
TSIU03: A Fairly Small VHDL Guide

Petter Källström, Mario Garrido
{petterk, mariog}@isy.liu.se

Version: 2.0

Abstract

This VHDL guide is aimed to show you some common constructions in VHDL, together with their
hardware structure. It also tells the difference between concurrent and sequential VHDL code. The
emphasize is on RTL level (synthesizable code), but some high level VHDL code are also presented.

Contents

1 Introduction 1

1.1 A Simple Example 2

1.2 RTL vs Behavioral VHDL 2

1.2.1 RTL VHDL 2

1.2.2 Behavioral VHDL 2

1.3 Concurrent vs Sequential Syntax 2

1.3.1 Concurrent VHDL 3

1.3.2 Sequential VHDL 3

2 Data Types 4

2.1 std logic Based Data Types 4

2.1.1 std logic 4

2.1.2 std logic vector 4

2.1.3 signed, unsigned 4

2.2 High Level Data Types 5

2.3 Signal Attributes 5

3 Declarations and Definitions 5

3.1 Use Package Declarations 5

3.2 Entity Definitions 6

3.3 Architecture Definitions 6

3.4 Signal Declarations 7

3.5 Function Definitions 7

3.6 Process Definitions 8

3.7 Variable Declarations 8

4 Basic VHDL 9

4.1 Logic Operations 9

4.2 Arithmetic Operations 9

4.3 Test Operations 9
4.4 Vectors and Indexing 10

4.4.1 Vector Indexing 10
4.4.2 Vector concatenation 10
4.4.3 Aggregation: Generating Vectors (the

“(others=>’0’)” syntax) 10
4.4.4 Shifting 11

4.5 Assignment . 11

5 Concurrent Constructions 12
5.1 When-Else: Multiplexer Net 12
5.2 With-Select: One Hugh Multiplexer 13
5.3 Instantiation Of Other Modules 13

6 Sequential Constructions 14
6.1 If-Then: Multiplexer Net 14
6.2 Case-Is: A Hugh Multiplexer 14
6.3 For Loop: Simplifies Some Tasks 15
6.4 Variables vs Signals in Processes 15

7 Pipelining 16

Appendix A Misc Package Declarations 17
A.1 ieee.std logic 1164 17
A.2 ieee.numeric std 17
A.3 ieee.std logic arith (IEEE) 18
A.4 ieee.std logic arith (Synopsys) 18
A.5 ieee.std logic misc (Synopsys) 18
A.6 ieee.std logic unsigned and ieee.std logic signed

(Synopsys) . 18

This document is a brief VHDL summary, intended as a help during the labs, rather than a read-through
document. For an introduction to VHDL, consider taking Alteras 90 minutes online class in basic VHDL[1],
or attend the course lectures.

1 Introduction

Very high speed integrated circuit (VHSIC) Hardware Description Language (VHDL) was initially aimed as
a way to describe good models of how digital circuits behaved. Soon, VHDL started to be used to describe
how circuits could be built.[citation needed]

1

TSIU03: A Fairly Small VHDL Guide

1.1 A Simple Example

library ieee;

use ieee.std_logic_1164.all;

-- this is a comment

entity and_dff is

port(clk : in std_logic;

a,b : in std_logic;

y : out std_logic);

end entity;

architecture rtl of and_dff is

signal foo : std_logic;

begin

process(clk) begin

if rising_edge(clk) then

foo <= a and b;

end if;

end process;

y <= foo;

end architecture;

Code 1: A simple VHDL example.

The structure of a VHDL file is depicted in Code 1.
• library ⇒ Gives you access to the library ieee, which contains

all standard functions defined in VHDL.
• use ieee.std logic 1164.all; ⇒ Lets you simpler access mem-

bers from the package ieee.std logic 1164, e.g. std logic.
• Comments starts with “--” on a line.
• entity ename is {defs} end entity; ⇒ Defines the “public

interface” of the module ename.
• port({pins}); ⇒ If the module is a chip, {pins} is the pins.
• std logic ⇒ “The” data type for digital logic. Mostly ’0’ or ’1’.
• architecture aname of ename is {decl} begin {body} end
architecture ⇒ Defines the “engine” of module ename. {decl}
contains all declaration of internal signals in the module. {body}
contains the actual logic definition. aname is the name of the
“engine”. “RTL” stands for “Register Transfer Level”.

• signal foo : std logic; ⇒ Declares an internal signal named
foo of type std logic.

• process(clk) begin {body} end process;⇒ Defines a sequen-
tial block that is “executed” on all events of the signal clk.

• if rising edge(clk) then {stats} end if;⇒ The code “{stats}”
will be “executed” only on positive clock flanks. Hence each
assignment here acts as a D-type flip flop (DFF, or “D-vippa”
in Swedish).

• foo <= a and b; ⇒ Implement the logic AND gate, and assign
the result to (the input of) a DFF.

• y <= foo;⇒ Y is continuously assigned the value of signal foo.
E.g., directly connected to foo.

1.2 RTL vs Behavioral VHDL

VHDL can, in some sense, be divided into RTL and behavioral code.

1.2.1 RTL VHDL

RTL (“Register Transfer Level”) code can be directly synthesized into hardware, in terms of gates, registers
etc. This is exemplified throughout the documentation.

1.2.2 Behavioral VHDL

In addition to what can be described as RTL code, the behavioral models can use much more complex
constructions. A few examples;

• Sequential execution tricks;
– Pause execution somewhere (e.g. wait until ack=’1’;).

• Time effects;
– Assign signals after a certain amount of time (y <= x or z after 10ns;).
– Pause execution for some time (wait for 30ns;).

1.3 Concurrent vs Sequential Syntax

The architecture body contains concurrent and sequential code. Some syntax is the same in both cases, but
more advanced language constructions have different syntaxes.

