

Lecture 2, Amplifiers 1

Analog building blocks

Ling and the column of the col

Outline of today's lecture

HATONINGS UNIVERSITET & LE

Further work on the analog building blocks

Common-source, common-drain, common-gate

Analog and discrete-time integrated circuits (ATIK)

Active vs passive load

Other "simple" analog building blocks

Current mirrors

Mismatch

2013-01-14::ANTIK_0025 (P1B)

And other things related to that

LIU EXPANDING REALITY

What did we do until now?

Stress on the complexity of analog design.

It is not easy and it will take many years before you master.

Why analog design?

4...ANTIK_0025 (P1

Our world is analog and telecommunication needs analog to interface

Complexity is growing as (n)ever.

Common-source stage and small signal schematics

Operating point vs small-signal schematics and how they "move" around

LIU EXPANDING REALITY

Transistor, revisited

2013-01-14::ANTIK 0025 (P1B)

(a) NMOS

(b) PMOS

$$I \approx \alpha V_{eff}^2 \cdot \left| 1 + \frac{V_{ds}}{V_{\theta}} \right|$$

LIU EXPANDING REALITY

Analog and discrete-time integrated circuits (ATIK)

Transistors, small-signal expressions

Linearization gives a small-signal model with these properties:

Expression	Cut-off	Linear	Saturation
8 m	$\frac{\kappa I_D}{k T / q}$	$2 \alpha v_{ds}$	$\frac{2I_{D}}{v_{eff}} 2\sqrt{\alpha I_{D}}$
g _{mbs}	$g_m \cdot \frac{1-\kappa}{\kappa}$	$g_m \cdot \frac{\gamma}{2\sqrt{V_{SB}+2\phi_F}}$	$g_m \cdot \frac{\gamma}{2\sqrt{V_{SB}+2\phi_F}}$
g _{ds}	λI _D	$2\alpha \left(v_{eff} - v_{ds}\right)$	λI _D
Heren vertrebenih	Voulla	Mea contencia ?	
2013-01-14::ANTIK 0025	(P1B) Analog ar	d discrete-time integrated circuits (ATIK)	48 of 454

A COPINGS

Transistor gain vs region

Using the small-signal parameters gives us the following:

Poles, bandwidth, gain, etc.

Bode plot

Approximations

Pole vs gain vs unity-gain

Hand-calculations, practical tips

Settling vs pole

2013-01-14::ANTIK_0025 (P1B)

Speed

LIU EXPANDING REALITY

TOPINGS

Amplifier stages, passive load

Common-source, common-drain, common-gate

HOPINGS

Amplifier stages, active load

2013-01-14::ANTIK_0025 (P1B)

Analog and discrete-time integrated circuits (ATIK)

Amplifier stages, compiled 1

Expre	ession	CS	CD	CG*)
DC gain, $A_0 \approx \frac{2}{g}$	8 m Sout	$\approx \frac{g_m}{g_P + g_N}$	$\approx \frac{g_m}{g_m + g_P + g_N} \approx 1$	$\approx \frac{g_m}{g_P + g_N}$
Output impedar	nce, $\approx g_{out}$	$\approx g_P + g_N$	$\approx g_m$	$\approx g_P + g_N$
Bandwidth, $p_1 \approx$	$\frac{g_{out}}{C_L}$	$\approx \frac{g_P + g_N}{C_L}$	$\approx \frac{g_m}{C_L}$	$\approx \frac{g_P + g_N}{C_L}$
Unity gain, $\approx A_0$	$_{0}\cdot p_{1}$	$\approx g_m / C_L$	N/A (why?)	$\approx g_m / C_L$

Source impedance not mentioned, see exercises.

LIU EXPANDING REALITY

2013-01-14::ANTIK_0025 (P1B) Analog and discrete-time integrated circuits (ATIK)

Amplifier stages, compiled 2

2013-01-14::ANTIK_0025 (P1B)

Exp	ression	CS	CD	CG*)
DC gain, A_0^{β}	≈g _m /g _{out}	$\approx 1/\lambda \cdot v_{eff}$	≈ 1	$\approx 1/\lambda \cdot v_{eff}$
Output impe	dance, $\approx g_{out}$	<mark>≈λI_D</mark>	$\approx 2 I_D / v_{eff}$	$\approx \lambda I_D$
Bandwidth,	$p_1 \approx g_{out} / C_L$	$\approx \lambda I_D / C_L$	$\approx 2I_D/C_L \cdot v_{eff}$	$\approx \lambda I_D / C_L \cdot v_{eff}$
Unity gain, 🦻	$\approx A_0 \cdot p_1$	$\approx I_D / C_L \cdot v_{eff}$	N/A (why?)	$\approx I_D / C_L \cdot v_{eff}$

