ALARE ALARE

Lecture 3, Amplifiers 2

Improved gain towards OP, OTA, Stability Tuesday, January 29, 2013

LIU EXPANDING REALITY

What did we do last time?

Went through the most common CMOS building blocks

Common-Gate, Common-Drain, Common-Source

Quickly discussed voltage swing

With lower v_{eff} the swing increases (and so does the gain).

Mismatch

-14…ANTIK_0025 (P1

Impact on the minimum, v_{eff} , i.e., don't make v_{eff} too low!

Analog and discrete-time integrated circuits (ATIK)

Still wrapping-up the smallest bits and pieces!

LIU EXPANDING REALITY

What did we do last time?

Gain (g_m/g_{out}) and pole (g_{out}/C_L) and trade-offs between them

$$A(s) = \frac{A_0}{1 + \frac{s}{p_1}} = \frac{\frac{g_m}{g_{out}}}{1 + \frac{s}{\frac{g_{out}}{C_L}}}$$

Analog and discrete-time integrated circuits (ATIK)

Increase gain by

2013-01-14::ANTIK_0025 (P1B)

increasing transconductance or output impedance

LIU EXPANDING REALITY

What will we do today?

Current mirrors

Swing

Improved gain through cascodes

Stability

Phase margin

Compensation (first glance)

Analog and discrete-time integrated circuits (ATIK)

Amplifiers and differential pairs

Why differential?

2013-01-14::ANTIK_0025 (P1B)

LIU EXPANDING REALITY

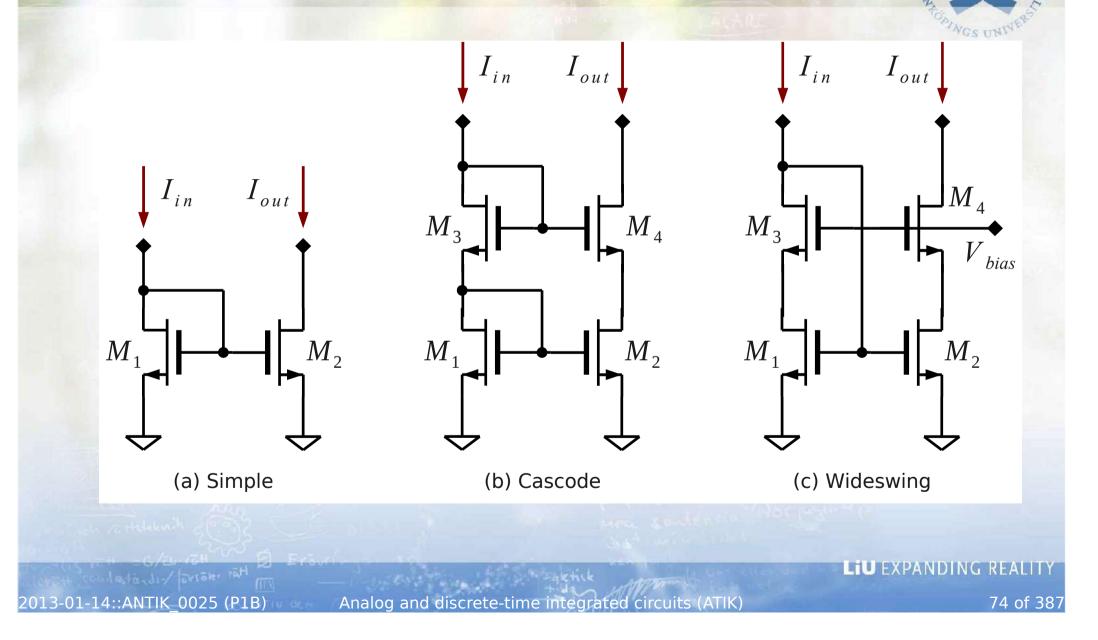
Current mirrors revisited

LIN TO BANGS UNIVERSIT

Use the current mirrors for biasing

Set the current through the gain stage with a reference current to decouples design parameters!

$$I_{out} = \frac{\alpha_2}{\alpha_1} \cdot I_{in}$$


We can "ignore" the size and $v_{e\!f\!f}$ of the bias transistor (active load) and focus on current instead.