2

TSIU03: A Fairly Small VHDL Guide

By default, the code in the architecture is concurrent, which means all statements are executed in parallel,
all the time (and hence, it does not matter in which order you write them). You can have processes, and
within those, the code is sequential.

1.3.1 Concurrent VHDL

Remember that you want to create hardware. The hardware is there all the time. If you have 200 gates, all
200 gates will “execute” the incoming signal continuously. You describe the different gates using a number
of statements, but it does not matter in which order the statements are written (in most cases).

Concurrent VHDL will always generate combinational logic1.
Code 2 shows three ways of writing the logic net in (d). (a) and (b) are exactly the same thing, while

(c) will not define the intermediate signal x.

x <= a or b;

y <= x and c;

(a)

y <= x and c;

x <= a or b;

(b)

y <= (a or b) and c;

(c) (d)

Code 2: Some examples of the same thing.

1.3.2 Sequential VHDL

In processes the code is sequential.
You can have processes that generates only combinational signals, but we do not recommend those

constructions. Instead, we recommend processes that looks like those in Code 3, where a DFF is implemented
with (a) asynchronous reset and (b) synchronous reset.

process(clk,rstn) begin

if rstn = ’0’ then

Q <= ’0’;

elsif rising_edge(clk) then

Q <= D;

end if; -- rstn,clk

end process;

(a)

process(clk) begin

if rising_edge(clk) then

if rstn = ’0’ then

Q <= ’0’;

else

Q <= D;

end if; -- rstn

end if; -- clk

end process;

(b)

Code 3: A DFF with (a) asynchronous and (b) synchronous reset.

The signals are updated when the execution comes to the end of the process. Hence, the order of signal
assignments does not matter, just like in the concurrent case. Version (a) and (b) in Code 4 gives the
behavior depicted in (c).

process(clk) begin

if rising_edge(clk) then

x <= a or b; -- (1)

y <= x and c; -- (2)

end if;

end process;

(a)

process(clk) begin

if rising_edge(clk) then

y <= x and c; -- (2)

x <= a or b; -- (1)

end if;

end process;

(b) (c)

Code 4: Two ways of writing the same thing. Note that c is “AND:ed” with the old version of (a OR b).

1There are dirty ways to generate registers or flip flops in concurrent VHDL, but we don’t teach dirty codes.

3

TSIU03: A Fairly Small VHDL Guide

2 Data Types

There are some data types in VHDL that is good to know about.

2.1 std logic Based Data Types

The package ieee.std logic 1164 contains the data type std logic, and a set of operations on this, and
some derived data types from this, e.g., std logic vector.

2.1.1 std logic

In digital theory, you learned that the logic level can be zero or one. In VHDL, there are nine digital states
for the type std logic.

A std logic constant is written using the ’ (single citation mark), e.g. ’0’ or ’1’.

The states of std logic are:
• ’0’, ’1’ – The standard zero and one.
• ’L’, ’H’ – A kind of weak low or high, corresponds to if a resistor is pulling it toward ’0’ or ’1’.
• ’Z’ – High impedance, drive neither to ’0’ nor to ’1’. The “readers” of a signal should do this.
• ’U’ – Unknown. This is default for a signal in simulation, until the value is set.
• ’W’ – Weak unknown.
• ’X’ – Strong unknown, e.g. when short circuit a ’0’ and a ’1’, or performing operations on a ’U’.
• ’-’ – Don’t care. Used in comparisons.
There are rules for what happens in a short circuit. For instance, if you short circuit ’L’ and a ’H’, you

will get ’W’, and if you short circuit ’L’ and ’1’, you will get ’1’. ’H’ and ’Z’ becomes ’H’, and so on.
In RTL code, you will most likely only use ’0’ and ’1’, and you should typically not short circuit anything.

2.1.2 std logic vector

A std logic vector is an array of std logic. It must have non-negative indices. The array spans from
left to right, and the index can be increasing or decreasing.

A std logic vector constant is given using the " (double citation mark), e.g. "1001".

When you declare a signal, you specify the left most and the right most index of it, and the direction
(using the to or downto keywords), e.g.:

• std logic vector(0 to 2) – A three bit vector, indexed 0, 1, 2.
• std logic vector(2 downto 0) – A three bit vector, indexed 2, 1, 0.
• std logic vector(5 to 200) – A 196 bit vector, indexed 5, 6, 7, ..., 200.
A good (but not so widely used) practice is to use (N-1 downto 0) for vectors representing values (N

bits signed or unsigned numbers), and to use (0 to N-1) for vectors representing N bits, e.g., some control
bits.

If you need to type long constants, it can be handy to add some kind of delimiter, which can be done
using the “b” prefix, which allows the character “ ” in the string. E.g., the constant 106, as a 24 bit vector
will be

106 = "000011110100001001000000"

= b"0000 1111 0100 0010 0100 0000”

= X"0F4240” (hexadecimal)

The packages ieee.std logic signed andieee.std logic unsigned contains arithmetic operations on
those.

2.1.3 signed, unsigned

The package ieee.numeric std declares the data types SIGNED and UNSIGNED, both have the same definition
as std logic vector. They are treated as unsigned and two’s complement signed number respectively in
all arithmetic operations.

4

TSIU03: A Fairly Small VHDL Guide

2.2 High Level Data Types

There are also some more data types, e.g.
• integer – an integer, signed 32 bit value.
• unsigned – an integer, unsigned 32 bit value.
• boolean – a boolean, can be true or false.

Those can be used for synthesis, but we recommend they are not.

