Lecture 4, ATIK

Operational (transconductance) amplifiers, Noise

What did we do last time?

Wrapping up the simple amplifier stages and current mirrors

Suggesting cascodes to increase gain

Multiple poles

Stability and stability analysis

Compensation

What will we do today?

Differential circuits
Why differential?
Operational amplifiers
More on how we design them
Circuit noise
Thermal and flicker noise
Noise bandwidth

Wrapping up CMOS design!

Poles and zeros revisited

Stable?

Poles and zeros revisited

Stable?

Compensation

What is the cost associated with compensation?

Compensation, two cases:

1) "Internal" node sees a low-impedance node

Typically: output load dominates, and we should drive a capacitive load Load-compensation, i.e., increase cap externally
2) "Internal" node sees a high-impedance node

Typically: internal load dominates, and we should drive a resistive load Miller-compensation, i.e., utilize the second-stage gain to multiply C_{C}

As always, some exceptions to the rule:
We could add common-drain at output
Nested compensation, active compensation, ... and more ...

Compensation compiled:

Cap

Rule-of-thumbs for hand-calculation

Use MATLAB or similar to support your calculations for better understanding

See for example
/site/edu/es/TSTE08/antikPoleZero.m
/site/edu/es/TSTE08/antikSettling.m

In the end, use the simulator.
It has to be robust over several corners, temperatures, and other variations.
Hand calculations are incorrect per definition

Model corresponds quite well with circuit once you have identified the different stages

See for example exercises

Differential signals

Differential signals

$$
\Delta V=V_{p}-V_{n}
$$

Common-mode signal

$$
\nabla V=\frac{V_{p}+V_{n}}{2}
$$

Common-mode supression Should cancel commonmode (why?)

Differential signals, the matrix

Compile the transfer functions into handy matrix

$$
\left[\begin{array}{c}
\Delta V_{o u t} \\
\nabla V_{o u t}
\end{array}\right]=\left[\begin{array}{cc}
A_{d f} & A_{d f, c m} \\
A_{c m, d f} & A_{c m}
\end{array}\right]\left[\begin{array}{c}
\Delta V_{i n} \\
\nabla V_{i n}
\end{array}\right]
$$

Common-mode rejection ratio

$$
\mathrm{CMRR}=\frac{A_{d f}}{A_{c m}}
$$

Design targets
Maximize the differential gain
Minimize the common-mode gain

Differential signals, two CS stages

Common-mode range (CMR)
Common-mode levels for which the transistors operate in saturation

The common-mode rejection is 0 dB !
Effectively there is no rejection!

Differential signals, differential pair

Improved (infinite) CMRR to the cost of CMR

$$
\begin{equation*}
\Delta I=4 \alpha \cdot V_{e f f} \cdot \Delta V \text { and } \nabla I=I_{0} / 2 \tag{!}
\end{equation*}
$$

Further on

$$
I_{0}=2 \alpha \cdot\left(V_{e f f}^{2}+\Delta V^{2}\right)
$$

combines into

$$
\begin{equation*}
\Delta I=4 \alpha \cdot \Delta V \cdot \sqrt{\frac{I_{0}}{2 \alpha}-\Delta V^{2}} \tag{!}
\end{equation*}
$$

such that

$$
\frac{d \Delta I}{d \Delta V}=4 \alpha \cdot \sqrt{\frac{I_{0}}{2 \alpha}}=4 \alpha V_{e f f}=\frac{2 I_{0}}{V_{e f f}}(\mathrm{ADF}) \text { and } \frac{d \nabla I}{d \nabla V}=0(\mathrm{ACM})
$$

Differential pair with active load

Current-to-voltage conversion
Resistors
Current mirror active load
Current-source active load

Common-mode can be further supressed using a common-mode feedback circuit (CMFB)

Additional feedback amplifier sensing the common-mode level at the output

Operational amplifiers

Operational transconductance amplifier (OTA)
Drive capacitive load, typically on-chip
Operational amplifiers (OP)
Drive resistive load, typically off-chip Specifications

Differential input, opt. differential output Infinite gain
Infinite input impedance
Infinite (OTA) / Zero (OP) output impedance

Always used in feedback (otherwise it is a comparator)!

Why do you want controlled feedback?

Gain is now under control!
No variation with gm / gds, instead given by (normally) high-accuracy components
"Unlimited" drive capability

Isolation of input and output

Linearization

Remember, it is a regulation loop. It is designed to track the changes, anything added in the loop will be supressed.

Telescopic OTA

Stack many cascodes on top of each-other and use gain-boosting etc.

Deliberately omitted, since it is not applicable for modern processes.

Swing is eaten up.

Two-stage OP/OTA

Current-mirror OP/OTA

Folded-cascode OP/OTA

Why folded-cascode?

Consider the CMR in buffer configuration In telescopic OTA, the swing will be very small since bias transistor "locks" the voltage level

OP/OTA Compilation

Laboratory on the design of a current-mirror OP/OTA
Much better to understand with hands-on experience and play-around with simulator

Cookbook recipes
Hand-outs with step-by-step explanation of the design of OP/OTAs http://www.es.isy.liu.se/courses/ANIK/download/opampRef/ANTIK_ONNN_LN_o pampHandsouts_A.pdf

Compensation techniques http://www.es.isy.liu.se/courses/ANIK/download/opampRef/ANTIK_ONNN_LN_o pampCompensationTable_A.pdf

OP/OTA Compilation, cont'd

Important things to think about
Systematic offset in two-stage amplifiers
In a non-cascoded current-mirror OTA, the K factor scaling does not help.

