

Lecture 6, ATIK

Switched-capacitor circuits 2 S/H, Some nonideal effects Continuous-time filters

What did we do last time?

THE REAL PROPERTY OF THE PROPE

Switched capacitor circuits

The basics Charge-redistribution analysis

Nonidealties

SC parasitics

2012-02-27::ANTIK 0025 (P10A)

Analog (and discrete-time) integrated circuits

155 of 529

What will we do today?

Switched capacitor circuits with non-ideal effects in mind What should we look out for? What is the impact on system performance, like filters.

Continuous-time filters

Active-RC Transconductance-C Second-order links Leapfrog filters

Mainly overview

2012-02-27::ANTIK_0025 (P10A

156 of 529

A list of non-ideal effects in SC

System

Parasitics Noise

2012-02-27::ANTIK_0025 (P10A)

OP

Offset error Gain Bandwidth (output impedance) Slew rate Noise

Switches

On-resistance Clock feed through, Charge injection Jitter

LIU EXPANDING REALITY

An example SC accumulator to work on

Phase 1:

$$q_1(nT) = C_1 \cdot V_1(nT)$$
, $q_2(nT) = C_2 \cdot V_2(nT)$

Phase 2:

$$q_1(nT+\tau)=0$$
, $q_2(nT+\tau)=C_2 \cdot V_2(nT+\tau)$

Charge preservation:

$$q_{2}(nT+\tau) = q_{2}(nT) \Rightarrow V_{2}(nT+\tau) = V_{2}(nT)$$

-q_{1}(nT)-q_{2}(nT)=-q_{1}(nT-\tau)-q_{2}(nT-\tau)=-q_{2}(nT-T)

Laplace transform

$$C_1 \cdot V_1(z) = -C_2 \cdot (1 - z^{-1}) \cdot V_2(z) \Rightarrow \frac{V_2(z)}{V_1(z)} = -\frac{C_1 / C_2}{1 - z^{-1}}$$

LIU EXPANDING REALITY

Analog (and discrete-time) integrated circuits

Impact of offset error

Due to mismatch in differential pair, we will have an offset at the input of our amplifier

$$I = (\alpha + \Delta \alpha) \cdot V_{eff}^2 \Rightarrow \Delta I = \Delta \alpha \cdot V_{eff}^2$$

The offset error is in the order of

$$\Delta V_{eff} = \frac{\Delta I}{g_m} = \frac{\Delta \alpha \cdot V_{eff}^2}{\frac{2 I_D}{V_{eff}}} = \frac{\Delta \alpha}{\alpha} \cdot \frac{V_{eff}}{2}$$

With the help of gain, we can propagate any mismatch back to the input which results in a constant voltage, v_x , on (one of) the input(s)

Impact of offset error, cont'd

Phase 1

$$q_1(nT) = C_1 \cdot (v_1(nT) - v_x), \quad q_2(nT) = C_2 \cdot (v_2(nT) - v_x)$$

Phase 2

 $q_1(nT+\tau)=0$, $q_2(nT+\tau)=C_2 \cdot (v_2(nT+\tau)-v_x)$

Charge preservation

2012-02-27::ANTIK_0025 (P10A

$$-q_{1}(nT) - q_{2}(nT) = -q_{1}(nT + \tau) - q_{2}(nT + \tau)$$
$$q_{2}(nT + \tau) = q_{2}(nT + \tau) \Rightarrow v_{2}(nT + \tau) = v_{2}(nT + \tau)$$

 $C_1v_1(nT) - C_1v_x + C_2v_2(nT) - C_2v_x = C_2v_2(nT+T) - C_2v_x$

$$C_{1}V_{1}(z) - \underbrace{\frac{C_{1}v_{x}}{1-z^{-1}}}_{C_{1}v_{x}} + C_{2}V_{2}(z) = C_{2}V_{2}(z) \cdot z \Rightarrow V_{2}(z) = \frac{-C_{1}/C_{2}}{1-z^{-1}} \cdot V_{1}(z) - \underbrace{\frac{v_{x} \cdot C_{1}/C_{2}}{(1-z^{-1})^{2}}}_{\text{ooops!}}$$

Output is ramped due to offset!