2.3 Signal Attributes

A vector have some attributes you can access, e.g. the left most index of vector vec is vec’left (pronounced
“vec-tic-left”. Some of those attributes are exemplified in Table 1

signal vec up : std logic vector(4 to 6);

signal vec dn : std logic vector(7 downto 2);

X = vec up X = vec dn

X’left 4 7

X’right 6 2

X’high 6 7

X’low 4 2

X’length 3 6

X’range 4 to 6 7 downto 2

Table 1: Some signal attributes

There are more attributes as well, for instance all signals have the attribute ’event (see Section 3.6,
“Process Definitions”).

3 Declarations and Definitions

So much to declare. . .

3.1 Use Package Declarations

Some examples:
• library ieee; – Declares that we want to access the entire content defined by ieee.
• use ieee.std logic 1164.all; – We want simple access to all declarations in the package.
• use ieee.std logic unsigned.CONV INTEGER; – We want to use simplified access to the function
CONV INTEGER from the package.

• use ieee.std logic signed."+"; – We want to perform additions in signed values (e.g. sign ex-
tending the shorter value).

If you do not use the library {lib}; command, you have no way to access the functions in the library.
If you want to use the + operator from the signed package, you can write;

res <= ieee.std logic signed."+"(a,b); Without “use ieee.std logic signed."+";”

res <= a + b; With “use ieee.std logic signed."+";”

You can find a good list of the standard packages, and what they contains on the web page [2], and in
App A.

5

TSIU03: A Fairly Small VHDL Guide

3.2 Entity Definitions

The syntax for the entity definition is

entity {ename} is generic({glist}); port({plist}); end entity;

• {ename} ⇒ The name of the entity.
• generic({glist}) – Optional input of design constants. Must contain at least one constant.
• {glist} ⇒ The design constants, on the form “const1 : type1 := default1; const2 : type2 :=

default2; ...”. The semicolon is used as separator, do not use a semicolon before the “)”.
• port({plist}) ⇒ optional pin declarations. Must contain at least one pin.
• {plist} ⇒ A list of design “pins”, on the form “a1,a2,... : {dir} typeA := initA; ...”.

– {dir} ⇒ the direction of the pins. Any of in, out, inout, buffer. You will typically only use in

and out.
– in ⇒ input. You can read from, but not write to this signal.
– out ⇒ output. You can write to, but not read from this signal.
– inout ⇒ bidirectional. You can read and write to this signal. Write ’Z’ to “release” the signal,

so someone else can write to it. This is used for e.g. memory buses.
– buffer ⇒ output. You can write and read. This is considered as dirty code in the VHDL

community. We do not accept any usage of this.
• end entity ⇒ Here you can instead write “end {ename}”.

An example is depicted in Code 5

entity my_add is

generic(N : integer := 16);

port(a,b : in std_logic_vector(N-1 downto 0);

res : out std_logic_vector(N downto 0));

end entity;

Code 5: An Entity Example.

Here, the owner (if this is a sub module) can decide how wide the buses should be (by changing N). By
default, the input buses are 16 bits, and the result is 17 bits.

In simulations, you can have, e.g. generic(delay : time := 10ns);, if you want to model different
delays in the design.

3.3 Architecture Definitions

The syntax for the architecture definition is

architecture {aname} of {ename} is {declarations} begin {body} end architecture;

• {aname} ⇒ The name of the architecture, e.g., rtl.
• {ename} ⇒ The name of the entity it implements.
• {declarations} ⇒ Here you can declare/define signals, functions, aliases, constants, component, ...
• {body} ⇒ Here is the body of the architecture – the logic definition.
• end architecture ⇒ You can instead write end {aname}.

6

TSIU03: A Fairly Small VHDL Guide

3.4 Signal Declarations

Signals are declared before the begin in the architecture. The syntax is

signal {snames} : {type} := {initial value};

• {snames} ⇒ mandatory signal names. One or several comma separated names.
• {type} ⇒ mandatory data type, including eventual vector borders.
• {initial value} ⇒ optional initial value. std logic will default to ’U’ if not initiated, in simulation.

Some examples are given in Code 6.

architecture rtl of foo is

signal sl1,sl2 : std_logic; -- initiates to ’0’ in synthesis, and ’U’ in simulation.

signal sl3 : std_logic := ’0’; -- initiates to ’0’ even in simulation.

signal slv1 : std_logic_vector(7 downto 0); -- a byte.

signal slv2 : std_logic_vector(11 downto 0) := X"3ff"; -- initial value = 1023.

begin

Code 6: Examples of signal declaration.

3.5 Function Definitions

You can also declare/define functions before the begin statement in the architecture.

function {fname}({args}) return {type} is {declarations} begin {body} end function;

• {fname} ⇒ The name of the function.
• {args} ⇒ A list of arguments, on the form (a1,a2,... : typeA; b1,b2,... : typeB; ...).

The types should not include vector borders. E.g., declare just “std logic vector”, rather than
“std logic vector(3 downto 0)”.

• {type} ⇒ The return type. Also without vector borders.
• {declarations} ⇒ You can declare variables (but not signals). Variables are explained in Sections 3.7

and 6.4.
• {body} ⇒ Here is the body of the function. The body must return a value.
• return {val} ⇒ Will return the value {val} and quit the function.
• end function ⇒ You can instead write end {name}.

Some key points:
• Functions are always executed sequentially, so you must use the sequential syntax.
• Functions can be called from both concurrent and sequential VHDL code.
• You can override or redefine operators. E.g. function "+"(lhs,rhs : type).
• Operators will have the same priority as always.
• You cannot define new operator names, like the ! operator, whatever you would like that to do.

Some examples are given in Code 7, where the function rising edge are the actual definition from the
ieee.std logic 1164 package. The function uses the keyword “signal” before the argument foo, which
forbids calls with e.g. variables.