For reference termination

At the "receiver", a simple resistor will do to generate a groundindependent voltage level

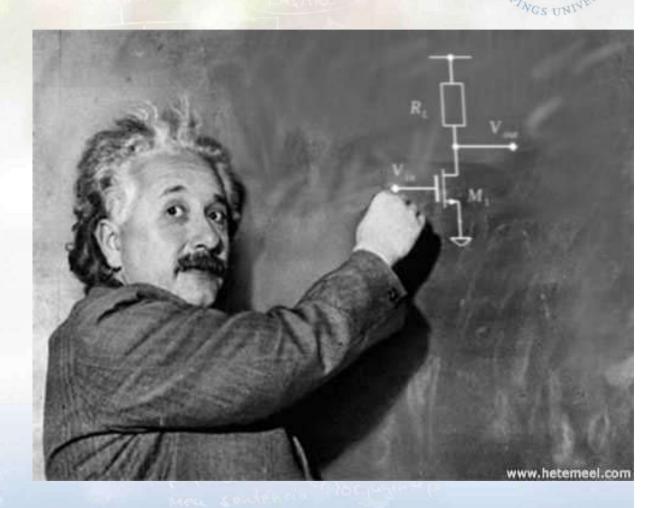
LIU EXPANDING REALITY

Current mirrors, cont'd

Current mirrors, some maths

Swing

How many can we stack?


Current source

2013-01-14::ANTIK_0025 (P1B)

Input impedance

Output impedance

"High-impedance" load

Analog and discrete-time integrated circuits (ATIK)

LIU EXPANDING REALITY

Ok, so there were some extra transistors there... Cascodes

.14…ANTIK_0025 (P1

For every diode-connected transistor, we loose one V_T of swing

Analog and discrete-time integrated circuits (ATIK)

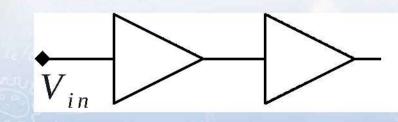
The wideswing current mirror approach should be used

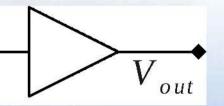
Concludingly, cascodes increase the gain

(How? - a small-signal exercise)

LIU EXPANDING REALITY

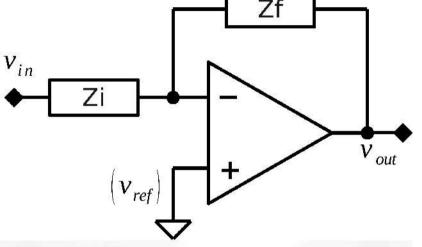
Why do I increase my gain?


Why do we need high gain?


Supresses nonlinearity and offset errors (c.f. control theory)

Clossed-loop gain control:

$$\frac{V_{out}}{V_{in}} = \frac{Z_f}{Z_i}$$



LIU EXPANDING REALITY

-14::ANTIK_0025 (P1B) Analog and discrete-time integrated circuits (ATIK)

How do I increase my gain?

Assuming a simple common-source stage:

$$A = \frac{g_m}{g_{ds}} = \frac{1}{\lambda \cdot v_{eff}} = \frac{2\sqrt{\alpha}}{\lambda\sqrt{I_D}}$$

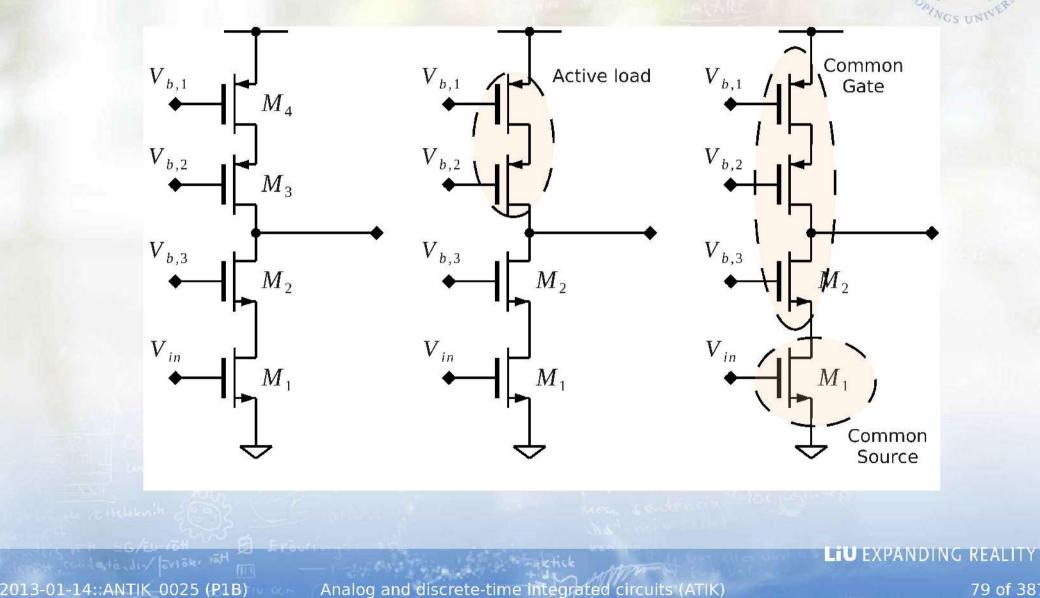
Analog and discrete-time integrated circuits (ATIK)

Answer depends on the biasing conditions

Decrease V_{eff}

-14…ANTIK_0025 (P1B

Decrease $\lambda \sim 1/L$, i.e., increase the channel length.


