
TSIU03: Lab 4 - Audio Codec

Petter Källström, Mario Garrido

September 14, 2022

Abstract

In this lab you will create a sound interface driver, that helps an existing application to communicate
with the sound chip WM8731 on the DE2-115 board.

Contents

1 Introduction 1

2 System Overview 1

2.1 About the Top Module “Sound” . . . 2

2.2 About My fancy Application 2

2.3 About the SndBus 2

2.4 About the Sound Chip WM8731 . . . 3

2.5 About the Serial Interface 3

3 Your Task 4

4 Module SndDriver 4

4.1 Signal Description 4

4.2 Control Block (Ctrl) 5
4.3 Channel Mod 5
4.4 SndDriver 6

5 Simulation 6
5.1 The Test Bench 6
5.2 A ModelSim Trick 7

6 Physical Verification 7

7 Requirements to Pass 7

Appendix A Common Errors 8
A.1 Malfunctioning Implementation 8

1 Introduction

We have a provided application for sound manipulation. It reads a stereo signal, manipulates it, and writes
it back, using 16-bit parallel samples. We pretend that it’s fancy, and call it “my_fancy_application”.

To convert an analogue input signal into a digital stream of samples, and vice versa back to analogue,
the external sound chip WM8731 is used. However, it uses a bit serial interface for the sample streams to
and from the FPGA.

To let my_fancy_application communicate with the sound chip, we need a translator (driver) between
the parallel and serial protocols. This is illustrated in Fig. 1. The driver is called “SndDriver”, and it is
your task to create it.

For simulation, you must also finish a testbench and use it to verify the driver in Modelsim.

Figure 1: A brief overview of the system, where your task is to create the module in the middle.

2 System Overview

This section describes the surrounding of the SndDriver.
The sound communication contains in total four individual channels: Left and right in each direction.

Each channel have a sample frequency of fs = fclk
1024 ≈ 48.828 kHz, where fclk = 50 MHz is the usual clock.

1

TSIU03: Lab 4 - Audio Codec

2.1 About the Top Module “Sound”

The top module is only a “glue together” unit, depicted in Fig. 2, with the modules my_fancy_application
(or just “Application” for short) and SndDriver. They communicate via the bus SndBus (several signals).

To
 W

M
8

7
3

1

LDAC

RDAC

LADC

RADC

lrsel, *en

LEDR

SW

Application SndDriver
SndBus

mclk
bclk
adclrc
adcdat
daclrc
dacdat

Figure 2: The top module schematics.

You should not do anything with the top module, except set your group number.

2.2 About My fancy Application

The module my_fancy_application performs some digital sound processing. This module is already
implemented, and you don’t have to modify/understand it. Its functionalities are:

• Forward sound: It passes the incoming sound directly to the output.
• Generate right: It generates and adds two sinusoids, 440 and 660 Hz, on the right channel when

SW6 is ON.
• Generate left: It generates and adds two sinusoids, 440 and 550 Hz, on the left channel when SW7

is ON.
• Mute: It mutes the output when SW5 is ON.
• Analyse sound: It writes some kind of low pass filtered logarithmic amplitude indicator of the output

on the red LEDs.
• Noise: It generates white noise on the inactive LDAC/RDAC, which must not be heard. What “inactive”

means is explained later.

Some brief comments about how this module is constructed (just in case you are interested):
• The sinusoid generator is implemented as a piecewise polynomial approximation. Since there are 512

clock cycles per sample, the same module can be reused to generate all three frequencies, using one
phase accumulator per frequency.

• The sound analyser is implemented using a squarer, a first order low pass filter (LPF), and then it
simply picks the bits from the filter register to generate a thermometer coded dB scale. Simple!

• The white noise is implemented as a linear feedback shift register (LFSR).

2.3 About the SndBus

The SndBus is the parallel interface used by my_fancy_application. It contains four 16 bits (signed)
sample channels, LADC, RADC, LDAC, RDAC, and the control signals lrsel1, ADC_en and DAC_en. The channels
are left and right samples, in both direction (ADC=incoming, DAC=outgoing).

