Lecture 2, Amplifiers 1

Analog building blocks

Outline of today's lecture

Further work on the analog building blocks
Common-source, common-drain, common-gate
Active vs passive load
Other "simple" analog building blocks
Current mirrors
Mismatch
And other things related to that

What did we do until now?

Stress on the complexity of analog design.
It is not easy and it will take many years before you master.
Why analog design?
Our world is analog and telecommunication needs analog to interface

Complexity is growing as (n)ever.
Common-source stage and small signal schematics
Operating point vs small-signal schematics and how they "move" around

Transistor, revisited

(a) NMOS

(b) PMOS

$$
I \approx \alpha V_{e f f}^{2} \cdot\left|1+\frac{V_{d s}}{V_{\theta}}\right|
$$

Transistors, small-signal expressions

Linearization gives a small-signal model with these properties:
Expression
Cut-off
Linear
g_{m}
$\frac{\kappa I_{D}}{k T / q}$
$2 \alpha v_{d s}$
$g_{m b s}$
$g_{m} \cdot \frac{1-\kappa}{\kappa}$
$g_{m} \cdot \frac{\gamma}{2 \sqrt{V_{S B}+2 \phi_{F}}}$
$g_{m} \cdot \frac{\gamma}{2 \sqrt{V_{S B}+2 \phi_{F}}}$
$g_{d s}$
λI_{D}
$2 \alpha\left(v_{e f f}-v_{d s}\right)$
λI_{D}

Transistor gain vs region

Using the small-signal parameters gives us the following:
Expression
Cut-off
Linear
Saturation

$$
A=\frac{g_{m}}{g_{d s}}
$$

$$
\frac{\kappa \cdot q}{\lambda \cdot k T}
$$

$$
\frac{v_{d s}}{v_{e f f}-v_{d s}}
$$

$$
\frac{2}{\lambda \cdot v_{e f f}} \frac{2 \sqrt{\alpha}}{\lambda \sqrt{I_{D}}}
$$

What can you spot (where is the gain highest)?

$$
\kappa \approx 0.75 \text { and } k T / q \approx 26 \mathrm{mV} .
$$

Poles, bandwidth, gain, etc.

Bode plot

Approximations
Pole vs gain vs unity-gain Hand-calculations, practical tips
Settling vs pole
Speed

Amplifier stages, passive load

Common-source, common-drain, common-gate

Amplifier stages, active load

Why active load?

Amplifier stages, compiled 1

Expression

DC gain, $A_{0} \approx \frac{g_{m}}{g_{\text {out }}}$

Output impedance, $\approx g_{\text {out }}$

Bandwidth, $p_{1} \approx \frac{g_{\text {out }}}{C_{L}}$
Unity gain, $\approx A_{0} \cdot p_{1}$

CS

$$
\approx \frac{g_{m}}{g_{P}+g_{N}}
$$

$$
\approx g_{P}+g_{N}
$$

$$
\approx g_{m}
$$

$$
\approx \frac{g_{m}}{C_{L}}
$$

N/A (why?)

CG*)
$\approx \frac{g_{m}}{g_{P}+g_{N}}$
$\approx g_{P}+g_{N}$
$\approx \frac{g_{P}+g_{N}}{C_{L}}$
$\approx g_{m} / C_{L}$

Amplifier stages, compiled 2

Expression

CS

$$
\approx 1 / \lambda \cdot v_{e f f}
$$

≈ 1
$\approx 1 / \lambda \cdot v_{\text {eff }}$
DC gain, $A_{0} \approx g_{m} / g_{\text {out }}$
Output impedance, $\approx g_{\text {out }}$

$$
\approx \lambda I_{D}
$$

$\approx 2 I_{D} / v_{e f f}$
$\approx \lambda I_{D}$
Bandwidth, $p_{1} \approx g_{\text {out }} / C_{L}$
Unity gain, $\approx A_{0} \cdot p_{1}$

$$
\begin{aligned}
& \approx \lambda I_{D} / C_{L} \\
& \approx I_{D} / C_{L} \cdot v_{e f f}
\end{aligned}
$$

$$
\approx 2 I_{D} / C_{L} \cdot v_{e f f}
$$

$$
\approx \lambda I_{D} / C_{L} \cdot v_{e f f}
$$

N/A (why?) $\approx I_{D} / C_{L} \cdot v_{e f f}$

Voltage swings

Walk around the circuit
Check for all the required voltage levels to maintain transistors in their saturation region

