Lecture 6, ATIK

Switched-capacitor circuits 2
S/H, Some nonideal effects
Continuous-time filters

What did we do last time?

Switched capacitor circuits
The basics
Charge-redistribution analysis

Nonidealties
SC parasitics

What will we do today?

Switched capacitor circuits with non-ideal effects in mind What should we look out for?
What is the impact on system performance, like filters.

Continuous-time filters
Active-RC
Transconductance-C
Second-order links
Leapfrog filters

Mainly overview

A list of non-ideal effects in SC

```
System
    Parasitics
    Noise
OP
Offset error
Gain
Bandwidth (output impedance)
Slew rate
Noise
Switches
On-resistance
Clock feed through, Charge injection
Jitter
```


An example SC accumulator to work on

Phase 1:

$$
q_{1}(n T)=C_{1} \cdot V_{1}(n T), q_{2}(n T)=C_{2} \cdot V_{2}(n T)
$$

Phase 2:

$$
q_{1}(n T+\tau)=0, q_{2}(n T+\tau)=C_{2} \cdot V_{2}(n T+\tau)
$$

Charge preservation:

$$
\begin{aligned}
& q_{2}(n T+\tau)=q_{2}(n T) \Rightarrow V_{2}(n T+\tau)=V_{2}(n T) \\
& -q_{1}(n T)-q_{2}(n T)=-q_{1}(n T-\tau)-q_{2}(n T-\tau)=-q_{2}(n T-T)
\end{aligned}
$$

Laplace transform

$$
C_{1} \cdot V_{1}(z)=-C_{2} \cdot\left(1-z^{-1}\right) \cdot V_{2}(z) \Rightarrow \frac{V_{2}(z)}{V_{1}(z)}=-\frac{C_{1} / C_{2}}{1-z^{-1}}
$$

Impact of offset error

Due to mismatch in differential pair, we will have an offset at the input of our amplifier

$$
I=(\alpha+\Delta \alpha) \cdot V_{e f f}^{2} \Rightarrow \Delta I=\Delta \alpha \cdot V_{e f f}^{2}
$$

The offset error is in the order of

$$
\Delta V_{e f f}=\frac{\Delta I}{g_{m}}=\frac{\Delta \alpha \cdot V_{e f f}^{2}}{\frac{2 I_{D}}{V_{e f f}}}=\frac{\Delta \alpha}{\alpha} \cdot \frac{V_{e f f}}{2}
$$

With the help of gain, we can propagate any mismatch back to the input which results in a constant voltage, v_{x}, on (one of) the input(s)

Impact of offset error, cont'd

Phase 1

$$
q_{1}(n T)=C_{1} \cdot\left(v_{1}(n T)-v_{x}\right), q_{2}(n T)=C_{2} \cdot\left(v_{2}(n T)-v_{x}\right)
$$

Phase 2

$$
q_{1}(n T+\tau)=0, q_{2}(n T+\tau)=C_{2} \cdot\left(v_{2}(n T+\tau)-v_{x}\right)
$$

Charge preservation

$$
\begin{aligned}
& -q_{1}(n T)-q_{2}(n T)=-q_{1}(n T+\tau)-q_{2}(n T+\tau) \\
& q_{2}(n T+\tau)=q_{2}(n T+T) \Rightarrow v_{2}(n T+\tau)=v_{2}(n T+T)
\end{aligned}
$$

$$
\begin{aligned}
& C_{1} v_{1}(n T)-C_{1} v_{x}+C_{2} v_{2}(n T)-C_{2} v_{x}=C_{2} v_{2}(n T+T)-C_{2} v_{x} \\
& C_{1} V_{1}(z)-\underbrace{\frac{C_{1} v_{x}}{1-z^{-1}}}_{C_{1} v_{x}}+C_{2} V_{2}(z)=C_{2} V_{2}(z) \cdot z \Rightarrow V_{2}(z)=\frac{-C_{1} / C_{2}}{1-z^{-1}} \cdot V_{1}(z)-\underbrace{\frac{v_{x} \cdot C_{1} / C_{2}}{\left(1-z^{-1}\right)^{2}}}_{\text {ooops! }}
\end{aligned}
$$

Output is ramped due to offset!