The left and right channels are not active in the same time. lrsel defines which are the selected (active)
channel. lrsel=’1’ for left active, and lrsel=’0’ for right active, as depicted in Fig. 3. ADC_en and DAC_en

are active once per sample.
In Fig. 3, at times (a), SndDriver turns lrsel=’0’, provides a sample on RADC and give a pulse on

ADC_en. Then my_fancy_application detects the ADC_en pulse, processes the sample on RADC, and write
the result on RDAC together with a DAC_en pulse within 512 clock cycles (but typically the next cycle). The
DAC_en pulse makes SndDriver read the RDAC signal. At time (b), the same thing happens, but on the left
channel, with lrsel=’1’.

1”lr” stands for left/right, meaning ’1’ ⇔ left and ’0’ ⇔ right.

2

TSIU03: Lab 4 - Audio Codec

lrsel

LADC sample left sample from ADC

right sample from ADC sampleRADC

LDAC sample left sample to DAC

right sample to DAC sampleRDAC

(a) (b) (a)
512 clock cycles 512 clock cycles

ADC_en

DAC_en

Figure 3: The timing of the SndBus signals during one sample period. The exact timing of DAC en is of
less importance.

2.4 About the Sound Chip WM8731

The WM8731 sound chip is an advanced audio chip. It’s main feature is that it has two analogue-to-digital
converters (ADCs) to convert an input analogue stereo sound signal into a stream of digital samples, and it
has two corresponding digital-to-analogue converters (DACs).

The sound samples are transmitted bit serially via a digital interface, described below. The sample rate
should be 48 kSps (kilo samples per second). For simplicity, we tweak it a little, into 50 MHz

1024 ≈ 48.828 kSps.

If you are interested: The WM8731 has several configuration parameters, such as sample frequency or precision, digital
interface format, internal amplification/mute/balance etc. Those parameters are set via another digital interface (I2C). This is
done automatically when the DE2-115 are restarted, and nothing you have to care about. You can have a look in the data sheet
[1], and consider the following settings: R5=0x06, R7=0x01, R8=0x00. All other gets their default values. Those settings means

• The sample rate aims for fs ≈ 48 kSps.
• Two channels means a total sample rate of ≈ 96 kSps.
• The slave mode means that we (on the FPGA) must provide clock and control signals (see the serial interface below).

2.5 About the Serial Interface

The sound samples are provided bit serially, using a few wires.
The samples are sent in a left-right-left-right-. . . time interleaved fashion to and from the chip.
With current settings, you should provide (⇒) or read (⇐) the following signals to/from the WM8731

chip:
• mclk ⇒ A 12.5 MHz master clock. It’s the WM8731’s internal operation clock.
• bclk ⇒ A 3.125 MHz bit clock (mclk4).
• adclrc ⇒ A left/right selector for adcdat. adclrc=’1’ for left.
• adcdat ⇐ Serial bits from the ADCs (one bit per bclk pulse).
• daclrc ⇒ A left/right selector for dacdat. daclrc=’1’ for left.
• dacdat ⇒ Serial bits to the DACs (one bit per bclk pulse).

The adc* and the dac* signals works in the same way:
• Each sample is transferred bit serially.
• For each sample, 32 bits are transferred. The first 16 bits are the sample (MSB first). The remaining

16 bits are unused.
• The transmitter updates the bits on *dat at the rising flank of bclk.
• The receiver reads the *dat at the falling flank of bclk.
The bclk is 50 MHz

16 , i.e. 16 clock cycles long. Each sample transfer uses 32 bclk cycles, i.e. 512 clk
cycles. There are two samples (left + right) upon each *lrc period, so the *lrc period is 1024 clk cycles
long.

In this lab let adclrc = daclrc, i.e., read and write the right channel data simultaneously, and then the
left channel data simultaneously. Note that the received sample is not the same as the transmit sample, so
typically dacdat 6= adcdat.

Finally, it must be mentioned that the 16 bits samples are in signed format, i.e. they can be any integer
between -32768 and +32767. This will not affect you much in this lab, since you only need to convert the
bits between serial and parallel format. In the project, however, you need to care about the value they
represent.