Decrease (!) the current I_D

Increase the transistor aspect ratio, $\alpha \sim S \sim W$

LIU EXPANDING REALITY

How do I increase my gain?

79 of 387

SHOPINGS

Multi-stage or cascodes?

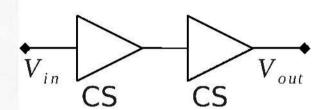
Single-stage (cascodes) vs two-stage?

They will have the same DC gain

They will not have the same output impedance

Multiple poles ("one per stage")


The transfer function (in both cases) is


14 ANTIK_0025

$$A(s) \approx \frac{A_1 \cdot A_2}{\left|1 + \frac{s}{p_{11}}\right| \cdot \left|1 + \frac{s}{p_{12}}\right|}$$

Analog and discrete-time integrated circuits (ATIK)

LIU EXPANDING REALITY

Multiple poles

THE OPINGS UNIVERSITE

Case 1 (CS+CG)

First amplifier sees low-impedance load: $(g_1 + g_{ml}) \| C_1 \approx g_{ml} \| C_1$

Second amplifier sees capacitive load: $g_{out} \approx g_2 ||C_2|$

Case 2 (CS+CS)

 \cdots ANTIK 0025

First amplifier sees high-impedance load $(g_1+0)||C_1 \approx g_1||C_1$

Second amplifier sees capacitive load: $g_{out} \approx g_2 ||C_2|$

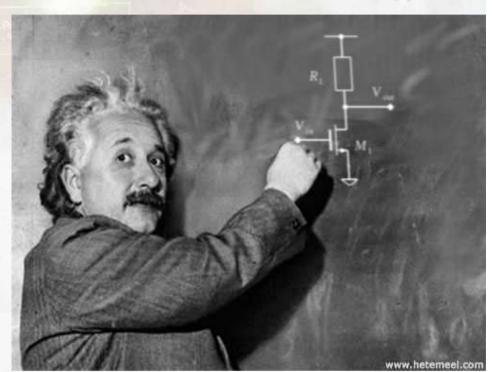
Notice the Case-2 g_2 is higher than the Case-1 g_2

LIU EXPANDING REALITY

Multiple poles, cont'd

Bode plot

-90 degrees per pole


-20 dB/dec per pole

Phase margin

2013-01-14::ANTIK_0025 (P1B)

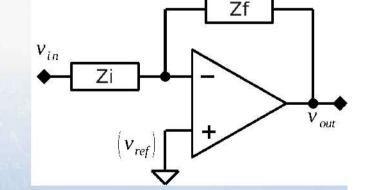
Compared to x-axis

 ϕ_m is the distance at the crossing point, i.e., the phase margin

LIU EXPANDING REALITY

Regardless what you do ... Feedback

Preferrably, a controlled system, with a closed-loop gain of:


$$Y(s) = (X(s) - \beta(s) \cdot Y(s)) \cdot A(s) \Rightarrow$$
$$\frac{Y(s)}{X(s)} = \frac{A(s)}{1 + \beta(s) \cdot A(s)} = \frac{1/\beta(s)}{1 + \frac{1}{\beta(s) \cdot A(s)}}$$

Analog and discrete-time integrated circuits (ATIK)

A feedback factor of: $\beta(s)$

-01-14::ANTIK_0025 (P1

An open-loop gain of: $\beta(s) \cdot A(s)$

LIU EXPANDING REALITY

Stability

4...ANTIK (0025 (P)

In short: the transfer function must be designed such that

 $\beta(s) \cdot A(s) \neq -1$

If this is the case, we have an infinitely high transfer function

(In reality, the proof is quite complex.)