Impact of gain errors

Phase 1

$$
q_{1}(n T)=C_{1} \cdot\left(v_{1}(n T)+\frac{v_{2}(n T)}{A_{0}}\right), q_{2}(n T)=C_{2} \cdot\left(v_{2}(n T)+\frac{v_{2}(n T)}{A_{0}}\right)
$$

Phase 2

$$
q_{1}(n T+\tau)=0, q_{2}(n T+\tau)=C_{2} \cdot\left|v_{2}(n T+\tau)+\frac{v_{2}(n T+\tau)}{A_{0}}\right|
$$

Charge preservation

$$
\begin{aligned}
& -q_{1}(n T)-q_{2}(n T)=-q_{1}(n T+\tau)-q_{2}(n T+\tau), \\
& q_{2}(n T+\tau)=q_{2}(n T+T) \Rightarrow v_{2}(n T+\tau)=v_{2}(n T+T) \\
& C_{1} v_{1}(n T)=-v_{2}(n T) \cdot\left(\frac{C_{1}}{A_{0}}+C_{2} \cdot\left(1+\frac{1}{A_{0}}\right)\right)+C_{2}\left(1+\frac{1}{A_{0}}\right) \cdot v_{2}(n T+T)
\end{aligned}
$$

Impact of gain errors, cont'd

Compiled

$$
\frac{V_{2}(z)}{V_{1}(z)}=\frac{\frac{C_{1} / C_{2}}{1+1 / A_{0}}}{z-\left(1+\frac{C_{1} / C_{2}}{A_{0}+1}\right)^{-1}}
$$

Introduces a gain error and a pole shift (!)

Lossy integrator, i.e., a low-pass filter with a DC gain of

$$
\frac{V_{2}(1)}{V_{1}(1)}=\frac{\frac{1}{1+1 / A_{0}}}{\frac{1}{A_{0}+1}}=A_{0} \neq \infty
$$

Impact of bandwidth

The speed (bandwidth) of the OP is given by the unity-gain frequency and feedback factor

$$
\begin{array}{r}
H(s)=\frac{1 / \beta}{1+\frac{1}{A(s) \cdot \beta}}=\frac{1 / \beta}{1+\frac{1+s / p_{1}}{A_{0} \cdot \beta}} \\
\approx \frac{1 / \beta}{1+\frac{s}{\beta \cdot A_{0} \cdot p_{1}}} \approx \frac{1 / \beta}{1+\frac{s}{\beta \cdot \omega_{u g}}}
\end{array}
$$

This means that the output will follow a step response according to:

$$
v_{2}(n T+t)=v_{2}(n T)+\Delta V_{2} \cdot\left(1-e^{-t \beta \omega_{u g}}\right)
$$

Notice that the feedback factor varies with different phases!

Impact of bandwidth, cont'd

Phase 2: discharging C_{1} is instantaneous.
V_{2} cannot change either, since charge on C_{2} is maintained due to the infinitely fast switch.

Phase 1: we re-charge C_{1} and settling of V_{2} will determine how fast we can do that.

A first-order, lazy approximation:

$$
\begin{aligned}
& v_{2}(n T+\tau)=v_{2}(n T)+\frac{C_{1}}{C_{2}} \cdot v_{1}(n T) \text { (ideal) } \\
& v_{2}(n T+t)=v_{2}(n T)+(\underbrace{v_{2}(n T)+\frac{C_{1}}{C_{2}} \cdot v_{1}(n T)-v_{2}(n T)}_{v_{2}(n T+\tau)}) \cdot\left(1-e^{-t \beta \omega_{u g}}\right) \text { (actual) } \\
& v_{2}(n T+\tau)=v_{2}(n T)+\frac{C_{1}}{C_{2}} \cdot v_{1}(n T) \cdot \underbrace{\left(1-e^{-\tau \beta \omega_{u g}}\right)}_{B}
\end{aligned}
$$

Impact of bandwidth, cont'd

Compiled (notice the approximation, in reality an additional time-shifted gain component too!):

$$
\frac{V_{2}(z)}{V_{1}(z)} \approx B \cdot \underbrace{\frac{C_{1} / C_{2}}{z-1}}_{\text {Ideal }}
$$

"Less" of a problem in this case, in a first-order analysis, it results in a gain error.
The ideal-switch assumption and charge preservation forces the accumulation to not be lossy.

The clock frequency, f_{s}, is hidden in the equation and if $\omega_{u g} \approx 2 \pi f_{s}$, the B is a rather small value!

Impact of slew rate

Slew rate is a non-linear function.
The output will now follow:

$$
v_{2}(n T+t)=v_{2}(n T)+\frac{I_{\max }}{C_{L}} \cdot t
$$

Within a phase, we are able to reach

$$
\Delta v_{2, \max }=\frac{I_{\max }}{C_{L}} \cdot \boldsymbol{\tau}
$$

Generic analysis hard, since only large voltage steps are affected If $S R$ is not avoided we have a highly distorted signal!