3

TSIU03: Lab 4 - Audio Codec

3 Your Task

Your main task is to implement the module SndDriver, as described below.
I Copy the lab skeleton on K:\TSIU03\Labs\Lab4_Audio* to e.g. X:\TSIU03\Lab4, and open it.
I Set your group number in the top module.
I Open the graphical module SndDriver. It is almost empty.
I Create the VHDL files ctrl.vhd and channel_mod.vhd, and add them to the project.
I Implement the modules ctrl and channel_mod, and connect them in Snd_Driver, as described in section 4
(“Module SndDriver”).
I Simulate the SndDriver, as described in section 5 (“Simulation”).
I Finally, synthesize and verify on the DE2-115 board. You do not have to do any pin placement, since
this is already done.

4 Module SndDriver

The module SndDriver is a coder/decoder (“codec”): It translates the audio signal between the parallel
format SndBus, used by the application, and the bit serial format used by the WM8731 chip. This includes
generation of several control signals.

The SndDriver must use the signed type for samples, and of course unsigned for counters.
The intended structure of SndDriver and its surrounding is depicted in Fig. 4. There are two sub

modules; Ctrl and Channel_Mod, and a number of internal signals.

LEDR

SW

KEY0
CLK50

Ctrl.vhd:
entity Ctrl is
...

Channel_Mod.vhd:
entity Channel_Mod is
...

SndDriver

mclk
bclk
adclrc
adcdat
daclrc
dacdat

Ctrl (vhdl)

men

mclk
bclk
adclrc
daclrc

lrsel
BitCnt

inst_ctrl
SCCntADC_en

inst_right

Channel_Mod (same)

DAC
ADC

sel,DAC_en
men,SCCnt,BitCnt

adcdat
dacdat

?
Do not
short circuit

Channel_Mod (vhdl)

DAC

ADC

sel,DAC_en
men,SCCnt,BitCnt

adcdat

dacdat

rx:process(clk)
...
end process;

tx:process(clk)
...
end process;

inst_left

Sound

LDAC

LADC

RADC

lrselApplication

Analysis

SndBus

rstn
clk

place symbol

place symbol twice

RDAC

ADC_en

DAC_en

WM8731

ADC

DAC

Double click to change name

Figure 4: A structural view of SndDriver in its environment.

The sub module Channel_Mod decodes one bidirectional channel. This is instantiated twice; one instance
for the left and one for the right channel.

4.1 Signal Description

The following signals are used as in/out for the module SndDriver:
• clk, rstn ⇒ System clock (50 MHz) and the active low reset.
• LADC, RADC, LDAC, RDAC, lrsel, ADC_en, DAC_en ⇒ The SndBus.
• mclk, bclk, adclrc, daclrc, adcdat, dacdat ⇒ The serial signals to/from the WM8731 chip.
SndDriver should also have some internal control signals, generated by Ctrl (see Sec. 4.2):

4

TSIU03: Lab 4 - Audio Codec

• men ⇒ Master Enable signal. men and clk will together act like a rising edge of the mclk.
• SCCnt ⇒ Sub Cycle Counter (counts mclk cycles within each bclk cycle).
• BitCnt ⇒ Bit Counter (counts 0 to 31 bits within each sample).

4.2 Control Block (Ctrl)

Figure 5: Clock timings.

The system is controlled by a control block, which consists
of a 10-bit counter. The control signals for the rest of the
system are generated from the bits of the counter.

Figure 5 illustrates a few signals (where the counter is
called cntr). A timing diagram of all signals over one entire
sample is appended in the end of this document. Have a
look at it to understand how the signals should work.

• mclk ⇒ Master clock should be a quarter of clk

(12.5 MHz). You have this behaviour in cntr(1). Note
that when any bit with more significance changes, cntr(1) flips from ’1’ to ’0’, e.g., a falling flank.
To get a rising flank behaviour, simply invert the bit.