Voltage swings

Walk around the circuit

Check for all the required voltage levels to maintain transistors in their saturation region

Use the following relations

$$V_{GS} = V_{EFF} + V_T, V_{DS} > V_{EFF} \Rightarrow V_{DS} = V_{EFF}, V_{EFF} = \sqrt{\frac{I_D}{\alpha}}$$

The lower v_{eff} , the ...

higher swing

higher gain

2013-01-14::ANTIK_0025 (P1B)

Analog and discrete-time integrated circuits (ATIK)

LIU EXPANDING REALITY

Examples

Consider the three amplifiers and check the potentials

2013-01-14::ANTIK_0025 (P1B)

LIU EXPANDING REALITY

Stöpings U.

Analog and discrete-time integrated circuits (ATIK)

Some other relationships

leratt chalestands / Jusaki rat

2013-01-14::ANTIK_0025 (P1B)

THE OFFINGS UNIVERSITE

Expression	Generic	CG/CS	CD
Slew rate	$SR \approx \frac{I_D}{C_L}$	$\approx \omega_u \cdot v_{eff}$	$\approx \frac{p_1 \cdot v_{eff}}{2}$
Noise, input-referred	$v_n^2(f) \approx \frac{4 k T \gamma}{g_m}$	$\approx \frac{2 k T}{I}$	<mark>γ·ν_{eff} D</mark>
Noise, total output	$v_{out}^2 \approx \frac{k T \gamma A_0}{C_L}$	$\approx \frac{k T \gamma}{\lambda C_L v_{eff}}$	$\approx \frac{k T \gamma}{C_L}$

LIU EXPANDING REALITY

Analog and discrete-time integrated circuits (ATIK)

Mismatch, or

··ANTIK_0025 (P1

"In reality, nothing is perfect ..."

Differences in

Fabs (wafer-to-wafer, fabrication, date)

Wafer locations (chip-to-chip, doping)

Transistor (block-by-block, orientation and side effects, doping)

Analog and discrete-time integrated circuits (ATIK)

Temperatures, Voltages, Currents

You cannot assume that one transistor is identical to another

Especially not for high-speed, high-accuracy applications

LIU EXPANDING REALITY

Mismatch, cont'd

2013-01-14::ANTIK_0025 (P1B)

The drain current in the saturation region:

HARDONINGS UNIVERSITET O LANDON DE LA LOPINGS UNIVERSITET

LIU EXPANDING REALITY

Mismatch, cont'd

Ignoring the low-impact ones, and assuming that they are decoupled, gives us, with the help of stochastic variables:

$$\sigma^{2} \left| \frac{\Delta I_{D}}{I_{D}} \right| = \sigma^{2} \left| \frac{\Delta \alpha}{\alpha} \right| + \frac{\sigma^{2} \left| \Delta V_{eff} \right|}{V_{eff}^{2}}$$

First-order assumptions

$$\sigma^2 \left| \frac{\Delta \alpha}{\alpha} \right| \approx \frac{A_s^2}{W \cdot L} \text{ and } \sigma^2 \left(\Delta V_{eff} \right) \approx \frac{A_{VT}^2}{W \cdot L}$$

Analog and discrete-time integrated circuits (ATIK)

Second-order assumptions

2013-01-14::ANTIK_0025 (P1B)

Distance-related, correlations, etc.

LIU EXPANDING REALITY

Current mirrors

Distribute currents

Set bias levels

"Equal" current through many branches

Decouple design parameters

2013-01-14::ANTIK 0025 (P1B)

Gain is now controlled by current instead

Analog and discrete-time integrated circuits (ATIK)

LIU EXPANDING REALITY

Current mirrors, cont'd

LIU EXPANDING REALITY

2013-01-14::ANTIK_0025 (P1B) Analog and discrete-time integrated circuits (ATIK)

Current mirrors, some maths

Swing

Input impedance

Output impedance

2013-01-14::ANTIK 0025 (P1B)

LIU EXPANDING REALITY

StoPINGS I

Analog and discrete-time integrated circuits (ATIK)

What did we do today?

Went through the other important CMOS building blocks

CG, CD, CS, (CI)

Current mirrors

2013-01-14::ANTIK_0025 (P1B)

How to bias a circuit (current mirrors)

Pros and cons with different current mirrors

Mismatch

Analog and discrete-time integrated circuits (ATIK)

LIU EXPANDING REALITY

What will we do next time?

Amplifiers and differential pairs

Why differential?

Stability

Why stability?

Phase margin

Compensation

2013-01-14::ANTIK_0025 (P1B)

LIU EXPANDING REALITY