Power-supply rejection, PSRR

$$
\operatorname{PSRR}=\min \left(\frac{A_{d f}}{A_{v d d}}, \frac{A_{d f}}{A_{v s s}}\right)
$$

Measured from both positive and negative supply (small-signal exercise)

Many mismatch analyses must be done
In order to see true offset (see above)
PSRR and CMRR heavily dependent on the balance in your system

Noise

Any circuit has noise and you as a designer have to reduce it or minimize the impact of it.
"A disturbance, especially a random and persistent disturbance, that obscures or reduces the clarity of a signal."

Consequences

We need to use stochastic variables and power spectral densities, expectation values, etc.
We need to make certain assumptions (models) of our noise sources in order to calculate

Superfunction and spectral densitites

Spectral density (PSD)

Superfunction

$$
S_{0}(f)=\sum\left|A_{i}(f)\right|^{2} \cdot S_{i}(f)
$$

Total noise

$$
\begin{aligned}
& V_{t o t}^{2}=\int v_{n}^{2}(f) d f \\
& V_{t o t}^{2}=v_{n}^{2}(0) \cdot \frac{p_{1}}{4}
\end{aligned}
$$

Thermal noise, white noise

Resistor

$$
v_{n}^{2}=4 k T R \text { or } i_{n}^{2}=\frac{v_{n}^{2}}{R^{2}}=\frac{4 k T}{R}
$$

Transistor

$$
v_{g}^{2}=\frac{4 k T \gamma}{g_{m}} \text { or } i_{d}^{2}=v_{g}^{2} \cdot g_{m}^{2}=4 k T \gamma g_{m}
$$

Flicker noise, 1/f-noise, pink noise

Resistor

$$
v_{n}^{2}=\frac{v_{\text {bias }}^{2} \cdot k}{W L \cdot f} \text { and } i_{n}^{2}=R^{2} \cdot v_{n}^{2}
$$

Transistor

$$
v_{g}^{2}=\frac{K_{F}}{C_{o x}^{2} \cdot W L} \cdot \frac{1}{f} \text { and } i_{d}^{2}=g_{m}^{2} \cdot v_{n}^{2}
$$

Noise compiled in one example

Common-source with noisy transistors

Noise compiled in one example, cont'd

Potentially reorder the sources for convient calculations

Notice the use of transconductance from voltage to current.

Noise compiled in one example, cont'd

Equivalent small-signal schematics (ESSS)

Noise compiled in one example, cont'd

The general transfer function to the output is given by

$$
V_{n, \text { out }}^{2}(f)=\frac{v_{g n}^{2}(f) \cdot\left|G_{n}(f)\right|^{2}+v_{g p}^{2}(f) \cdot\left|G_{p}(f)\right|^{2}}{\left|s C_{L}+g_{p}+g_{n}\right|^{2}}
$$

Insert the values

$$
\left.V_{n, \text { out }}^{2}(f)=4 k T \gamma \frac{\frac{g_{m n}^{2}}{g_{m n}}+\frac{g_{m p}^{2}}{g_{m p}}}{\left(g_{p}+g_{n}\right)^{2} \cdot\left|1+\frac{\frac{s}{g_{p}+g_{n}}}{C_{L}}\right|}=\left.\left.4 k T \gamma \frac{\frac{g_{m n}+g_{m p}}{\left(g_{p}+g_{n}\right)^{2}}}{\left\lvert\, 1+\frac{s}{g_{p}+g_{n}}\right.}\right|^{2}\right|_{L} \right\rvert\,
$$

Noise compiled in one example, cont'd

Use the brickwall approach

$$
V_{n, \text { tot }}^{2}=\int V_{n, \text { out }}^{2}(f)=V_{n, \text { out }}^{2}(0) \cdot \frac{p_{1}}{4}
$$

Insert the expressions

$$
V_{n, t o t}^{2}=4 k T \gamma \frac{g_{m n}+g_{m p}}{\left(g_{p}+g_{n}\right)^{2}} \cdot \frac{g_{p}+g_{n}}{4 C_{L}}=\frac{k T \gamma}{C_{L}} \cdot \frac{g_{m n}+g_{m p}}{g_{p}+g_{n}}
$$

and conclude

$$
V_{n, \text { tot }}^{2}=\frac{k T \gamma}{C_{L}} \cdot A_{0} \cdot\left(1+\frac{g_{m p}}{g_{m n}}\right)
$$

Input-referred noise

Revert the output noise back to the input:

$$
V_{n, \text { in }}^{2}(f)=\frac{V_{n, \text { out }}^{2}(f)}{\left|A_{i n}(f)\right|^{2}}
$$

The common-source example

Input-referred noise

$$
V_{n, i n}^{2}(f)=\left|4 k T \gamma \frac{\frac{\left(g_{m n}+g_{m p}\right)}{\left(g_{p}+g_{n}\right)^{2}}}{\left|1+\frac{s}{\frac{\left(g_{p}+g_{n}\right)}{C_{L}}}\right|^{2}} \cdot\right| \frac{\left|1+\frac{s}{\frac{\left(g_{p}+g_{n}\right)}{C_{L}}}\right|^{2}}{\frac{g_{m n}^{2}}{\left(g_{p}+g_{n}\right)^{2}}}\left|=\frac{4 k T \gamma}{g_{m n}} \cdot 1+\frac{g_{m p}}{g_{m n}}\right|
$$

What does this mean?

Bias transistor should be made with low transconductance!
Visible from the formula

Gain transistors should be made with high transconductance!
Visible from the formula

Gain should be distributed between multiple stages, c.f., Friis.!
Left as an exercise

What did we do today?

Differential circuits
Why differential? CMRR, CMR

Operational amplifiers
More on how we design them
Cookbook recipes PSRR

Circuit noise
Thermal and flicker noise Noise bandwidth

What will we do next time?

Switched capacitor circuits
The basics
Charge-redistribution analysis

Nonidealties
SC parasitics