7

TSIU03: A Fairly Small VHDL Guide

architecture rtl of foo is

function mux(s,a0,a1 : std_logic) return std_logic is begin

if s = ’0’ then return a0; end if; return a1;

end mux;

function "and"(lhs : std_logic_vector; rhs : std_logic) return std_logic_vector is

variable res : std_logic_vector(lhs’range);

begin

for i in lhs’range loop

res(i) := lhs(i) and rhs;

end loop;

return res;

end function;

function rising_edge(signal foo : std_logic) return boolean is begin

return foo’event and foo = ’1’;

end function;

signal bit1,bit2,bit3,bit4 : std_logic;

signal vec1,vec2 : std_logic_vector(3 downto 0);

begin

bit1 <= mux(bit2,bit3,bit4);

vec1 <= vec2 and bit1;

-- vec1 <= bit1 and vec2; will fail - no such function.

process(clk)

variable foo : std_logic;

begin

foo := clk;

-- we can’t call rising_edge(foo), since foo is a variable.

if rising_edge(clk) then -- using our function

foo := bit2; -- This will be assigned directly.

vec2 <= inp_vec1 and foo; -- this is the "new" version of foo, i.e. bit2

elsif ieee.std_logic_1164.rising_edge(clk) then -- using the standard function

bit2 <= mux(inp_bit1, bit3,bit4);

end if;

end process;

end architecture;

Code 7: Examples of function declarations and how to use them.

3.6 Process Definitions

A process is placed in the concurrent code, and can be seen as a “sequential island in the concurrent sea”.
The formal syntax is:

{pname} : process({sensitivity list}) {declarations} begin {body} end process;

• {pname} : ⇒ An optional name of the process. E.g. rx proc : process(clk)
• {sensitivity list} ⇒ A list of signals that should trig the process to start (in a simulation). If one or

more signals in the sensitivity list changes, those signals will get the attribute ’event = true, and
then the process will run. All other signals will have the ’event = false.

• {declarations} ⇒ Here you can declare variables or functions. You cannot declare signals.
• {body} ⇒ Here is the body of the process (where you place the if rising edge etc).
• end process ⇒ Here you can instead write end {pname}, if you specified a name.

3.7 Variable Declarations

Variables are declared just like signals, but use the keyword variable instead of signal, and are declared
in processes or functions. Read more in Section 6.4

8

TSIU03: A Fairly Small VHDL Guide

4 Basic VHDL

What is stated here holds in both concurrent and sequential VHDL.

4.1 Logic Operations

Those operations works typically on boolean and std logic, and element wise on std logic vector.

Some operations are:
• not

• and, nand
• or, nor
• xor, xnor

Example of a multiplexer implemented with logic gates:

res <= (a0 and not s) or (a1 and s);

Some interesting functions from ieee.std logic misc, operating on std logic vectors.
• fun MUX2x1(in0,in1,sel) ⇒ A multiplexer, that works on std logic.
• {X} REDUCE(slv) ⇒ An N input {X} gate, fed with a vector of size N . {X} is AND, NAND, OR, NOR,
XOR or XNOR.

E.g. XNOR REDUCE(x(2 to 4)) corresponds to “not (x(2) xor x(3) xor x(4));”.
It is not possible to mix boolean and std logic (unless you define those operators yourself).

4.2 Arithmetic Operations

Those operations works typically on numerical data types, like integer, natural, std logic vector. When
used on std logic vector, the functions are available in the packages ieee.std logic unsigned and
ieee.std logic signed, that might behave differently (since, e.g. "1011" is −5 in a signed system, and
+11 in an unsigned system).

It is often possible to mix std logic vectors with integers, but not always.

The unary operations are:
• + ⇒ No effect, e.g., a <= +b;

• - ⇒ Negating, e.g., a <= -b; (see ieee.std logic signed).
• abs x ⇒ absolute value of x.

The binary operations are:
• +, -, *, / ⇒ The classical four operations.
• a ** b ⇒ Exponential, ab.
• mod, rem ⇒ modulo and reminder, e.g. res <= a mod b;.

In synthesis, you should only use the operations +, - and *. The other operations are really complicated to
implement in hardware, and should not be used lightly.

Multiplications or divisions by two are just shift operations (no logical gates are needed). Those are
handled in Section 4.4, “Vectors and Indexing”.

4.3 Test Operations

Those also operates on numerical data types. The operations returns the data type boolean, which is used
by the more advanced constructions.

• =, /= ⇒ Equal or not equal.
• <, <= ⇒ Less than (or equal), only numerical comparison.
• >, >= ⇒ Greater than (or equal), only numerical comparison.

The = and /= also works for std logic and vectors not treated as numbers. Two vectors are equal if all
bits are equal.

Note that the operator <= is also an assignment operator.

9

TSIU03: A Fairly Small VHDL Guide

4.4 Vectors and Indexing

VHDL have great support for vectors, e.g. std logic vector.

We use the signals in Table 2 to exemplify the operations.

Signal Type Content

x,y std logic ’x’, ’y’
an std logic vector(n-1 downto 0) "an−1 . . . a0"

bn std logic vector(n-1 downto 0) "bn−1 . . . b0"
cn std logic vector(n-1 downto 0) "cn−1 . . . c0"

Examples

a4 std logic vector(3 downto 0) "a3a2a1a0"

b5 std logic vector(4 downto 0) "b4b3b2b1b0"

Table 2: Declaration of signals used in examples.

4.4.1 Vector Indexing

Indexing is illustrated by the examples in Table 3.

Expression Result

a4(2) ’a2’, a std logic

a4(2 downto 2) "a2", a vector with one element

a4(2 downto 3) "", a vector with zero elements

a4(3 downto 2) "a3a2"

a5(3 downto 2) <= "10"; a5 = "a410a1a0"

a6(0) <= ’X’; a6 = "a5a4a3a2a1X"

a4(2) <= "1"; Error: Cannot assign a vector to a bit

Table 3: Examples of vector indexing.

