

'delayed – value of signal delayed

2022-08-30TSTE12 Design of Digital Systems, Lecture 2 43

VHDL Operators

** abs not (highest precedence)
* / mod rem
+ - (signing)
+ - &
= /= < <= > >=
and or nand nor xor (lowest precedence)

● Equal precedence

– A OR B AND C ≠ A OR (B AND C)
● All associative except nand, nor

– (X1 nand X2) nand X3 ≠ X1 nand (X2 nand X3) ≠ not (X1 and X2 and X3)

= Equal
/= Not equal to
> Greater then
>= Greater than or equal
< Less than
<= Less than or equal

2022-08-30TSTE12 Design of Digital Systems, Lecture 2 44

VHDL Operators, cont.
• Comparisons and +, -, & must have same base type for both

objects

– No type casting is done

• Operator & is concatenating one-dimensional arrays

• Mod and rem only works with integers

• Physical data can be multiplied by real or integer

– E.g. double a delay by time*2

• ** is the exponential operator, abs is the absolute value operator

• Logic not operator only works on bit and boolean

2022-08-30TSTE12 Design of Digital Systems, Lecture 2 45

Sequential vs Concurrent code

● Sequential code is the common programmers view on programs

– Single point of control, executing one statement after another
● Concurrent code

– All statements computed at the same time
– No way to know in which order a sequential computer

executes statements

● The architecture body contains only concurrent code

● The process, functions and procedures contains only sequential
code

2022-08-30TSTE12 Design of Digital Systems, Lecture 2 46

Concurrent assignment

LABEL: SIGNAL_NAME <= [transport]
 WAVEFORM1 when CONDITION1 else
 WAVEFORM2 when CONDITION2 else

 :

 WAVEFORMn when CONDITIONn else
 WAVEFORMq;

– Can also be described by sequential signal assignment in a process

– Example: C <= A or B;

– Transport will be discussed later

2022-08-30TSTE12 Design of Digital Systems, Lecture 2 47

Concurrent signal assignment: Select

LABEL: with EXPRESSION select
SIGNAL_NAME <= [transport]
 WAVEFORM1 when CHOICES1,
 WAVEFORM2 when CHOICES2,
 :
 WAVEFORMn when CHOICESn,
 WAVEFORMq when others;

• All possible result of expression must must be included exactly
ones in a choice.

• Choices may be a list (e.g., when 0|1|2,)

2022-08-30TSTE12 Design of Digital Systems, Lecture 2 48

Assert statement
• Only way to get a text message to the user of the code

– Used mainly for error detection
 Assert Boolean_EXPRESSION
 Report “Message_string”
 Severity SEVERITY_LEVEL

• If expression is false then report. Severity levels are note,
warning, error, failure

– Simulation may stop depending on settings

• Concurrent version allows a label in front

LABEL: assert Boolean_EXPRESSION

2022-08-30TSTE12 Design of Digital Systems, Lecture 2 49

Process statement
[LABEL:] process (SENSITIVITY_SIGNAL_LIST)

 -- constants, types, subtypes, subprograms
 -- variables (NO signals)
begin
 -- sequential statements
end process;

● Process always executed once at simulation start. Then whenever events occur on
signals in the sensitivity list

● Variables are static

– Initialized at simulation start

– Keep their values between process activations

2022-08-30TSTE12 Design of Digital Systems, Lecture 2 50

Process statements, cont.

• Can combine process statements with structural code in the same
architecture

• Processes without a sensitivity list will automatically restart at the
end of a process

– Must have some way to stop simulation/wait some time to
avoid an infinite loop (simulation appear to be hanged)

• Processes can not both have a sensitivy list and wait statements in
the same process

2022-08-30TSTE12 Design of Digital Systems, Lecture 2 51

Sequential code

• Processes and subprograms have sequential code

– One statement after another is executed in order
– Most similar to ”ordinary” computer code
– Simulation time does not increase while executing the

statements
● Exception is the wait statement

2022-08-30TSTE12 Design of Digital Systems, Lecture 2 52

Sequential control statements: wait

● Used in processes and subprograms

● Examples
wait on x,y until z=0 for 100 ns;

-- wait until event on x or y while z≠0 or max 100 ns)
wait for 100 ns;
wait on a,b,c; -- wait for at least one event on a, b or c
wait until z=0;
wait; -- infinite wait

2022-08-30TSTE12 Design of Digital Systems, Lecture 2 53

Sequential control: if

 if CONDITION1 then
 -- sequence of statements 1
elsif CONDITION2 then
 -- sequence of statements 2
 -- any number of elsif clauses
else
 -- last sequence of statements
end if;

• Indentation not important (not like python)

• CONDITION must return boolean (not enough with a bit)

2022-08-30TSTE12 Design of Digital Systems, Lecture 2 54

Sequential control: case

 case EXPRESSION is
 when CHOICE1 => -- sequence of statements1
 when CHOICE2 => -- sequence of statements 2
 when others => -- last sequence of statements
end case;

• All possible choices must be covered once
– Others catch all choices not covered earlier

• Choices may be a list (e.g., when 0|1|2 =>)

2022-08-30TSTE12 Design of Digital Systems, Lecture 2 55

Sequential control: loop

 for NAME in RANGE loop
 -- sequence of operations
end loop;

 while CONDITION loop
 -- sequence of operations
end loop;

 loop
 -- sequence of statements
end loop;

● Controlling loop behavior

next [loop_label] [when CONDITION];

– Skip the rest of the loop body

exit [loop_label] [when CONDITION];

– Terminate the loop

2022-08-30TSTE12 Design of Digital Systems, Lecture 2 56

Various statements

Null

• Used to complete syntax requirement, e.g. in case statements
when a choice should not do anything.

2022-08-30TSTE12 Design of Digital Systems, Lecture 2 57

Subprograms

• Functions and procedures

• Declared in declaration region of architecture, process, block, or
other subprograms.

• Variables are dynamic (initialized at every call)

• Functions

– Always returns a value (must be used in an expression)
– Never modifies its parameters (all parameters are inputs)
– No side effects allowed

– Can not contain wait statements

2022-08-30TSTE12 Design of Digital Systems, Lecture 2 58

Functions

function FUNCTION_NAME (FORMAL_PARAMETER_DECLARATIONS)
return RETURN_TYPE is
 -- constant and variable declarations (NO signals)
begin
 -- sequential statements
 return (RETURN_VALUE);
end FUNCTION_NAME;

• Must always return a defined value

2022-08-30TSTE12 Design of Digital Systems, Lecture 2 59

Procedures

procedure PROCEDURE_NAME
(FORMAL_PARAMETER_DECLARATIONS)
 -- Procedure declaration part
 -- constant and variable declarations (NO signals)
begin
 -- sequential statements
end PROCEDURE_NAME;

• Formal parameters can be in, out, or inout (default in)

• May contain wait statements (but not if called from a function)

• Procedures can modify its formal parameters (no return value)

2022-08-30TSTE12 Design of Digital Systems, Lecture 2 60

Next Lecture

• Introduction to lab equipment and lab 1 requirements

– Testbench

• Timing and signal functionality