• bclk⇒ Bit clock should be a quarter of mclk (3.125 MHz). Where in cntr do you have this behaviour?
• men ⇒ Master Enable should be ’1’ just before the rising flank of mclk.
• SCCnt ⇒ The sub cycle counter counts the four mclk pulses within each bclk pulse. It is two bits.
• BitCnt ⇒ The bit counter counts the 32 bclk periods per sample (though only 16 of those are used).
• adclrc, daclrc ⇒ The left/right clock for the bit serial adc/dac channels. Those should be equal.
• lrsel ⇒ The left/right clock for the SndBus channels. This should be inverted to adclrc.
• ADC_en ⇒ This is ’1’ during one clock cycle each time lrsel has changed.
Remember: all those signals are generated from the bits of cntr. To figure out how to generate these

signals, you can draw a timing diagram of the counter (using paper and pencil), and it’s different bits. After
"11...11" comes "00...00". Do not draw all 1024 counts, just as many as needed for your understanding.

When you are done, generate a symbol file for Ctrl, and insert it into the SndDriver schematic. Double
click the instance name just below the symbol, and name it “inst ctrl”.

4.3 Channel Mod
Channel Mod gets the signal sel, which indicates that the SndBus part is active. When sel=’0’, the bit
serial part is active (e.g., shift in/out the bits from/to adcdat/dacdat).

Remember: There is one Channel Mod, that is instantiated once for left and once for right channel.
Hence, in the VHDL code, we don’t know if this is the left or the right channel (it will be used for both).

Channel Mod...
• ...needs two shift registers, RXReg and TXReg, 16 bits each. No other internal signals are needed.
• ...should contain a process called rx, that handles the ADC part (RXReg).
• ...should contain a process called tx, that handles the DAC part (TXReg).
• ...may contain some combinational logic to solve the dacdat problem (see below).
Remember that the samples are sent MSB first through adcdat and dacdat.
RXReg should, when sel=’0’, shift in adcdat from the right2 when the bclk changes from ’0’ to ’1’

(i.e., when SCCnt = "01" and men). Only the first 16 bits must be shifted, then it must stop, so no bits of
the sample are lost.

RXReg should, when sel=’1’ and ADC_en=’1’, provide its content on the ADC bus. The remaining time,
it may do so as well (why?).

TXReg should, when sel=’0’, shift out the bits when bclk changes from ’1’ to ’0’ (i.e., when SCCnt

= "11" and men), during the first 16 bits. Then it does not matter what value are driven on the dacdat, so
it’s simplest to continue. The MSB of TXReg should be available on dacdat as soon as sel=’0’, NOT one
bit later. Therefore, it is suitable to let dacdat be the MSB of TXReg.

TXReg should, when sel=’1’ and DAC_en=’1’ load the value from the DAC bus.

2Shift in from the right, so the first incoming bit (MSB) will be shifted all way to the left.

5

TSIU03: Lab 4 - Audio Codec

The dacdat gives a problem. The two instances of channel_mod provides one dacdat each. The WM8731
chip needs only one. Somehow you have to solve this. From section 2.5, we know that dacdat should come
from the left channel when daclrc=’1’ and right otherwise. It feels natural to implement a multiplexor
for this. It can however be solved using only an AND or an OR gate, but that requires some extra logic in
Channel_Mod (what comes out from Channel_Mod when sel=’1’?).

When you are done, generate a symbol file for Channel_Mod, and insert it twice into the SndDriver

schematic. Name the two instances “inst left” and “inst right” (double click on the instance names
below the instances).

4.4 SndDriver
In SndDriver, you have placed one ctrl and two channel_mod. Now place a NOT gate, and your solution
to the dacdat problem. Remember from Lab1 how to place a NOT gate. Right click the NOT gate and
figure out how to rotate it.

Then it’s time to wires it all together (again: remember lab 1...). Important for simulation: Name
the wires to e.g. SCCnt[1..0] by single clicking them and start typing the name.

Note: there seems to be a Quartus bug – simple gates like a two-input OR gate might give Quartus
problem when generating HDL file from schematics. You may solve this by creating your own component,
like ”my mux” or ”my OR”.