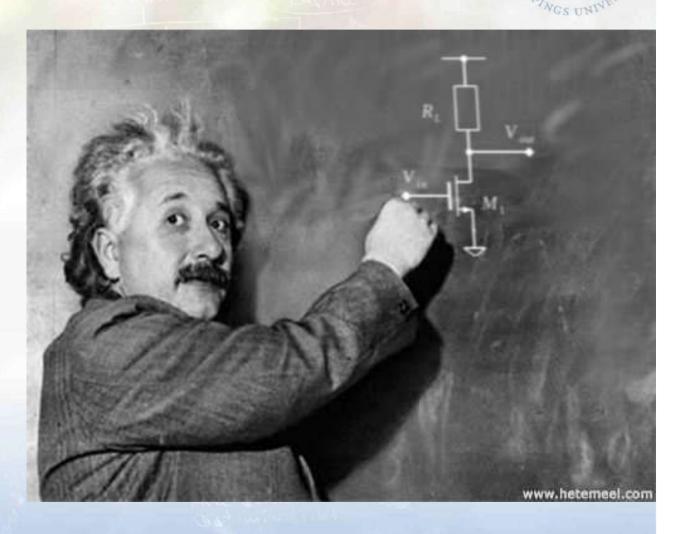
Phase margin (how far are we off from this to happen)

Poor phase margin gives ringing in the output when applying step

Critically damped signal at approximately 70 dB (poles become real rather than complex pair, i.e., they are well splitted)

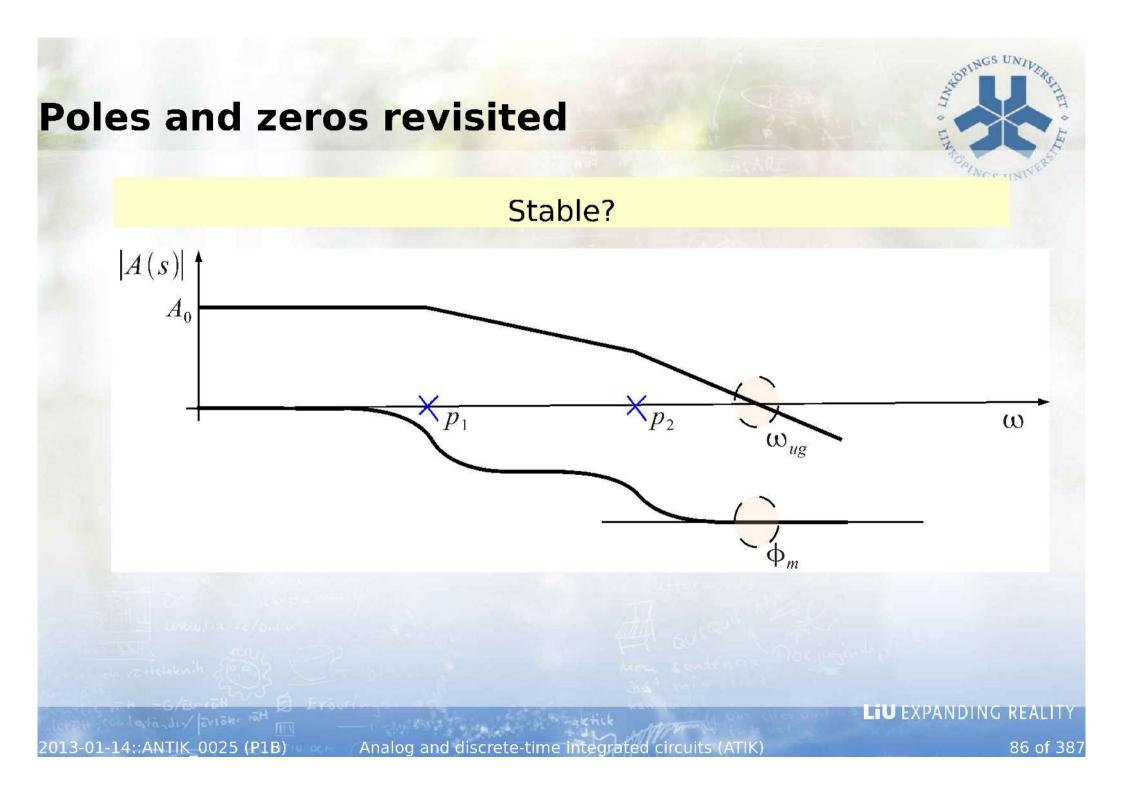
Analog and discrete-time integrated circuits (ATIK)