Impact of noise

Noise due to a switch in Nyquist band:

$$
v_{C}^{2}(f)=4 k T \cdot R_{\text {equiv }}=\frac{4 k T}{f_{s} \cdot C_{1}}
$$

Noise from operational amplifier:
Given by input-referred noise voltage:

$$
v_{o p}^{2}(f)
$$

Noise is sampled, i.e., aliased
At the sampling instant, the noise voltage at the input of the OP is sampled.
C.f. offset error

$$
\ldots+\frac{C_{1} / C_{2}}{1-z} \cdot V_{X}(z)
$$

Impact of noise, cont'd

The super function

$$
S_{\text {out }}(z)=|H(z)|^{2} \cdot S_{\text {in }}(z) \Rightarrow\left|\frac{-C_{1} / C_{2}}{1-z}\right|^{2} \cdot S_{\text {in }}(z)
$$

The transfer function (in this case) modifies the noise to the output and noise is integrated too.

Beware! Continuous-time noise vs sampled noise.
(When do you "measure" the noise)?

Impact of on-resistance

Similar to limited bandwidth, but now a bit more accurate step-by-step approach:

$$
\begin{aligned}
& q_{1}(\tau)=C_{1} \cdot v_{1}(\tau) \cdot(\underbrace{\left.1-e^{-\frac{\tau}{R C_{1}}}\right)=C_{1} \cdot v_{1}(\tau) \cdot B}_{B} \\
& q_{1}(T)=C_{1} \cdot \frac{q_{1}(\tau)}{C_{1}} \cdot \underbrace{e^{-\frac{\tau}{R C_{1}}}}_{A}=q_{1}(\tau) \cdot A \\
& q_{1}(T+\tau)=C_{1} \cdot \frac{q_{1}(T)}{C_{1}}+C_{1} \cdot\left(v_{1}(T+\tau)-\frac{q_{1}(T)}{C_{1}}\right) \cdot B \\
& q_{1}(T+\tau)=A \cdot q_{1}(\tau)+\left(C_{1} \cdot v_{1}(T+\tau)-q_{1}(\tau) \cdot A\right) \cdot B=A^{2} \cdot q_{1}(\tau)+C_{1} \cdot v_{1}(T+\tau) \cdot B
\end{aligned}
$$

Laplace

$$
Q_{1}(z) \cdot z^{0.5}=A^{2} \cdot Q_{1}(z) \cdot z^{-0.5}+C_{1} \cdot V_{1}(z) \cdot z^{0.5} \cdot B \Rightarrow Q_{1}(z)=\frac{C_{1} \cdot V_{1}(z)}{1-A^{2} \cdot z^{-1}}
$$

Impact of on-resistance, cont'd

Charge accumulation and preservation must still hold

$$
q_{1}(n T)+q_{2}(n T)=q_{1}(n T-\tau)+q_{2}(n T-\tau)
$$

Be careful with which charge is which ...

$$
A \cdot Q_{1}(z) \cdot z^{-0.5}+C_{2} \cdot V_{2}(z) \cdot z^{0.5}=Q_{1}(z) \cdot z^{-0.5}+C_{2} \cdot V_{2}(z) \cdot z^{-0.5}
$$

$$
(A-1) \cdot \frac{C_{1} \cdot V_{1}(z)}{1-A^{2} \cdot z^{-1}}=C_{2} \cdot V_{2}(z) \cdot(1-z)
$$

Finally, we get that small time shift (additional pole, close to the origin)

$$
\frac{V_{2}(z)}{V_{1}(z)}=\frac{B}{1-A^{2} \cdot z^{-1}} \cdot \frac{-C_{1} / C_{2}}{\underbrace{z-1}_{\text {Ideal }}}
$$

Impact of charge feed-through

Channel charge injection

$$
q_{c h}(n T) \sim W L \cdot C_{o x} \cdot\left(V_{x}-V_{1}(n T)\right)
$$

Clock feed-through

$$
q_{C F T}(n T)=C_{o l} \cdot\left(V_{y}-V_{1}(n T)\right)
$$

One signal-dependent part and one constant

Gain error $C_{1}{ }^{\prime}=C_{1}+\Delta C$ Offset accumulation, $W L \cdot C_{o x} \cdot V_{x}+C_{o l} \cdot V_{y}$

The errors can be reduced to nearly zero using e.g. differential signals, switch dummies, and careful sizing.

Impact of jitter

Sampling instant will be varying

$$
n T^{\prime}=n T+\delta T
$$

where δT might be a stochastic and/or signal-dependent component

$$
v_{1}(t)=\sin (\omega t) \text {. i.e., } v_{1}(n T)=\sin (\omega n T)
$$

Taylor

$$
v_{1}(n T+\delta T) \approx v_{1}(n T)+v_{1}(n T) \cdot \frac{\delta v_{1}(t)}{\delta t}
$$

Example

$$
v_{1}(n T+\delta T)=\sin \omega n T \cdot \cos \omega \delta T+\cos \omega n T \cdot \sin \omega \delta T \approx \sin \omega n T+\omega \cdot \delta T \cdot \cos \omega n T
$$

The higher signal frequency the worse!