5 Simulation

You have to simulate the SndDriver, in a way that detects any kind of error you may do. Note that it is
just this module that is simulated, not the entire FPGA project.
I Generate a VHDL file for the SndDriver schematic, and change the std_logic_vector into unsigned

or signed where suitable, or you will get “Error loading design” in ModelSim.
If you see some “Synthesized wire...”, then you forgot to name a wire in the schematic.
I Complete the existing test bench “TB_Audio.vhd” in the MSim folder. Read sec. 5.1, and follow the
instructions in the comments in the testbench.
I Compile and simulate the test bench and all the VHDL files related to SndDriver. Do not add the other
VHDL files (Sound.vhd or my fancy application.vhd), since you will only simulate the driver. Add signals
to the waveform in a colour coded way using > do wave.do before the > run -a .

5.1 The Test Bench

DUT

timing
sanity

lrsel
mclk
bclk
daclrc

adclrc
adcdat

dacdat

DAC
stimuli

3 kHz

LDAC_i
n

RDAC_i
n

ADC_stimuli

ADC
sanity

LA
DC
_o
ut

RAD
C_o

ut

DAC_result

DAC sanity

test

ADC stimuli

1.5 kHz

Figure 6: The test bench design.

Have a look at the VHDL file for the test bench. The structure
of it is depicted in Fig. 6. You can observe that the test bench
architecture contains the parts described below.

A clock generator part (excluded in the figure), that
generates a 50 MHz clock, a reset signal, and a done signal
(after 1 ms).

A timing sanity process. This part will test the timings
of the different clocks, and their relative phases. This is not
completed, and your task is to finish it between the comments
“TO FILL IN:”, and “STOP FILL IN”.

1. Measure the time between two rising edges of the mclk.
2. Measure the time between two rising edges of the bclk.
3. Measure the time between two rising edges of the

adclrc.
4. Verify that mclk=1 and bclk=0 after the adclrc edge.
5. Verify that adclrc = daclrc 6= lrsel for the rest of the

simulation.

6

TSIU03: Lab 4 - Audio Codec

A block to test the DAC path. This includes the DAC_stimuli_p process, that generates two 3 kHz tones
(trigged by lrsel), and passes them to the DUT via the parallel interface. It also includes a DAC_sanity_p

process, that decodes the bit serial interface, and compare the result with the generated DAC signals.
A block to test the ADC path. This include the ADC_stimuli_p process, that generates two 1.5 kHz

tones (trigged by adclrc), translates them into the bit serial interface. It also includes the ADC_sanity_p

process, that compare the resulting LADC/RADC with the generated signals.
The comments in the test bench are there to help you. They contains e.g. timing diagram that explains

how and when signals are compared. Read the comments!

5.2 A ModelSim Trick

The signals that corresponds to complete samples, represent an analogue level. This is handy to look at.
Right click on, e.g., the ADC bus, and select “Format”⇒ “Analog (custom)...”. Max = 32767, Min = -32768.

6 Physical Verification

The intended behaviour of the result is listed in section 2.2. All those functions must work (except the
“noise”, that must not be heard).

7 Requirements to Pass

General requirements are:
• You must implement and understand the SndDriver.
• You must complete the testbench and use it in a simulation.
• The functions in “my_fancy_application” must work (See section 2.2). The “Noise” must not be

heard.
• You should at least briefly understand the concept of samples, and how they form sound.

When you want to demonstrate, be ready with programmer, waveform, code and understanding.

References

[1] The WM8731 Manual, K:\TSIU03\DE2_115_Resources\DE2_115_Datasheets\Audio CODEC

7

TSIU03: Lab 4 - Audio Codec

Appendix A Common Errors

Apart from the common VHDL errors, there are some errors that can easily occur:
• Mistakes in the schematics ⇒ If you move a module, Quartus tries to move the wires along with

it, but often fails to do it in a good way. Make sure you have not unintentionally short circuited
anything.

