Kent Palmkvist

TSTE12 Design of Digital Systems, Lecture 2

Agenda

- Practical issues
- Introduction to VHDL
 - Simple design examples

2022-08-30 2

2022-08-30

4

TSTE12 Design of Digital Systems, Lecture 2

TSTE12 Practical Issues

- Make sure you are registered to the course
 - Check that you have access to the lisam group room for 2022 version of the course
- Sign up for lab group
 - Sign up function in the Lisam course room
 - Select A or B group

TSTE12 Design of Digital Systems, Lecture 2

TSTE12 Lab info

- Lab open 05-23 each day, 7 days/week
- Lab group defined to guarantee computer access
 - Unused computers available for other group
- MUX1 lab available (starting wednesday)
 - Initially limited to scheduled hours
 - Later access given through LiU card
- MUX2 lab also possible (but used more in other courses)
 - Make sure the check with the schedule server (timeedit) that other course not uses the lab before entering

TSTE12 Design of Digital Systems, Lecture 2

TSTE12 Deadlines Y,D,ED

- Group definitions Thursday 1 September (afternoon)
 - On web, include supervisor assignment
- Friday 2 September (possible also monday 5/9): First meeting with supervisor
 - Determine project manager (contact person)
 - Questions (short meeting)
- Tuesday 6 September: First version of requirement specification
- Hint: Deadline means "no later than", i.e., allowed to complete tasks before these dates

TSTE12 Design of Digital Systems, Lecture 2

2022-08-30 6

TSTE12 Deadlines MELE, erasmus

- Group definition Wednesday 7 September (afternoon)
 - On web, include supervisor assignment
- Friday 9 September: First meeting with supervisor
 - Determine project manager (contact person)
 - Question (short meeting)
- Tuesday 13 September: First version of requirement specification

2022-08-30

7

TSTE12 Design of Digital Systems, Lecture 2

Deciding meeting with supervisor

- Supervisors work with multiple courses
- Meeting with supervisor decided by signing up on paper list outside his office (or other method defined by the supervisor)
 - Corridor B, 2nd floor, entrance 27 (towards entrance 25)
 - List shows available timeslots for meetings
- Sign up day before meeting
 - Supervisors needs to know their day in the morning

Documents to be discussed must be submitted at least 24h before the meeting time

TSTE12 Design of Digital Systems, Lecture 2

2022-08-30 8

Computer system intro

• More info about the computer system at

 $https://www.student.liu.se/studentstod/itsupport?l\!=\!en$

- Single password for all computers
 - Same files and folders (home folder) for windows as well as linux
 - We use linux (CentOS 7) that is unique to MUX1 and MUX2 labs. Reason: software not supported under other OS.

2022-08-30 9

Computer system, remote access

- Remote access to general linux machines
 - Require 2-step verification (additional step using app on phone)
 - Use thinlinc protocol software (runs on windows, mac, linux)
 - Use rdp protocol software (choose one linux machine)
 - Use ssh/X11 protocol software and connect to a linux machine
- Graphic interface necessary (X11 protocol)
 - Linux: builtin support
 - Windows: mobaxterm
 - Mac: xquartz

TSTE12 Design of Digital Systems, Lecture 2

2022-08-30 10

Computer system in MUX lab

- Special computer setup in MUX1 and MUX2
 - CentOS 7 (linux variant)
 - Hardware and software different from other labs, including libreoffice and other software
- Possible to remote login from thinlinc.edu.liu.se
 - Use ssh -XC muxen1-0nn in a terminal window from a linux machine (nn is 01-16)
 - Check if someone already logged in on the computer

W

• Machines always reboots at night

<page-header><page-header><page-header><section-header><list-item><list-item><list-item><list-item><list-item>

TSTE12 Design of Digital Systems, Lecture 2

Remember

VHDL was initially intended to be used as a SPECIFICATION/DESCRIPTION

language, not for direct synthesis! Its strength is that it allows an executable description/specification to be created!