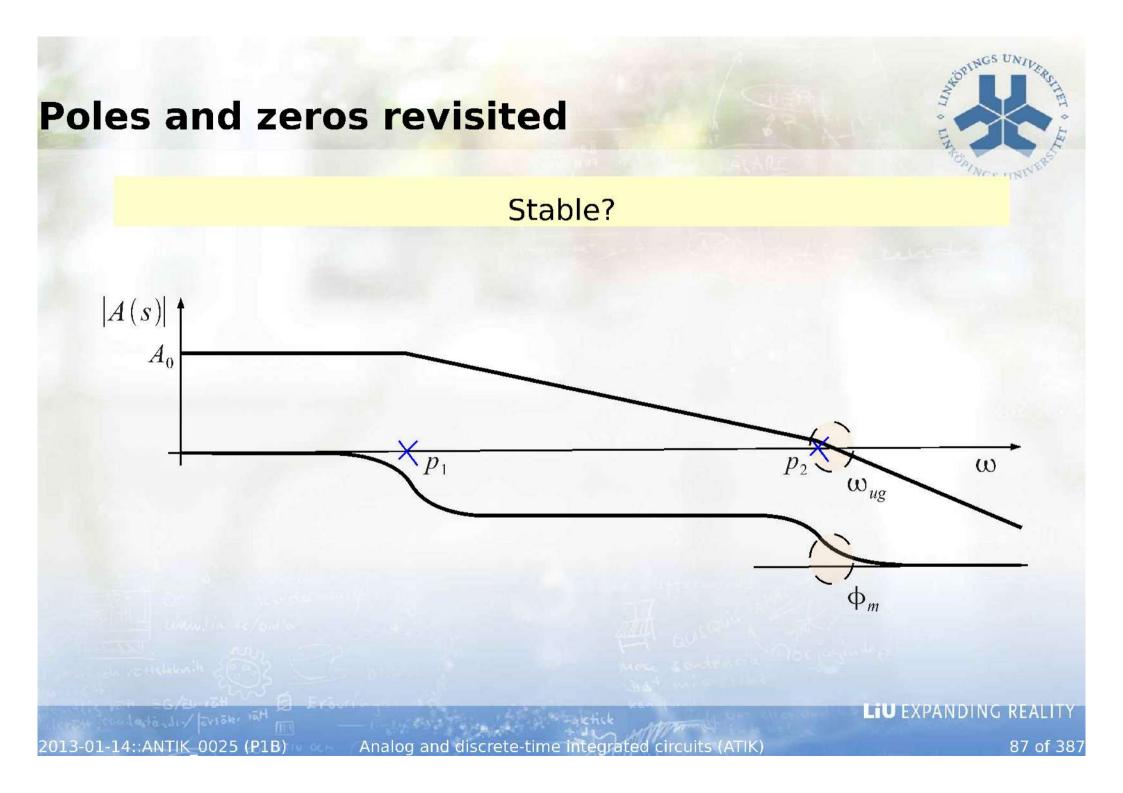
LIU EXPANDING REALITY


Stability, cont'd

Bode plot

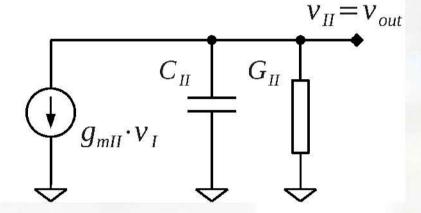
What happens to the transfer characteristics in feedback?


Phase margin


2013-01-14::ANTIK 0025 (P1B)

LIU EXPANDING REALITY

Analog and discrete-time integrated circuits (ATIK)



The models of a two-pole system

2013-01-14::ANTIK_0025 (P1B)

$$p_1 = \frac{G_I}{C_I}, \quad p_2 = \frac{G_{II}}{C_{II}}$$

$$A_1 = \frac{8 mI}{G_I}, \quad A_2 = \frac{8 mII}{G_{II}}$$

LIU EXPANDING REALITY

StoPINGS .

Analog and discrete-time integrated circuits (ATIK)

Dominant pole assumption (output)

Assuming "pole splitting", i.e., $p_2 \gg p_1$, gives us

$$A(s) = \frac{A_1 \cdot A_2}{\left|1 + \frac{s}{p_{11}}\right| \cdot \left|1 + \frac{s}{p_{12}}\right|} \approx \frac{A_1 \cdot A_2}{1 + \frac{s}{p_1} + \frac{s^2}{p_1 \cdot p_2}}$$

This implies: $\omega_{ug} \approx A_1 \cdot A_2 \cdot p_1$ and

2013-01-14::ANTIK_0025 (P1B)

$$\phi_m = 180 - \arg A(j \omega_{ug}) = 180 - \operatorname{atan} \frac{\omega_{ug}}{p_1} - \operatorname{atan} \frac{\omega_{ug}}{p_2} \approx 90 - \operatorname{atan} \frac{\omega_{ug}}{p_2}$$

Analog and discrete-time integrated circuits (ATIK)