LIU EXPANDING REALITY

Impact of gain errors

Phase 1

$$q_1(nT) = C_1 \cdot \left(v_1(nT) + \frac{v_2(nT)}{A_0} \right), \quad q_2(nT) = C_2 \cdot \left(v_2(nT) + \frac{v_2(nT)}{A_0} \right)$$

Phase 2

$$q_1(nT+\tau) = 0$$
, $q_2(nT+\tau) = C_2 \cdot \left(v_2(nT+\tau) + \frac{v_2(nT+\tau)}{A_0} \right)$

Charge preservation

2012-02-27::ANTIK 0025 (P10A)

$$-q_1(nT) - q_2(nT) = -q_1(nT + \tau) - q_2(nT + \tau),$$

$$q_2(nT + \tau) = q_2(nT + T) \Rightarrow v_2(nT + \tau) = v_2(nT + T)$$

$$C_{1}v_{1}(nT) = -v_{2}(nT) \cdot \left| \frac{C_{1}}{A_{0}} + C_{2} \cdot \left| 1 + \frac{1}{A_{0}} \right| \right| + C_{2} \left| 1 + \frac{1}{A_{0}} \right| \cdot v_{2}(nT + T)$$

Analog (and discrete-time) integrated circuits

LIU EXPANDING REALITY

THE OPINGS UNIVERSITET O

Compiled

$$\frac{\frac{V_2(z)}{V_1(z)}}{z - \left|\frac{1 + \frac{C_1}{A_0}}{z - \left|1 + \frac{C_1}{A_0}\right|^{-1}}\right|^{-1}}$$

Introduces a gain error and a pole shift (!)

Lossy integrator, i.e., a low-pass filter with a DC gain of

$$\frac{\frac{V_2(1)}{V_1(1)}}{=} \frac{\frac{1}{1+1/A_0}}{\frac{1}{A_0+1}} = A_0 \neq \infty$$

2012-02-27::ANTIK_0025 (P10A

Analog (and discrete-time) integrated circuits

162 of 529

Impact of bandwidth

The speed (bandwidth) of the OP is given by the unity-gain frequency and feedback factor

$$H(s) = \frac{1/\beta}{1 + \frac{1}{A(s) \cdot \beta}} = \frac{1/\beta}{1 + \frac{1 + s/p_1}{A_0 \cdot \beta}}$$
$$\approx \frac{1/\beta}{1 + \frac{s}{\beta \cdot A_0 \cdot p_1}} \approx \frac{1/\beta}{1 + \frac{s}{\beta \cdot \omega_{ug}}}$$

 $2/\cdots \Delta N \Pi K 0025$

This means that the output will follow a step response according to:

$$v_2(nT+t) = v_2(nT) + \Delta V_2 \cdot \left(1 - e^{-t\beta\omega_{ug}}\right)$$

Notice that the feedback factor varies with different phases!

Analog (and discrete-time) integrated circuits

LIU EXPANDING REALITY

Impact of bandwidth, cont'd

Phase 2: discharging C_1 is instantaneous. V_2 cannot change either, since charge on C_2 is maintained due to the infinitely fast switch.

Phase 1: we re-charge C_1 and settling of V_2 will determine how fast we can do that.

A first-order, lazy approximation:

$$v_{2}(nT+\tau) = v_{2}(nT) + \frac{C_{1}}{C_{2}} \cdot v_{1}(nT) \text{ (ideal)}$$

$$v_{2}(nT+t) = v_{2}(nT) + \left| \underbrace{v_{2}(nT) + \frac{C_{1}}{C_{2}} \cdot v_{1}(nT) - v_{2}(nT)}_{v_{2}(nT+\tau)} \right| \cdot \left(1 - e^{-t\beta\omega_{ug}}\right) \text{ (actual)}$$

$$v_{2}(nT+\tau) = v_{2}(nT) + \frac{C_{1}}{C_{2}} \cdot v_{1}(nT) \cdot \underbrace{(1 - e^{-\tau\beta\omega_{ug}})}_{B} \text{ LIU EXPANDING RE}$$

 C_{2}

164 of 529

ALTY

Impact of bandwidth, cont'd

Compiled (notice the approximation, in reality an additional time-shifted gain component too!):

··ANTIK_0025 (P10A

"Less" of a problem in this case, in a first-order analysis, it results in a gain error.