TSTE12 Design of Digital Systems, Lecture 2

VHDL Basic Features

- Influenced by ADA
- Object based, not object oriented
 - Hide information, no inheritance
- VHDL is a complete computer language
- The language is strongly typed
- It allows concurrent events
- Focuses on digital hardware (Analog extensions exist, VHDL-AMS)
- Should be portable between different computer platforms. (source code only)

2022-08-30 14

TSTE12 Design of Digital Systems, Lecture 2

VHDL Comments

Remember to add comments

- -- comments starts with double dashes
- -- each comment continues to the end of line
- Use comments to document your design
- Special form know as Pragmas
 - Control simulation and synthesis tools
 - Vendor depend (no defined standard)
 - Example: --pragma translate_off

TSTE12 Design of Digital Systems, Lecture 2

VHDL Basic Building Block

- The common building block is called an entity
- Design entities consists of two parts
 - Entity definition describing the interface
 - Architecture describing internals
 - possible to have multiple architectures for a single entity definition
 - Internals not accessible from the outside
- Common to divide these two parts into separate files
- Hierarchy allows reuse of entities and hiding of detail

2022-08-30 16

TSTE12 Design of Digital Systems, Lecture 2 2022-08-30 17 VHDL Entity definition • Example 3 bit 2 bit entity ONES_CNT is C _↔_► port (A : in BIT_VECTOR(2 downto 0); ONES_CNT C : out BIT_VECTOR(1 downto 0)); end ONES_CNT; • Fully specified interface - Datatype NO information about how it works! - Direction NO information about how it is implemented! - Names

VHDL Architect	ure dataflow example
 Architecture describes int Here, boolean equations are used to describe the expected behavour Both equations are evaluated at the same time Note parenthesis around expressions! 	<pre>A contract of the second second</pre>
 AND and OR have equ 	al precedence

2022-08-30 19

2022-08-30

20

VHDL Architecture structure example

TSTE12 Design of Digital Systems, Lecture 2

VHDL Architecture declaration

• Describes whats inside the entity

architecture ARCHITECTURE_NAME of ENTITY_NAME is

- -- Architecture declaration section
- -- types, subtypes, constants, subprograms, components
- -- Signals declared here (NO variables)

begin

-- concurrent statements

end ARCHITECTURE_NAME;

2022-08-30 21

VHDL Architecture, subcomponents Mapping signals to component ports - Implicit (by position) - Explicit example U2 : XOR_GATE port map (O => C(0), X => I1, Y => A(2)); entity NAND_GATE is entity XOR_GATE is port (X,Y : in bit port (X,Y : in bit; 0 : out bit); 0 : out bit); end NAND_GATE; end XOR_GATE; architecture BEHAV of NAND_GATE is architecture BEHAV of XOR_GATE is begin begin $0 \leq X \text{ NAND } Y;$ $0 \leq X XOR Y;$ end BEHAV; end BEHAV;

TSTE12 Design of Digital Systems, Lecture 2

2022-08-30 22

VHDL Architecture, sequential code

- Behavioral description
 - Map input to output
- Sequential code using a process
- Not clear how it would be implemented
 - Should a counter and adder be used?

```
architecture ALGORITHMIC of ONES_CNT is
beain
  process(A)
   variable NUM: INTEGER range 0 to 3;
  beain
    NUM := 0;
    for I in 0 to 2 loop
     if A(I) = '1' then
       NUM := NUM + 1;
      end if;
    end loop;
    case NUM is
      when 0 => C <= "00";
      when 1 => C <= "01";
      when 2 => C <= "10";
     when 3 => C <= "11";
    end case;
  end process;
end ALGORITHMIC;
```

LINKÖPING UNIVERSITY

2022-08-30 24

TSTE12 Design of Digital Systems, Lecture 2

Examples so far

- Three types of examples so far
 - Basic logic gates (boolean equations)
 - Flipflop (very simple small process)
 - Interconnect gates and flipflops using structure
- Should now be able to create small designs
 - Still manual steps (create Karnoughmaps, state graphs)
 - Not using the power of the language and synthesis tools

TSTE12 Design of Digital Systems, Lecture 2

VHDL Basics

- Character set: 7-bit ASCII (extended in 1993)
 - Avoid strange character (e.g. å, ä, ö etc.)
- Terminate statements with ;
 - It is not separating statements, it is ending a statement
- Identifiers (names)
 - Start with a letter
 - Include only letters, digits and isolated $_$
 - Last character must be a digit or a letter
 - No case sensitivity

2022-08-30 25

VHDL characters and strings

• Character literals

- One character between two apostrophe delimiter
 - Example: 'a', ' '
- String literal
 - Characters between "

"hej hopp " & "i lingonskogen"

"hej hopp i lingonskogen"

2022-08-30 26

- Length equal to number of characters
- Not possible to span multiple lines
 - Use concatenation using & operator instead