Use the following relations

$$
V_{G S}=V_{E F F}+V_{T}, V_{D S}>V_{E F F} \Rightarrow V_{D S}=V_{E F F}, V_{E F F}=\sqrt{\frac{I_{D}}{\alpha}}
$$

The lower $v_{\text {eff }}$, the ...
higher swing
higher gain

Examples

Consider the three amplifiers and check the potentials

Some other relationships

Expression
Slew rate

Generic
$\mathrm{SR} \approx \frac{I_{D}}{C_{L}}$

$$
v_{n}^{2}(f) \approx \frac{4 k T \gamma}{g_{m}}
$$

CG/CS
CD

$$
\approx \omega_{u} \cdot v_{e f f} \quad \approx \frac{p_{1} \cdot v_{e f f}}{2}
$$

$$
\approx \frac{2 k T \gamma \cdot v_{\text {eff }}}{I_{D}}
$$

$$
\nu_{\text {out }}^{2} \approx \frac{k T \gamma A_{0}}{C_{L}}
$$

$$
\approx \frac{k T \gamma}{\lambda C_{L} v_{e f f}}
$$

$$
\approx \frac{k T \gamma}{C_{L}}
$$

Noise, input-referred

Noise, total output

Mismatch, or
 "In reality, nothing is perfect ..."

Differences in

Fabs (wafer-to-wafer, fabrication, date)
Wafer locations (chip-to-chip, doping)
Transistor (block-by-block, orientation and side effects, doping)
Temperatures, Voltages, Currents
You cannot assume that one transistor is identical to another
Especially not for high-speed, high-accuracy applications

Mismatch, cont'd

The drain current in the saturation region:

$$
\begin{gathered}
\Delta I_{D}=\frac{d I_{D}}{d \beta} \cdot \Delta \beta+\frac{d I_{D}}{d S} \cdot \Delta S+\frac{d I_{D}}{d V_{e f f}} \cdot \Delta V_{e f f}+\frac{d I_{D}}{d V_{d s}} \cdot \Delta V_{d s}= \\
=\underbrace{\frac{I_{D}}{\beta} \cdot \Delta \beta+\frac{I_{D}}{S} \cdot \Delta S+\frac{2 I_{d}}{V_{e f f}} \cdot \Delta V_{e f f}+\frac{\lambda I_{d}}{1+\lambda\left(V_{d s}-V_{e f f}\right)} \cdot \Delta V_{d s} \Rightarrow}_{\Delta \alpha} \\
\frac{\Delta I_{D}}{I_{D}}=\underbrace{\frac{\Delta \beta}{\beta}+\frac{\Delta S}{S}}_{\Delta \alpha}+\frac{2 \Delta V_{e f f}}{V_{e f f}}+\frac{\lambda \Delta V_{d s}}{1+\lambda\left(V_{d s}-V_{e f f}\right)} \Rightarrow \\
\frac{\Delta I_{D}}{I_{D}} \approx \frac{\Delta \alpha}{\alpha}+\frac{2 \Delta V_{e f f}}{V_{e f f}}
\end{gathered}
$$

Mismatch, cont'd

Ignoring the low-impact ones, and assuming that they are decoupled, gives us, with the help of stochastic variables:

$$
\sigma^{2}\left(\frac{\Delta I_{D}}{I_{D}}\right)=\sigma^{2}\left(\frac{\Delta \alpha}{\alpha}\right)+\frac{\sigma^{2}\left(\Delta V_{e f f}\right)}{V_{e f f}^{2}}
$$

First-order assumptions

$$
\sigma^{2}\left(\frac{\Delta \alpha}{\alpha}\right) \approx \frac{A_{s}^{2}}{W \cdot L} \text { and } \sigma^{2}\left(\Delta V_{e f f}\right) \approx \frac{A_{V T}^{2}}{W \cdot L}
$$

Second-order assumptions
Distance-related, correlations, etc.

Current mirrors

Distribute currents

Set bias levels

"Equal" current through many branches

Decouple design parameters

Gain is now controlled by current instead

Current mirrors, cont'd

Current mirrors, some maths

$N_{\text {GS UNI }}$

Swing

Input impedance

Output impedance

What did we do today?

Went through the other important CMOS building blocks
CG, CD, CS, (CI)

Current mirrors

How to bias a circuit (current mirrors)
Pros and cons with different current mirrors

Mismatch

What will we do next time?

Amplifiers and differential pairs

Why differential?

Stability

Why stability?
Phase margin
Compensation