The ideal-switch assumption and charge preservation forces the accumulation to not be lossy.

The clock frequency, f_s , is hidden in the equation

and if $\omega_{ug} \approx 2\pi f_s$, the *B* is a rather small value!

Impact of slew rate

Slew rate is a non-linear function. The output will now follow:

$$v_2(nT+t) = v_2(nT) + \frac{I_{max}}{C_I} \cdot t$$

Within a phase, we are able to reach

$$\Delta v_{2, max} = \frac{I_{max}}{C_L} \cdot \tau$$

_0025

Generic analysis hard, since only large voltage steps are affected If SR is not avoided we have a highly distorted signal!

Analog (and discrete-time) integrated circuits

LIU EXPANDING REALITY

Impact of noise

Noise due to a switch in Nyquist band:

 $v_C^2(f) = 4 k T \cdot R_{\text{equiv}} = \frac{4 k T}{f_s \cdot C_1}$

Noise from operational amplifier:

Given by input-referred noise voltage: $v_{op}^2(f)$

Noise is sampled, i.e., aliased

At the sampling instant, the noise voltage at the input of the OP is sampled. C.f. offset error

$$\dots + \frac{C_1/C_2}{1-z} \cdot V_X(z)$$

27::ANTIK_0025 (P10A

LIU EXPANDING REALITY

Impact of noise, cont'd

The super function

27...ANTIK_0025 (P1

$$S_{out}(z) = |H(z)|^2 \cdot S_{in}(z) \Rightarrow \left| \frac{-C_1/C_2}{1-z} \right|^2 \cdot S_{in}(z)$$

The transfer function (in this case) modifies the noise to the output and noise is integrated too.

Beware! Continuous-time noise vs sampled noise. (When do you "measure" the noise)?

Analog (and discrete-time) integrated circuits

LIU EXPANDING REALITY

Impact of on-resistance

Similar to limited bandwidth, but now a bit more accurate step-by-step approach:

$$q_1(\tau) = C_1 \cdot v_1(\tau) \cdot \left(\underbrace{1 - e^{-\frac{\tau}{RC_1}}}_{B} \right) = C_1 \cdot v_1(\tau) \cdot B$$

$$q_1(T) = C_1 \cdot \frac{q_1(\tau)}{C_1} \cdot \underbrace{e^{-\frac{\tau}{RC_1}}}_{4} = q_1(\tau) \cdot A$$

$$q_{1}(T + \tau) = C_{1} \cdot \frac{q_{1}(T)}{C_{1}} + C_{1} \cdot \left(v_{1}(T + \tau) - \frac{q_{1}(T)}{C_{1}} \right) \cdot B$$

 $q_{1}(T + \tau) = A \cdot q_{1}(\tau) + (C_{1} \cdot v_{1}(T + \tau) - q_{1}(\tau) \cdot A) \cdot B = A^{2} \cdot q_{1}(\tau) + C_{1} \cdot v_{1}(T + \tau) \cdot B$

Laplace

$$Q_1(z) \cdot z^{0.5} = A^2 \cdot Q_1(z) \cdot z^{-0.5} + C_1 \cdot V_1(z) \cdot z^{0.5} \cdot B \Rightarrow Q_1(z) = \frac{C_1 \cdot V_1(z)}{1 - A^2 \cdot z^{-1}}$$

LIU EXPANDING REALITY

2012-02-27::ANTIK_0025 (P10A) Analog (and discrete-time) integrated circuits

Impact of on-resistance, cont'd

Charge accumulation and preservation must still hold

$$q_1(nT) + q_2(nT) = q_1(nT - \tau) + q_2(nT - \tau)$$

Be careful with which charge is which ...