TSTE12 Design of Digital Systems, Lecture 2

VHDL Bit strings

- Special case of strings
 - Base specifier can be used
 - B (binary), O (octal), X (hexadecimal)
 - Examples (different values)
 - B"101101101", "11101011101", X"DE"
- Viewed as string of bits, has no associated value
 - Example: X"C" is viewed as "1100"

VHDL Numeric Values

- Integers
 - Does not have a base point
 - Examples: 5, 27, 23E5
- Real
 - Has always a base point
 - Examples: 5.0, 0.0, 2.3E-5
- Based literals
 - Has a base specification [2, 16]
 - Examples: 16#FfF#, 4#3.33333#e5

TSTE12 Design of Digital Systems, Lecture 2

VHDL Data Types

- Strictly enforced data types (strongly typed language)
 - No automatic translation between types
 - Not allowed to mix datatypes in expressions
 - Helps avoid programming errors
 - Can create your own data types
- Subtypes
 - Type plus constraint
 - Limit the set of allowed values
 - Example: Natural is a subtype of integers

2022-08-30 27

2022-08-30 28

2022-08-30 29

VHDL Data Types, cont.

- Scalar Data types
 - Simple, single values
 - Enumerations, integers, physical, real
- Composite
 - Array (includes vectors)
 - Record
- Access
 - Pointers
- File

TSTE12 Design of Digital Systems, Lecture 2

2022-08-30 30

Predefined Data Types

• Defined enumerations

type boolean is (FALSE, TRUE); type bit is ('0', '1'); type character is (NUL,SOH,STX,ETX,EOT,ENQ,ACK,BEL,BS,HT,LF,VT,FF,CR,SO,SI, DLE,DC1,DC2,DC3,DC4,NAK,SYN,ETB,CAN,EM,SUB,ESC,FSP,GSP,RSP,USP, ' ','!',''','#','\$','%','&',''','(',')','*','+',','-','',','',' '0','1','2','3','4','5','6','7','8','9',':',';','<','=','>','?', '0','1','2','3','4','5','6','7','8','9',':',';','<','=','>','?', '0','A','B','C','D','E','F','G','H','I','J','K','L','M','N','O', 'P','Q','R','S','T','U','V','W','X','Y','Z','[','\',']','^,'_,' '1','a','b','c','d','e','f','g','h','I','j','K','L','M','N','O', 'p','q','r','s','t','u','V','W','X','Y','Z','[','\',']','^',DEL); type severity_level is (NOTE, WARNING, ERROR, FAILURE);

• Predefined operations (and, or, etc.) exist for bit and boolean

2022-08-30 32

VHDL Enumerations and Attributes

- Example: Type COLOR is (red, orange, green);
- Each element has a position (0 to the left, integer increment)
 - Initial values of enumeration (if not specified) is always 'left value
 - Example: Bit variables and signals default to '0'
- Attributes can be give properties of a type or variable
 - Based on the position of the element in the enumeration
 - 'pos, 'val, 'left, 'right, 'high, 'low, 'succ, 'pred
 - Example: COLOR'pos(GREEN) = 2
 - Possible to create user-defined attributes

TSTE12 Design of Digital Systems, Lecture 2

Numeric Data types

- Integers
 - Range is implementation dependent
 - Minimum 32 bits (-2147483647 to 21483647)
 - Subtypes usually used to catch errors and help synthesis
- Real
 - Range is implementation dependent (at least 32 bits)
 - This range is to small for many simulation purposes (e.g. communication systems)

2022-08-30 33

VHDL Numeric Data types examples

• User defined types

type COUNTER is range 0 to 100; subtype LOW_RANGE is COUNTER range 0 to 50; type REG is range 0 to 100;

- Strongly type language => impossible to e.g. calculate addition of a REG type variable with a COUNTER type variable.
 - Require some additional function defining how to translate between these data types

```
TSTE12 Design of Digital Systems, Lecture 2
```

2022-08-30 34

VHDL Physical Data Types

• type Time is range #####

units

fs;

ps = 1000fs;

ns = 1000ps;

```
us = 1000ns;
```

end units;

- Physical types are based on a minimal step (fs in the example above)
- Only time is predefined

 Time values must be integer multiples of the base unit. E.g. 0.5 fs does not exist

2022-08-30

36

TSTE12 Design of Digital Systems, Lecture 2

VHDL Composite Data Types

• Arrays (predefined)

Type String is array (positive range <>) of Characters; Type bit_vector is array (natural range <>) of bit;