Conclusions SC building blocks

Many, many possible error sources

Today we've looked at different ways to model and address them and their different impacts

Notable error impacts
Offset accumulation
Overall gain error
Shifted pole (lossy integrator)
Parasitic pole ("nonlinear" integration)
Nonlinearity (distortion)
Jitter

Continuous-time filters

Filters and filtering functions are everywhere...

Band-select
Anti-aliasing

Reconstruction filters

Continuous-time filters

A general transfer function for a linear system is given by

$$
H(s)=\frac{Y(s)}{X(s)}=\frac{a_{0}+a_{1} s+a_{2} s^{2}+\ldots}{b_{0}+b_{1} s+b_{2} s^{2}+\ldots}
$$

Rewrite in its original ODE form

$$
Y(s) \cdot\left(b_{0}+b_{1} s+b_{2} s^{2}+\ldots\right)=X(s) \cdot\left(a_{0}+a_{1} s+a_{2} s^{2}+\ldots\right)
$$

"Invert" to get integrations rather than derivations, and scale

$$
Y(s)=X(s) \cdot\left|\alpha_{0}+\alpha_{1} \frac{1}{s}+\alpha_{2} \frac{1}{s^{2}}+\ldots\right|-Y(s) \cdot\left(\beta_{1} \frac{1}{s}+\beta_{2} \frac{1}{s^{2}}+\ldots\right)
$$

Create a "recursive" set of integrations

$$
Y(s)=\alpha_{0} \cdot X(s)+\frac{1}{s} \cdot\left(\alpha_{1} X(s)-\beta_{1} \cdot Y(s)+\frac{1}{s} \cdot\left(\alpha_{2} \cdot X(s)-\beta_{2} \cdot Y(s)+\frac{1}{s} \cdot(\ldots)\right)\right)
$$

Continuous-time filters, flow graph

Manipulation

Replacing with integrators

Feedback, etc.

Active-RC

Summation of different inputs is done with the resistors, i.e., we are summing up the currents in the virtual ground node:

$$
-V_{\text {out }}(s) \cdot s C_{L}=I_{1}(s)+I_{2}(s)+I_{3}(s)=\frac{V_{1}(s)}{R_{1}}+\frac{V_{2}(s)}{R_{2}}+\ldots
$$

Which combined gives us the integration

$$
V_{\text {out }}(s)=-\frac{V_{1}(s)}{s C_{L} R_{1}}-\frac{V_{2}(s)}{s C_{L} R_{2}}+\ldots
$$

Example, first-order pole with active-RC

Sum the currents in the virtual ground:

$$
V_{\text {out }}(s) \cdot s C_{2}=\frac{-V_{\text {in }}(s)}{R_{4}}-\frac{V_{\text {out }}(s)}{R_{8}}
$$

such that

$$
\frac{V_{\text {out }}(s)}{V_{\text {in }}(s)}=\frac{-R_{8} / R_{4}}{1+\frac{s}{1 / C_{2} R_{4}}}
$$

Example: Tow-Thomas, Biquad, ...

Second-order link cascaded to form overall transfer function

Output isolated and buffered with OP

Single-pole formed with single RC at output or input

Ladder networks

Use a reference filter

Optimum wrt. sensitivity (exercises in lessons)

State-space representation

Note the voltages and currents through the ladder network

$$
E=V_{i n}, X_{1}=V_{1,} X_{2}=R \cdot I_{2,} X_{3}=V_{3,} X_{4}=R \cdot I_{4}, \cdots
$$

Continuous-time filter implementation

Gm-C

Leapfrog filters

See the handouts for state-space realization and implementations http://www.es.isy.liu.se/courses/ANIK/download/filterRef/ANTI K_ONNN_LN_leapfrogFiltersOH1_A.pdf http://www.es.isy.liu.se/courses/ANIK/download/filterRef/ANTI K_ONNN_LN_leapfrogSynthesisExtra1_A.pdf http://www.es.isy.liu.se/courses/ANIK/download/filterRef/ANTI K_ONNN_LN_leapfrogSynthesisExtra2_A.pdf http://www.es.isy.liu.se/courses/ANIK/download/switcapRef/A NTIK_ONNN_LN_switcapHandout_B.pdf

What did we do today?

Switched capacitor circuits with nonideal effects in mind What should we look out for? What is the impact on system performance, like filters.

Continuous-time filters
The way forward, and the background to generate the filters. OTA-C, Gm-C, and active-RC

What will we do next time?

Continuous-time filters
Wrap-up and some more conclusions

Discrete-time filters

Simulation of the continuous-time filters