$$\begin{aligned} A \cdot Q_1(z) \cdot z^{-0.5} + C_2 \cdot V_2(z) \cdot z^{0.5} = Q_1(z) \cdot z^{-0.5} + C_2 \cdot V_2(z) \cdot z^{-0.5} \\ (A - 1) \cdot \frac{C_1 \cdot V_1(z)}{1 - A^2 \cdot z^{-1}} = C_2 \cdot V_2(z) \cdot (1 - z) \end{aligned}$$

Analog (and discrete-time) integrated circuits

Finally, we get that small time shift (additional pole, close to the origin)

$$\frac{V_{2}(z)}{V_{1}(z)} = \frac{B}{1 - A^{2} \cdot z^{-1}} \cdot \frac{-C_{1}/C_{2}}{\underbrace{z - 1}_{\text{Ideal}}}$$

-02-27.0ANTIK_0025 (PT

LIU EXPANDING REALITY

Impact of charge feed-through

Channel charge injection

_0025

$$q_{ch}(nT) \sim W L \cdot C_{ox} \cdot (V_x - V_1(nT))$$

Clock feed-through

 $q_{CFT}(nT) = C_{ol} \cdot \left(V_y - V_1(nT)\right)$

One signal-dependent part and one constant

Gain error $C_1' = C_1 + \Delta C$ Offset accumulation, $WL \cdot C_{ox} \cdot V_x + C_{ol} \cdot V_y$

The errors can be reduced to nearly zero using e.g. differential signals, switch dummies, and careful sizing.

AND REAL PROPERTY OF LAW

Impact of jitter

Sampling instant will be varying

 $nT' = nT + \delta T$

.27…ANTIK_0025 (P10A

where δT might be a stochastic and/or signal-dependent component $v_1(t) = \sin(\omega t)$. i.e., $v_1(nT) = \sin(\omega nT)$

Taylor

$$v_1(nT+\delta T) \approx v_1(nT) + v_1(nT) \cdot \frac{\delta v_1(t)}{\delta t}$$

Example

 $v_1(nT + \delta T) = \sin \omega nT \cdot \cos \omega \delta T + \cos \omega nT \cdot \sin \omega \delta T \approx \sin \omega nT + \omega \cdot \delta T \cdot \cos \omega nT$

The higher signal frequency the worse!

LIU EXPANDING REALITY

172 of 529

Analog (and discrete-time) integrated circuits

Conclusions SC building blocks

Many, many possible error sources

Today we've looked at different ways to model and address them and their different impacts

Notable error impacts

27::ANTIK_0025 (P10A

Offset accumulation Overall gain error Shifted pole (lossy integrator) Parasitic pole ("nonlinear" integration) Nonlinearity (distortion) Jitter

Continuous-time filters

Filters and filtering functions are everywhere...

Band-select

Anti-aliasing

Reconstruction filters

LIU EXPANDING REALITY

2012-02-27::ANTIK_0025 (P10A)

Analog (and discrete-time) integrated circuits

Continuous-time filters

A general transfer function for a linear system is given by

 $H(s) = \frac{Y(s)}{X(s)} = \frac{a_0 + a_1 s + a_2 s^2 + \dots}{b_0 + b_1 s + b_2 s^2 + \dots}$

Rewrite in its original ODE form

$$Y(s) \cdot (b_0 + b_1 s + b_2 s^2 + ...) = X(s) \cdot (a_0 + a_1 s + a_2 s^2 + ...)$$

"Invert" to get integrations rather than derivations, and scale

$$Y(s) = X(s) \cdot \left| \alpha_0 + \alpha_1 \frac{1}{s} + \alpha_2 \frac{1}{s^2} + \dots \right| - Y(s) \cdot \left| \beta_1 \frac{1}{s} + \beta_2 \frac{1}{s^2} + \dots \right|$$

Create a "recursive" set of integrations

$$Y(s) = \alpha_0 \cdot X(s) + \frac{1}{s} \cdot \left| \alpha_1 X(s) - \beta_1 \cdot Y(s) + \frac{1}{s} \cdot \left| \alpha_2 \cdot X(s) - \beta_2 \cdot Y(s) + \frac{1}{s} \cdot (...) \right| \right|$$

LIU EXPANDING REALITY

2-27::ANTIK_0025 (P10A) Analog (and discrete-time) integrated circuits

Continuous-time filters, flow graph

Manipulation

Replacing with integrators

Feedback, etc.