LIU EXPANDING REALITY

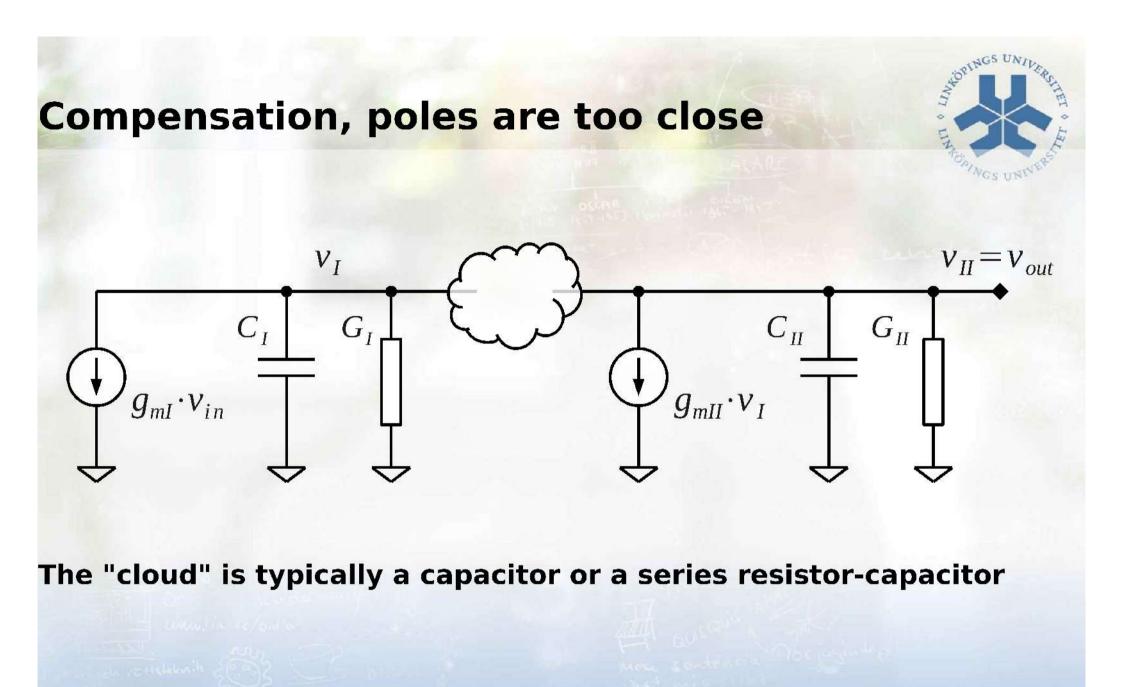
The formulas (dominant load!)

Unity-gain frequency

$$\omega_{ug} \approx \frac{g_{mI} \cdot g_{mII}}{G_I \cdot G_{II}} \cdot \frac{G_{II}}{C_{II}} = \frac{g_{mI} \cdot g_{mII}}{G_I \cdot C_{II}}$$

Phase margin

2013-01-14::ANTIK_0025 (P1B)

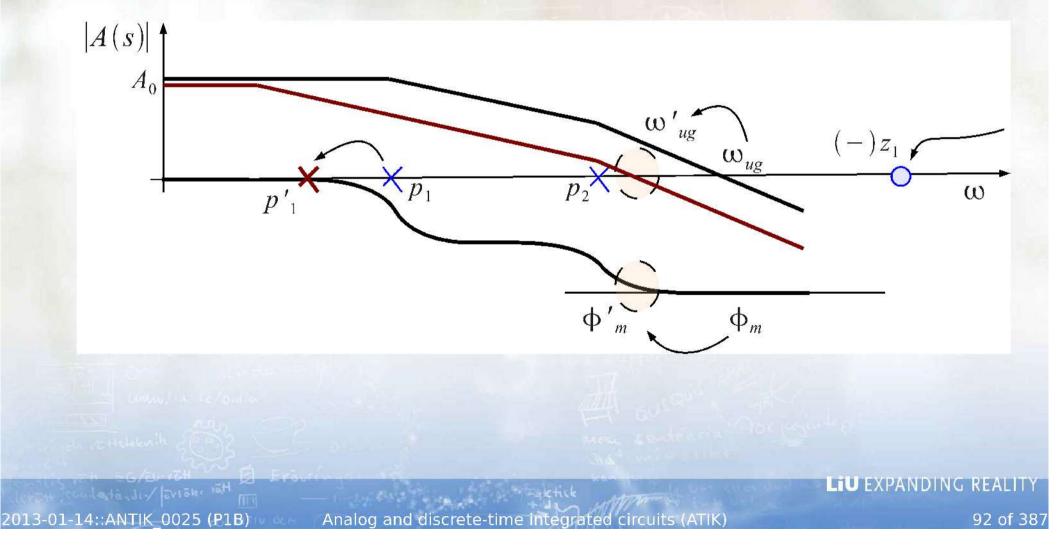

$$\phi_{m} \approx 90 - atan \frac{\omega_{ug}}{p_{2}} = 90 - atan \frac{\frac{g_{mI} \cdot g_{mII}}{G_{I}}}{\frac{G_{I}}{C_{I}}} = 90 - atan \frac{g_{mI} \cdot g_{mII} \cdot C_{II}}{G_{I}^{2} \cdot C_{II}}$$