- <> means unconstrained range (not specified yet)
- More complex version Type ROM_TYPE is array (natural range <>) of bit_vector(31 downto 0);
- Array attributes
 - 'right, 'left, 'low, 'high, 'length
- Allows for generic subroutines and designs without hardcoded dimensions

TSTE12 Design of Digital Systems, Lecture 2

VHDL Data Types

- Record: combines elements of different types
 - Type date is record

Day : integer range 1 to 31;

- Month : month_name;
- Year : integer range 0 to 3000;
- End record;
- Access: dynamic storage (linked lists, tress etc.)
 - Not covered in this course
 - Only for simulation, no possible direct translation to hardware

2022-08-30 38

TSTE12 Design of Digital Systems, Lecture 2

VHDL Type Marks

- Overloading of values
 - Same symbol is used in multiple types
 - Example: '1' is available both in Bit and as a character
 - Use type marking to remove ambiguity

 Helps tools to understand the type of the value
 - Example: bit'('1')

TSTE12 Design of Digital Systems, Lecture 2

VHDL Data Objects

- Constants
 - Specified at compile time, never change value during simulation
 - Both value and type must be specified
- Variables
 - Current value can be changed, used in sequential code
- Signals
 - Objects with time dimension. Assignments does not affect the current value, so current value can not be changed

TSTE12 Design of Digital Systems, Lecture 2

VHDL Signals and Variables

- Declared in different places
 - Signals: ports on entitys, in architecture declaration
 - Variables: in processes and subprograms (functions and procedures)
- Both start with the leftmost value specified otherwise.
- Examples
 - Variable REG1: BIT_vector(15 downto 0) := X"F5A2";
 - Signal Value: bit_vector(5 to 7) := "011";

TSTE12 Design of Digital Systems, Lecture 2

2022-08-30 40

VHDL intial value, advanced version

• Example

Variable ROM_A : ROM_TYPE(0 to 7) := (0 => X"FFFF_FFF", 5=> X"2222_CCCC", others=> X"0000_0000");

- Example shows matrix initialization with an aggregate
 - All rows in the ROM_A has value "00000000" except 0 and 5 $\,$
 - Efficient way to enter large number of values to vector/array elements.

```
• Example: Set a bit_vector to all 0: REG1 <= (others => '0');
```

TSTE12 Design of Digital Systems, Lecture 2 2022-08-30 41 **VHDL** Assignments Variable assignment uses := - Example: A := 5;• Signal assignment uses <= - Assign a new value sometime in the future (never change current value) - Examples: • X1 <= '1' after 10 ns; X2 • X2 <= '1' after 2 ns, t+2ns t+10ns '0' after 10 ns, t+30ns '1' after 30 ns:

TSTE12 Design of Digital Systems, Lecture 2

VHDL Signal Attributes

'active – transaction in current simulation cycle (update, may be same value as previous value)

2022-08-30 42

'event – event in current simulation cycle (new value, different from previous value)

Commonly used to detect clock edges (see flipflop model)
 'stable(tval) – no events (last tval time units)

'quit(tval) – no transaction for tval time units

'last_active – how long time since last change

<u>'delayed – value of signal delayed</u>

TSTE12 Design of Digital Systems, Lecture	2	2022-08-30 43
VHDL Oper	rators	
** abs not * / mod rem	(highest precedence)	
+ - + - & = /= < <= > >=	(signing)	 Equal /= Not equal to > Greater then > Creater then or equal
and or nand nor xorEqual precedence	(lowest precedence)	< Less than or equal
 A OR B AND C ≠ A OR (B AND C) All associative except nand, nor 		
− (X1 nand X2) nand X3 \neq X1 nand (X2 nand X3) \neq not (X1 and X2 and X3)		

VHDL Operators, cont.

 \bullet Comparisons and +, -, & must have same base type for both objects

2022-08-30 44

- No type casting is done
- Operator & is concatenating one-dimensional arrays
- Mod and rem only works with integers
- Physical data can be multiplied by real or integer
 - E.g. double a delay by time 2
- \bullet ** is the exponential operator, abs is the absolute value operator
- Logic not operator only works on bit and boolean

TSTE12 Design of Digital Systems, Lecture 2

Concurrent assignment

LABEL: SIGNAL_NAME <= [transport] WAVEFORM1 when CONDITION1 else WAVEFORM2 when CONDITION2 else

WAVEFORMn when CONDITIONn else WAVEFORMq;

- Can also be described by sequential signal assignment in a process
- Example: C <= A or B;</pre>
- Transport will be discussed later