4.4.2 Vector concatenation

The “&” operator is used to merge vectors, and works for both std logic and std logic vectors. The
result is always a vector. Some examples are shown in Table 4

Expression Result

x & y; "xy"

a3 & b4 "a2a1a0b3b2b1b0"

x & b3 "xb2b1b0"

b5(0) & b5(4 downto 1) "b0b4b3b2b1"

a5 <= (’0’ & b4) + ’1’ "a4a3a2a1a0", where a3..0 = b4+1, a4 = carry out.

Table 4: Examples of vector concatenation

4.4.3 Aggregation: Generating Vectors (the “(others=>’0’)” syntax)

Generate a vector by the syntax

(ix1=>val1,ix2=>val2,..., others=>valN)

• ixn ⇒ Any index, e.g. “5”, “2 to 3” or “5 downto 0”.
• valn ⇒ A vector element, e.g. ’1’, ’0’ or ’Z’. Must not be a std logic vector.
• others=>valN ⇒ An optional syntax when assigning signals/variables.
When assigning, using the “others=>valN”, the indices must exactly match those of the receiving

signal/variable. All non given indices will get the value valN .
When assigning, not using the “others=>valN”, the direction of the aggregation is that of the receiving

signal/variable. All indices in the range must be given.

10

TSIU03: A Fairly Small VHDL Guide

When not assigning, the index of the result is increasing, so the lowest index is to the left.
Some examples are shown in Table 5.

Expression Result Aggregation Index

(5=>’1’, 4=>’0’) "01" 4 to 5

(4=>’0’, 1 to 3=>’1’, 0=>’Z’) "Z1110" 0 to 4

(4=>’0’, 1 to 2=>’1’, 0=>’Z’) Error: index 3 is missing in range 0 to 4.

a5 <= (3=>’1’, others=>’0’) a5 = "01000" 4 downto 0

a5 <= (5=>’1’, 4 downto 1=>’0’) a5 = "10000" 5 downto 1

a5 <= ""&(5=>’1’, 4 downto 1=>’0’) a5 = "00001" 1 to 5

a5 <= (5=>’1’, others=>’0’) Error: index 5 is outside range 4 downto 0.

b5 = (b5’range => ’1’) test if all elements in b5 is one.

Table 5: Examples of aggregation.

Aggregation is most often used for resets, something like “my signal <= (others => ’0’);”, which
fills my signal with zeros.

4.4.4 Shifting

There are six built in shift operators, listed in Table 6. Unfortunately, those are only defined for the type
bit vector, and not for any vector type.

Operator Operation Shifted In Example Result

sll logic shift left. 0 a5 sll 1 "a3a2a1a00"

srl logic shift right. 0 a5 srl 2 "00a4a3a2"

rol rotate left. LMB1 a5 rol 1 "a3a2a1a0a4"

ror rotate right. RMB1 a5 ror 1 "a0a4a3a2a1"

sla arithmetic shift left. RMB a5 sla 1 "a3a2a1a0a0"

sra arithmetic shift right. LMB a5 sra 1 "a4a4a3a2a1"
1 LMB = Left Most Bit. RMB = Right Most Bit.

Table 6: Shift operators for the bit vector data type.

If you want to perform a shift operations on std logic vectors, the simplest way is often to write it in
normal VHDL. Then you have also full control of what is shifted in. Examples are given in Table 7.

Example Result Operation

x & b5(4 downto 1); "xb4b3b2b1" shift right, shift in x.

b5(3 downto 0) & x; "b3b2b1b0x" shift left, shift in x.

a5 <= b5(4) & b5(4 downto 1); a5 = "b4b4b3b2b1" arithmetic shift right.

b5(3 downto 0) <= b5(4 downto 1); b5 = "b4b4b3b2b1" arithmetic shift right1.
1 This should be performed in a process.

Table 7: Shift operators for the bit vector data type.

Since the shift operators exist at all, you can define them also for the std logic vector, as illustrated in
Code 8.

The packages ieee.std logic signed and ieee.std logic unsigned provides some shift functions,
listed in Table 8, where slvβ is a std logic vector treated as an unsigned number in all four cases.

4.5 Assignment

Assignments are done using the <= operator for signals, and the := operator for variables. The assignment
do not return a value. If a value is expected from the formula, the “≤” operator is used instead. Some
examples are given in Table 9.

The signal/variable to the left of the assignment must have the same data type as the value to the right.
In cases of vectors, the direction should also match.

11

TSIU03: A Fairly Small VHDL Guide

function "sll"(vec:std_logic_vector; n : integer) return std_logic_vector is

begin

if vec’ascending then -- index defined with "to", and not "downto"

return vec(vec’left+n to vec’right) & (1 to n => ’0’);

else

return (1 to n => ’0’) & vec(vec’left to vec’right-n);

end if;

end "sll";

Code 8: Define the “sll” operator for the std logic vector.

Function Operation Shifted in

ieee.std logic unsigned.SHL(slvα, slvβ) Shift slvα left slvβ steps. ’0’

ieee.std logic unsigned.SHR(slvα, slvβ) Shift slvα right slvβ steps. ’0’

ieee.std logic signed.SHL(slvα, slvβ) Shift slvα left slvβ steps. ’0’

ieee.std logic signed.SHR(slvα, slvβ) Shift slvα right slvβ steps. MSB

Table 8: Shift functions for the std logic vector data type.

Operation Description

a <= b; signal a is assigned the content of b.

a := b; variable a is assigned the content of b.

a <= b <= c; b is compared with c, the result (boolean) is assigned to a.

a(2) <= b; Element 2 from signal a is assigned the content of b.