Analog and discrete-time integrated circuits (ATIK)

etc., etc., etc. We need to be a bit more organized...

LIU EXPANDING REALITY

Analog and discrete-time integrated circuits (ATIK)


-14::ANTIK_0025 (P1E

LIU EXPANDING REALITY

What is the cost associated with compensation?

Storings.

Compensation, two cases:

1) "Internal" node sees a low-impedance node

Output load dominates and we drive a capacitive load (typically)

Load-compensation, i.e., increase cap externally

2) "Internal" node sees a high-impedance node

Internal load dominates, and we drive a resistive load (typically)

Miller-compensation, i.e., utilize the second-stage gain to multiply C_C

As always, some exceptions to the rule:

We could add common-drain at output

Nested compensation, active compensation, ... and more 3-01-14::ANTIK_0025 (P1B) Analog and discrete-time integrated circuits (ATIK) 93 of 387

Compensation, Miller capacitance

$z_1 = \frac{g_{mII}}{C_C} \qquad p_2 = \frac{-g_{mII}}{C_{II}} \qquad p_1 = \frac{-G_I \cdot G_{II}}{g_{mII} \cdot C_C}$	Introduced zero	Parasitic pole	Dominant pole	Unity-gain
	$z_1 = \frac{g_{mII}}{C_C}$	$p_2 = \frac{-g_{mII}}{C_{II}}$	$p_1 = \frac{-G_I \cdot G_{II}}{g_{mII} \cdot C_C}$	$\omega_{ug} = \frac{g_{mI}}{C_c}$
Introduced zero Parasitic pole Phase marg				

Dominant pole moves "down", parasitic pole moves "up"

Parasitic zero added (harmful for phase margin)