• Pin mismatch ⇒ If you change the pins of a sub module, you have to update its symbol file
(File→Create/Update→Create Symbol Files for Current File), and the symbol in its “calling” schematic (right

click the symbol→update...). Rewire if needed (if pins changed place etc).
• ADC Shift error ⇒ You should shift in exactly 16 bits per sample. Not more, not less.
• DAC Shift error ⇒ The first bit must be available on dacdat as soon as daclrc switches, not one
bclk cycle later.

A.1 Malfunctioning Implementation

Here are some hints, if everything “should” work, but you don’t get the correct result. First of all, verify
on the HEX display that it is your system running on the FPGA.

Internal error (no LED indication even for internal sound1)
Error in the SndBus interface The signal lrsel is not toggling. ?

Neither input nor output work (silent, no LEDs except for internal sound1)
Error in the WM8731 bus Check the control signals in a simulation. ?
Error in the WM8731 configura-
tion

Turn all switches to 0, then restart the FPGA board.

Input does not work (no LED indication)
No input stimuli Do you feed the input with a sound source?
Error in the receiver Check the corresponding code. ?
Error in the SndBus interface Never assigning the ADC signal in Channel Mod? ?

Output does not work (silent)
Error in the transmitter Check the content of the dacdat signal. ?
Error in the SndBus interface Do you read the DAC signal in Channel Mod? ?

Output does not work (white noise)
Mixing up left/right You read from the “other” DAC channel in the Snd-

Bus.
?

Output does not work (strong noise)
Additional DFF in transmitter Do not assign dacdat<=... in a process... ?
1 “Internal sound” is the sound generated in my_fancy_application (that should be indicated on the LED

bar).

? Possible to detect in a simulation.

8

cntr

clk

men

mclk

bclk

SCCnt

BitCnt

adclrc

adcdat

daclrc

dacdat

lrsel

ADC_en

LADC

RADC

DAC_en1

LDAC

RDAC

2 3 0 1 2 3 0 1 2 3

00 01

0 1 2 3

14

0 1 2 3

15

0 1 2 3

16

0 1 2 3

17

0 1 2 3

30

0 1 2 3

31

0 1 2 3

00

0 1 2 3

01

0 1 2 3

14

0 1 2 3

15

0 1 2 3

16

0 1 2 3

17

0 1 2 3

30

0 1 2 3

31

0 1

00

L15 L14 L01 L00 R15 R14 R01 R00 L15

L15 L14 L01 L00 R15 R14 R01 R00 L15

31

Right sample from ADC

Left sample from ADC

Left sample to DAC

Right sample to DAC

0 16 256 512 768 1023 0

LDAC

RDAC

LADC

RADC

lrsel=0

A
p
p
lica

tio
n

S
n
d
D
riv

e
r

*lrc=1
*dat=left

W
M
8
7
3
1

LDAC

RDAC

LADC

RADC

lrsel=0

A
p
p
lica

tio
n

S
n
d
D
riv

e
r

*lrc=1
*dat=-

W
M
8
7
3
1

LDAC

RDAC

LADC

RADC

lrsel=1

A
p
p
lica

tio
n

S
n
d
D
riv

e
r

*lrc=0
*dat=right

W
M
8
7
3
1

LDAC

RDAC

LADC

RADC

lrsel=1

A
p
p
lica

tio
n

S
n
d
D
riv

e
r

*lrc=0
*dat=-

W
M
8
7
3
1

50 MHz

12.5 MHz

3.125 MHz

48.8 kSps

48.8 kSps

48.8 kSps

Next sample

Next sample

1 Example of DAC timing. Any one of 512 clock cycles can be used.

	Introduction
	System Overview
	About the Top Module ``Sound''
	About My_fancy_Application
	About the SndBus
	About the Sound Chip WM8731
	About the Serial Interface

	Your Task
	Module SndDriver
	Signal Description
	Control Block (Ctrl)
	Channel_Mod
	SndDriver

	Simulation
	The Test Bench
	A ModelSim Trick

	Physical Verification
	Requirements to Pass
	Appendix Common Errors
	Malfunctioning Implementation