Table 9: Four assignment examples.

The assignment operator cannot be overloaded (you can for instance not define the assignment operator
that assigns an integer to a std logic vector).

5 Concurrent Constructions

Concurrent VHDL statements are “executed” continuously, and corresponds to combinational logic.

5.1 When-Else: Multiplexer Net

The syntax for the when else statement is

{res} <= {val1} when {cond1} else {val2} when {cond2} else ... else {valN};

• {res} ⇒ Name for the signal that should be assigned.
• {valn}, n = 1, 2, . . . , N ⇒ Data values to select between.
• {condn}, n = 1, 2, . . . , (N − 1) ⇒ Conditions of type Boolean.

If {cond1} is true, then {res} is assigned the value {val1}. Otherwise {cond2} is tested, and so on. If no
{condn} is true, {valN} is used. See example in Code 9.

res <= A when sel = "101" else

B when sel = "010" else

C when en = ’1’ else

Def;

Code 9: When-else: A multiplexer net, in VHDL and as a schematic (before and after optimization).

12

TSIU03: A Fairly Small VHDL Guide

5.2 With-Select: One Hugh Multiplexer

The syntax for the With-Select statement is

with {expr} select {res} <= {val1} when {choice1}, {val2} when {choice2}, ... {valN} when others;

• {expr} ⇒ Signal or expression to test against.
• {res} ⇒ Signal that should be assigned.
• {valn}, n = 1, 2, . . . , N ⇒ Data values to select between.
• {choicen}, n = 1, 2, . . . , (N − 1) ⇒ Select values to compare with {expr}.
• If {expr} = {choice1}, then {res} is assigned the value {val1}.
• Otherwise {expr} = {choice2} is tested, and so on.
• If {expr}6={choicen}, n = 1, 2, . . . , (N − 1), then {valN} is used.
See example in Code 10.

with sel select

res <= A when "101",

B when "010",

C when "011",

"0000" when others;

Code 10: With-select: One big multiplexer, in VHDL and as a schematic.

5.3 Instantiation Of Other Modules

If we want to use sub modules, they can be implemented according to the examples in Code 11, where (a)
instantiates the module in Code 1, and (b) instantiates the module in Code 5

architecture

component and_dff is

port(clk : in std_logic;

a,b : in std_logic;

y : out std_logic);

end component;

begin

inst1 : and_dff

port map(clk => iclk, a=>ia, b=>ib, y=>iy);

inst2 : and_dff

port map(iclk, ia, ib, iy);

end architecture;

(a)

architecture

component my_add is

generic(N : integer := 16);

port(a,b : in unsigned(N-1 downto 0);

res : out unsigned(N downto 0));

end component;

begin

inst1 : my_add

generic map(N => 12)

port map(a=>ia, b=>ib, res=>ires);

inst2 : my_add

generic map(12)

port map(ia,ib,ires);

end architecture;

(b)

Code 11: Instantiation of modules and dff and my add.

The => i* signals are local signals, that are connected to the port on the instantiated module. An error
will occure, since the signals iy and ires are written to from both instances inst1 and inst2. The “=>”
operator connects the pin with the local signal, independen of the direction of the pin.

In some cases the component declaration is unnecessary.

13

TSIU03: A Fairly Small VHDL Guide

6 Sequential Constructions

Sequential VHDL statements are “executed” sequential, when something happens on a signal in the sensi-
tivity list in a process, or when a function is called.

In concurrent constructions, a signal that is assigned should always be assigned some value.
In sequential VHDL, a signal does not have to be assigned, and will then keep it’s value (by pulling the

en signal to the DFF/reg low).

6.1 If-Then: Multiplexer Net

The if statement works like in any programming language (from a programming perspective). The syntax
is:

if {cond1} then {stats1} elsif {cond2} then {stats2} elsif ...else {statsN} end if;

• {condn}, n = 1, 2, . . . , N ⇒ Conditions of type boolean.
• {statsn}, n = 1, 2, . . . , (N − 1) ⇒ Statements that should be “executed”.
• elsif ... then ⇒ Optional.
• else ⇒ Optional.

An example is given in Code 12, where the signal A is assigned "00" when rstn=’0’, or the signal db when
rstn=’1’ and sel="101". In other cases A should keeps its value. The enable signal to register A will be one
if rstn=’0’ or sel="101". The input of the A register must be "00" when rstn=’0’, otherwise it should be
db when sel="101". Since it does not matter what’s on the input when sel 6="101", it’s easiest to simply
ignore that condition, and let the input be db all the time (except when rstn=’0’).

if rstn = ’0’ then

A <= "00";

B <= "11";

elsif sel="101" then

A <= db;

else

B <= db;

end if;

Code 12: An if-then statement, and it corresponding net.

6.2 Case-Is: A Hugh Multiplexer

The case-is construction have the syntax:

case {expr} is when {choice1} => {stats1} when {choice2} => ... when others => {statsN} end case;

• {expr} ⇒ Signal or expression to test against.
• {choicen}, n = 1, 2, . . . , (N − 1) ⇒ Constant values to compare with {expr}.
• {statsn}, n = 1, 2, . . . , N ⇒ Statements to execute.
This do not have to result in a big multiplexer, but will most often do so if the same signal is assigned

in all statn’s. The case-is construction is efficient when building state machines.
An example is given in Code 13, which have the same functionality as Code 12, except the reset.

case sel is

when "101" => A <= db;

when others => B <= db;

end case;

Code 13: A case-is statement, with corresponding net.