 $p_2 \approx 2.2 \cdot \omega_{ug}$

 $z_1 \approx 10 \cdot \omega_{ug}$

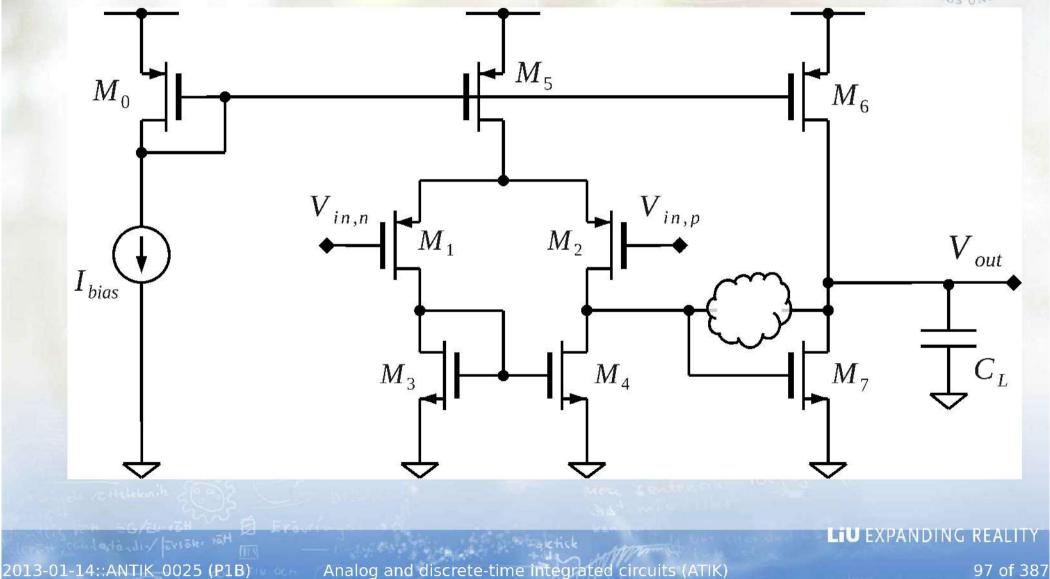
LIU EXPANDING REALITY

 ≈ 60

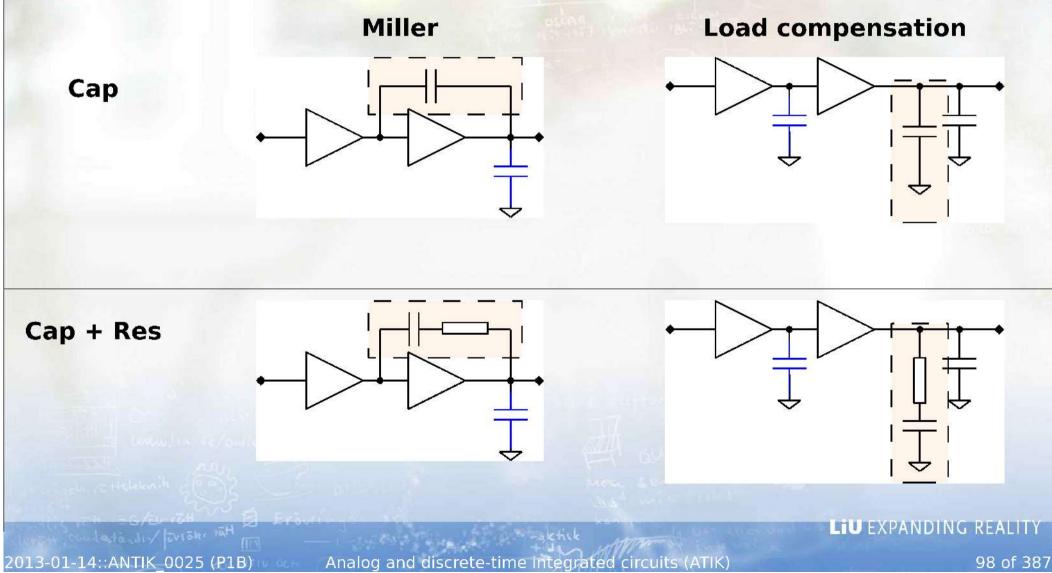
2013-01-14::ANTIK_0025 (P1B) Analog and discrete-time integrated circuits (ATIK)

Compensation, Nulling resistor 1

$z_1 = \frac{g_{mII}}{C_C} \cdot \frac{1}{1 - R_Z \cdot g_{mII}} \qquad p_2 =$			$\frac{G_{II}}{C_C} \qquad \omega_{ug} = \frac{g_{mI}}{C_C}$	
	1			
	$R_{Z} = \frac{1}{g_{mII}} \cdot \left(1 + \frac{1}{g_{mII}}\right)$			
Introduced zero Para	sitic pole		Phase margin	
	≈1.73·ω _{ug}	≈60		


Compensation, Nulling resistor 2

Introduced zero	Parasitic poles	Dominant pole	Unity-gain
		1 To 1 To . 31	The second second
$z_1 = \frac{g_{mII}}{C_C} \cdot \frac{1}{1 - R_Z \cdot g_{mII}}$	$p_2 = \frac{-g_{mII}}{C_{II}}, p_3 = \frac{-1}{R_Z \cdot C_{II}}$	$p_1 = \frac{-G_I \cdot G_{II}}{g_{mII} \cdot C_C}$	$\omega_{ug} = \frac{g_{mI}}{C_c}$
	$R_{Z} = \frac{1}{g_{mII}}$		
Introduced zero	Parasitic pole	Phase margin	
$z_1 \rightarrow \infty$	$p_2 \approx 1.73 \cdot \omega_{ug}$, $p_3 > 10 \cdot \omega_{ug}$	<mark>≈60</mark>	
A coulestander / Eviake val	Erouring and a startick and	LiU E	XPANDING REALIT


Operational amplifer

Compensation compiled:

Rule-of-thumbs for hand-calculation

Use e.g. MATLAB to support calculations for better understanding

See for example

/site/edu/es/TSTE08/antikLab/m/antikPoleZero.m
/site/edu/es/TSTE08/antikLab/m/antikSettling.m

In the end, use the simulator.

Must be robust over circuit variations, e.g., temperature

Hand calculations are incorrect per definition

Model corresponds quite well with circuit once you have identified the different stages

See example exercises

LIU EXPANDING REALITY

99 of 38.

What did we do today?

Wrapping up the simple amplifier stages and current mirrors

Suggesting cascodes to increase gain

Multiple poles

Stability and stability analysis

Compensation

2013-01-14::ANTIK_0025 (P1B)

What will we do next time?

Differential circuits

Why differential?

Operational amplifiers

More on how we design them

Circuit noise

Handles

2013-01-14::ANTIK 0025 (P1B)

LIU EXPANDING REALITY