2022-08-30 47

Concurrent signal assignment: Select

LABEL: with EXPRESSION select SIGNAL_NAME <= [transport] WAVEFORM1 when CHOICES1, WAVEFORM2 when CHOICES2, :

WAVEFORMn when CHOICESn, WAVEFORMq when others;

- All possible result of expression must must be included exactly ones in a choice.
- Choices may be a list (e.g., when 0|1|2,)

TSTE12 Design of Digital Systems, Lecture 2

Assert statement

- Only way to get a text message to the user of the code
 - Used mainly for error detection Assert Boolean_EXPRESSION Report "Message_string" Severity SEVERITY_LEVEL
- If expression is false then report. Severity levels are note, warning, error, failure
 - Simulation may stop depending on settings
- Concurrent version allows a label in front

LABEL: assert Boolean_EXPRESSION

2022-08-30 48

TSTE12 Design of Digital Systems, Lecture 2

Process statement

[LABEL:] process (SENSITIVITY_SIGNAL_LIST)

-- constants, types, subtypes, subprograms

-- variables (NO signals)

begin

-- sequential statements

end process;

- Process always executed once at simulation start. Then whenever events occur on signals in the sensitivity list
- Variables are static
 - Initialized at simulation start
 - Keep their values between process activations

TSTE12 Design of Digital Systems, Lecture 2

2022-08-30 50

Process statements, cont.

- Can combine process statements with structural code in the same architecture
- Processes without a sensitivity list will automatically restart at the end of a process
 - Must have some way to stop simulation/wait some time to avoid an infinite loop (simulation appear to be hanged)
- Processes can not both have a sensitivy list and wait statements in the same process

TSTE12 Design of Digital Systems, Lecture 2

Sequential code

- Processes and subprograms have sequential code
 - One statement after another is executed in order
 - Most similar to "ordinary" computer code
 - Simulation time does not increase while executing the statements
 - Exception is the wait statement

```
TSTE12 Design of Digital Systems, Lecture 2
```

2022-08-30 52

Sequential control statements: wait

- Used in processes and subprograms
- Examples

wait on x,y until z=0 for 100 ns; -- wait until event on x or y while z≠0 or max 100 ns) wait for 100 ns; wait on a,b,c; -- wait for at least one event on a, b or c wait until z=0; wait; -- infinite wait

2022-08-30 54

TSTE12 Design of Digital Systems, Lecture 2

• CONDITION must return boolean (not enough with a bit)

TSTE12 Design of Digital Systems, Lecture 2

Sequential control: case

```
case EXPRESSION is
  when CHOICE1 => -- sequence of statements1
  when CHOICE2 => -- sequence of statements 2
  when others => -- last sequence of statements
end case;
```

- All possible choices must be covered once
 - Others catch all choices not covered earlier
- Choices may be a list (e.g., when 0|1|2 =>)

2022-08-30 55

2022-08-30 56

TSTE12 Design of Digital Systems, Lecture 2

Various statements

Null

• Used to complete syntax requirement, e.g. in case statements when a choice should not do anything.

2022-08-30 58

TSTE12 Design of Digital Systems, Lecture 2

Subprograms

- Functions and procedures
- Declared in declaration region of architecture, process, block, or other subprograms.
- Variables are dynamic (initialized at every call)
- Functions
 - Always returns a value (must be used in an expression)
 - Never modifies its parameters (all parameters are inputs)
 - No side effects allowed
 - Can not contain wait statements

TSTE12 Design of Digital Systems, Lecture 2

Functions

function FUNCTION_NAME (FORMAL_PARAMETER_DECLARATIONS)
return RETURN_TYPE is
-- constant and variable declarations (NO signals)
begin
-- sequential statements
return (RETURN_VALUE);
end FUNCTION_NAME;
• Must always return a defined value

2022-08-30 60

TSTE12 Design of Digital Systems, Lecture 2

Procedures

procedure PROCEDURE_NAME (FORMAL_PARAMETER_DECLARATIONS) -- Procedure declaration part -- constant and variable declarations (NO signals) begin -- sequential statements end PROCEDURE_NAME;

- Formal parameters can be in, out, or inout (default in)
- May contain wait statements (but not if called from a function)
- Procedures can modify its formal parameters (no return value)

TSTE12 Design of Digital Systems, Lecture 2

Next Lecture

- Introduction to lab equipment and lab 1 requirements
 - Testbench
- Timing and signal functionality