14

TSIU03: A Fairly Small VHDL Guide

6.3 For Loop: Simplifies Some Tasks

The for loop have the syntax:

{lname} : for {id} in {range} loop {stats} end loop;

• {lname} : ⇒ Optional name for the loop.
• {id} ⇒ An integer, that will step through the range.
• {range} ⇒ A range, like “5 to 9” or “a’range”.
• {stats} ⇒ The statements that should be performed.
Code 14 illustrates the use of a for loop, where the operator “mod” is used in a “safe” way (i.e. not

resulting in arithmetic hardware).

for i in 5 downto 0 loop

y(i) <= y(i) xor x(i mod 2);

end loop;

Code 14: A for loop, with corresponding net.

Code 15 illustrates a chain of XOR gates (the “XOR REDUCE” function).

variable tmp : std_logic;

tmp := ’0’;

for i in x’range loop

tmp := tmp xor x(i);

end loop;

y <= tmp;

Code 15: Another for loop, with corresponding net.

6.4 Variables vs Signals in Processes

How signals are treated in processes (that “runs” on clk):
• A signal is global within a module. All processes can access it, but only one should write to it.
• A signal is assigned a value using the “<=” operator.
• A signal corresponds to a DFF (or several, if the signal is a vector).
• Reading from the signal is reading the state of the output of the DFF.
• From a programming perspective, the signal value is updated at “end process;”
• A DFF that is not written to in a clock cycle, should keep it’s value ⇒ en = false.
• A DFF that is written to several times in a clock cycle, should get the last written value.

Variables can be used as indexing variables (e.g. i in Code 15), or writing a temporary wire (e.g. tmp).
How variables are treated in processes:
• A variable is local within a process or function.
• A variable is assigned a value using the “:=” operator.
• An assignment of run time data to a variable corresponds to writing to a wire.
• If a variable is assigned several times in the same clock cycle, that corresponds to writing to several

wires (as illustrated in Code 15).
• From a programming perspective, the variable value is updated immediately.
• If a variable is not assigned a value, it should keep it’s previous value. Hence you can use it as a DFF,

but you should avoid it.

15

TSIU03: A Fairly Small VHDL Guide

7 Pipelining

Pipelining is used to speed up logics. A logic gate always contains a small delay (e.g. 3 ns). Lets say we
have the combinational net depicted in Fig. 1, which have the following propagation characteristics:

Shortest delay for any signal path 5 ns

Longest delay for any signal path 15 ns

Figure 1: A combinational net.

The signals must have time to propagate from the input register to the output register within one clock
cycles. Those the clock frequency can be at most 1

15 ns ≈ 66 MHz.
If the requirement is a 150 MHz clock, this delay is not acceptable. We analyze and decompose the net

into three different nets, as depicted in Fig. 2, with the following delays:

Net 1 Net 2 Net 3

Shortest delay 1.2 ns 2 ns 2.6 ns

Longest delay 6.4 ns 6.3 ns 4.5 ns

Figure 2: The net decomposed into three different nets.

Now it is time to insert pipeline registers in the buses between the nets, as depicted in Fig. 3.

Figure 3: Pipeline registers inserted into the net.

The effect is that the longest delay in the system (from input or register to register or output) is now
only 6.4 ns. Hence we can clock the system in at most 1

6.4 ns ≈ 156 MHz.
One important change: The output is not available at once. The different stages of the pipeline processes

data that is a number of clock cycles late, as depicted in Table 10.

Clock cycle net1 net 2 net 3 Output

1 1 (old) (old) (old)

2 2 1 (old) (old)

3 3 2 1 (old)

4 4 3 2 1

5 5 4 3 2

Table 10: The data sets processed by the different nets from Fig. 3.

This is the main idea with pipelining. Split the design into several stages, with one clock cycle delay per
stage. If you need to feed data backwards, it’s more tricky. The pitfall: Watch out so you don’t mix data
from different time sets, that belongs in different pipeline stages.

References

[1] http://www.altera.com/customertraining/webex/VHDL/player.html

[2] http://www.csee.umbc.edu/portal/help/VHDL/stdpkg.html

16

http://www.altera.com/customertraining/webex/VHDL/player.html
http://www.csee.umbc.edu/portal/help/VHDL/stdpkg.html

TSIU03: A Fairly Small VHDL Guide

Appendix A Misc Package Declarations

This appendix aims to give a quick-and-sloppy overview of the ieee packages. They are explained more in
details in [2].

Some packages are developed by IEEE (who defined the language), and some are developed (and owned)
by Synopsys.

Notations in this appendix:
• sl ⇒ std_logic.
• slv ⇒ std_logic_vector.
• int ⇒ integer.
• nat ⇒ natural (≥ 0).
• S ⇒ signed.
• U ⇒ unsigned.

• SI⇒ S or int or a combina-
tion, except (int,int).

• UN⇒ U or nat or a combina-
tion, except (nat,nat).

• US ⇒ U or S.

• <=
> 6= ⇒ the six comparison op-
erators <, <=, =, /=, >=, >.

• aox ⇒ the operators and,
nand, or, nor, xor and xnor.

By default (without any library or use statement), VHDL defines basic types (bit, bit vector, integer,
natural, boolean, string, real, time) and some operations on those.

Warning: There are two packages called ieee.std logic arith. One from IEEE, and one from Syn-
opsys. A computer can have any of them installed, which reduces the portability of the code. Avoid those.

A.1 ieee.std logic 1164

The “standard” package for synthesizable code.
Types

• std_logic ⇒ {’U’,’X’,’0’,’1’,’Z’,’W’,’L’,’H’,’-’}.
• std_logic_vector ⇒ array (natural range <>) of std logic.
• ...and more.

Functions/operators
• not sl.
• not slv.

• sl aox sl.
• slv aox slv.

• rising_edge(sl).
• falling_edge(sl).