LIU EXPANDING REALITY

KÖPINGS

2012-02-27::ANTIK 0025 (P10A)

Analog (and discrete-time) integrated circuits

Active-RC

2012-02-27::ANTIK_0025 (P10A

Summation of different inputs is done with the resistors, i.e., we are summing up the currents in the virtual ground node:

$$-V_{out}(s) \cdot s C_{L} = I_{1}(s) + I_{2}(s) + I_{3}(s) = \frac{V_{1}(s)}{R_{1}} + \frac{V_{2}(s)}{R_{2}} + \dots$$

Which combined gives us the integration

$$V_{out}(s) = -\frac{V_1(s)}{sC_LR_1} - \frac{V_2(s)}{sC_LR_2} + \dots$$

Example, first-order pole with active-RC

Sum the currents in the virtual ground:

$$V_{out}(s) \cdot s C_2 = \frac{-V_{in}(s)}{R_4} - \frac{V_{out}(s)}{R_8}$$

such that

$$\frac{V_{out}(s)}{V_{in}(s)} = \frac{-R_8/R_4}{1 + \frac{s}{1/C_2R_4}}$$

AtOPINGS

2012-02-27::ANTIK_0025 (P10A)

Analog (and discrete-time) integrated circuits

178 of 529

Example: Tow-Thomas, Biquad, ...

Second-order link cascaded to form overall transfer function

Output isolated and buffered with OP

LIU EXPANDING REALITY

StopINGS.

Analog (and discrete-time) integrated circuits

_0025 (P10A

2012-02-27…ANTIK

Ladder networks

Use a reference filter

2012-02-27::ANTIK_0025 (P10A)

Optimum wrt. sensitivity (exercises in lessons)

Analog (and discrete-time) integrated circuits

LIU EXPANDING REALITY

181 of 529

HOPINGS

State-space representation

Note the voltages and currents through the ladder network

 $E = V_{in}, X_1 = V_{1,} X_2 = R \cdot I_{2,} X_3 = V_{3,} X_4 = R \cdot I_{4,} \dots$

LIU EXPANDING REALITY

2012-02-27::ANTIK_0025 (P10A)

Analog (and discrete-time) integrated circuits

Leapfrog filters

-02-27…ANTIK_0025 (P1

See the handouts for state-space realization and implementations http://www.es.isy.liu.se/courses/ANIK/download/filterRef/ANTI K_ONNN_LN_leapfrogFiltersOH1_A.pdf http://www.es.isy.liu.se/courses/ANIK/download/filterRef/ANTI K ONNN LN leapfrogSynthesisExtra1 A.pdf http://www.es.isy.liu.se/courses/ANIK/download/filterRef/ANTI K ONNN LN leapfrogSynthesisExtra2 A.pdf http://www.es.isy.liu.se/courses/ANIK/download/switcapRef/A NTIK ONNN LN switcapHandout B.pdf

What did we do today?

Switched capacitor circuits with nonideal effects in mind

What should we look out for? What is the impact on system performance, like filters.

Continuous-time filters

-02-27::ANTIK_0025 (P10A

The way forward, and the background to generate the filters. OTA-C, Gm-C, and active-RC

LIU EXPANDING REALITY

What will we do next time?

THE REAL PROPERTY OF THE PROPE

Continuous-time filters

Wrap-up and some more conclusions

Discrete-time filters

2012-02-27::ANTIK_0025 (P10A)

Simulation of the continuous-time filters

Analog (and discrete-time) integrated circuits

LIU EXPANDING REALITY