A.2 ieee.numeric std

Contains the definitions of the types SIGNED and UNSIGNED, and the operators on those and on int/nat.
Types

• SIGNED,UNSIGNED ⇒ same def as slv, but own types.
Functions/operators

• UN+UN, SI+SI, +US.
• UN-UN, SI-SI, -S.
• UN*UN, SI*SI.
• UN/UN, SI/SI ⇒ Do not use.
• UN mod UN, SI mod SI ⇒ Do not use.
• UN rem UN, SI rem SI ⇒ Do not use.
• abs S.
• UN<=

> 6=UN, SI<=
>6=SI.

• SHIFT LEFT(US,nat), SHIFT RIGHT(US,nat).
• ROTATE LEFT(US,nat), ROTATE RIGHT(US,nat).

• US sll int, US srl int.
• US rol int, US ror int.
• RESIZE(US,nat).
• TO_INTEGER(US) ⇒ S → int, U → nat.
• TO_UNSIGNED(nat,nat) ⇒ First operand =

“the signal”.
• TO_SIGNED(int,nat).
• not US ⇒ bitwise not.
• U aox U, S aox S.

• STD LOGIC VECTOR(...), UNSIGNED(...), SIGNED(...) ⇒ convert between S, U and slv.

17

TSIU03: A Fairly Small VHDL Guide

A.3 ieee.std logic arith (IEEE)

Contains arithmetic definitions for slv, treating it as unsigned.
Functions/operators

• "+" ⇒ combinations of slv, int and sl.
• "-" ⇒ the same combinations.
• +slv.
• "*" ⇒ combinations of slv and sl.
• "/" ⇒ combinations of slv and sl.
• cond_op(boolean,...) ⇒ mux for slv or sl.

• "<=
>6=" ⇒ comparison between slv and int.

• sh left(slv,nat), sh right(slv,nat) ⇒
shift a number of steps.

• to integer(...) ⇒ convert slv or sl to in-
teger.

• To StdLogicVector(int,nat).

A.4 ieee.std logic arith (Synopsys)

Contains own definitions of the types SIGNED and UNSIGNED, and a huge set of operators on those and on
int.
Types

• SIGNED,UNSIGNED ⇒ same def as slv, but own types.
Functions/operators
All those functions, involving S will return S, the rest will return U. All functions also exist in a version
returning slv. The comparison functions only returns boolean.

• (no logical operators are defined)
• "+" ⇒ all combinations of S, U, int and sl. No combinations of only int and sl are available.
• "-" ⇒ the same combinations.
• +U, +S.
• -S.
• abs(S).
• "*" ⇒ all combinations of S and U.
• "<=

> 6=" ⇒ comparison operators for S, U, int and any combination of them. Returns only boolean.
• SHL(...,U) ⇒ shift S or U left a number of steps.
• SHR(...,U) ⇒ shift S or U right a number of steps.
• CONV INTEGER(...) ⇒ convert int, U, S or sl to int.
• CONV UNSIGNED(..., int), CONV SIGNED(..., int) ⇒ convert int, U, S or sl to U or S.
• CONV STD LOGIC VECTOR(..., int) ⇒ convert int, U, S or sl to U or slv.
• UNSIGNED(...), SIGNED(...), STD LOGIC VECTOR(...) ⇒ convert between S, U and slv.
• EXT(slv,int), SXT(slv,int) ⇒ zero resp. sign extend tt slv.

A.5 ieee.std logic misc (Synopsys)

Contains miscellaneous functions for slv, whereof the interesting functions are listed here.
Functions/operators
• aox REDUCE(slv) ⇒ A big aox gate, fed with all bits in a slv. E.g. NOR REDUCE(x) is zero if any bit

in x is 1.

A.6 ieee.std logic unsigned and ieee.std logic signed (Synopsys)

Arithmetic operations on slv, that treat those as unsigned and signed values respectively.
Functions/operators

• slv+slv, slv+int, int+slv,slv+sl,sl+slv.
• + slv (unary operator).
• - slv (only in signed).
• ABS(slv) (only in signed).
• slv-slv, slv-int, int-slv,slv-sl,sl-slv.

• slv*slv.
• slv<=

> 6=slv, slv<=
> 6=int, int<=

> 6=slv.
• SHL(slv,slv).
• SHR(slv,slv).
• CONV_INTEGER(slv).

18

	Introduction
	A Simple Example
	RTL vs Behavioral VHDL
	RTL VHDL
	Behavioral VHDL

	Concurrent vs Sequential Syntax
	Concurrent VHDL
	Sequential VHDL

	Data Types
	std_logic Based Data Types
	std_logic
	std_logic_vector
	signed, unsigned

	High Level Data Types
	Signal Attributes

	Declarations and Definitions
	Use Package Declarations
	Entity Definitions
	Architecture Definitions
	Signal Declarations
	Function Definitions
	Process Definitions
	Variable Declarations

	Basic VHDL
	Logic Operations
	Arithmetic Operations
	Test Operations
	Vectors and Indexing
	Vector Indexing
	Vector concatenation
	Aggregation: Generating Vectors (the ``(others=>'0')'' syntax)
	Shifting

	Assignment

	Concurrent Constructions
	When-Else: Multiplexer Net
	With-Select: One Hugh Multiplexer
	Instantiation Of Other Modules

	Sequential Constructions
	If-Then: Multiplexer Net
	Case-Is: A Hugh Multiplexer
	For Loop: Simplifies Some Tasks
	Variables vs Signals in Processes

	Pipelining
	Appendix Misc Package Declarations
	ieee.std_logic_1164
	ieee.numeric_std
	ieee.std_logic_arith (IEEE)
	ieee.std_logic_arith (Synopsys)
	ieee.std_logic_misc (Synopsys)
	ieee.std_logic_unsigned and ieee.std_logic_signed (Synopsys)

