

1

LINKÖPING UNIVERSITY

Linköping, 2022

TSIU03, SYSTEM DESIGN

LECTURE 8

Department of Electrical
Engineering

Kent Palmkvist
Kent.Palmkvist@liu.se

Slides by: Mario Garrido Gálvez

2

TODAY

 Reminder 2’s complement vs sign magnitude

 Designing a Hardware System.

 Debugging Strategies.

3

From Lecture 2: Binary numbers

 Given a binary number , its value in decimal
depends on the representation that is used for the number.

- Unsigned (VHDL datatype unsigned):

 Range:

- 2’s complement (VHDL datatype signed):

 Range:

- Sign and magnitude (NOT a datatype used in VHDL):

 sign bit (not

 Range: included in

 magnitude) 3

0
0

1
1

2
2

1
1 2222 xxxxx n

n
n

n

0
0

1
1

2
2

1
1 2222 xxxxx n

n
n

n

:)222(1
0

0
1

1
2

2

 n
n

n xxxxx

]12,12[11 nn

]12,2[11 nn

]12,0[n

0121 xxxx nn

4

HOW TO DO A DESIGN

 We want to build a house. What to do first?

1) Decide the size of

the windows.

2) Decide the color of

the walls.

3) Build the roof.

4) Build the floor.

5

FIRST: DO A DRAFT!!!

 Architects design houses… we design circuits.

6

DESIGNING A HARDWARE SYSTEM
 We have already learn which are our “LEGO” pieces to build a

system.

 At the system level (high in the hierarchy) we can forget the details
(word length, overflow, specific values of the signals, detailed
drawing of the circuit, etc.).

 Now the questions are:

 Which circuits do we need to create our system?

 How to interconnect these circuits / which information is sent
among them?

z
1

0a

b

z

s
La z

7

USING BLOCKS

 You can use any block for your system as long as you
know how to implement it internally in hardware.

 Or you can use a new block, but then you have to
explain how to implement it.

max

x

y
z

COUNTER
count

X
2x z

1024
a z20

za

8

EXAMPLE 1

 Do you remember how we described Lab 3 with blocks?

 You understand the system, right?

hcnt

vcnt

COUNTER

ADDRESS
GENERATOR

MEM. INTERFACE

PIXEL
EXTRACTOR

VGA CONTROLLER

SIGNAL
SYNC.

SYNC

PIXEL
REG

BLANK VGA

TOP

SRAM MEMORY

FPGA

9

EXAMPLE 2: DOOR ENTRY SYSTEM

 How can we implement the circuit for the door of an
appartment?

 Problem definition (requirements):

 To open the door we have to press “B” followed by a
code with 4 digits.

 If the code is right, for 3 seconds the door will be open,
a beepOK will sound and a green led will light.

 If the code is wrong, for 3 seconds we will hear a
beepNOK sound and a red led will light.

 First question: Which of the circuits that we have studied
may we need? Why?

10

HOW TO DESIGN A HW SYSTEM
 In the project you have to face the design of a big

hardware system.

 Some advice from previous students:

- “I have learned that it helps a lot to draw pictures to understand
the design. And then try to implement it. I do not work to do the
implementation first. That is always a bad idea from now on.”

- “You divide it into modules and solve each module. Go from
high complexity to lower complexity by dividing the problem into
subproblems.”

- “Make small modules and combine them into bigger ones.”

- “I have learnt that it is a lot easier when you plan the system. It
is really important to plan which modules to use and which
signals go to which module.”

11

HW DESIGN STRATEGIES
 How can we face the design of a large system?

 There are two main strategies:

- Top-down design: consider the entire system and divide it into
modules with specific functionality, e.g., control, memory interface
and VGA controller. We can continue dividing these modules
hierarchically into smaller functional blocks.

- Bottom-up design: combine modules to create a bigger module
with another functionality. For instance, we can combine an adder
and a register in order to obtain an accumulator. The bottom-up
design leads to new modules that can be reused in the future.

 In practice, both strategies are combined. We apply a top-down
design until we reach a level in which we know how to provide the
expected functionality based on a bottom-up strategy.

12

DESIGNING A HW SYSTEM (1)

 Step 1: General analysis of the system and partition it:

a) Decide which are the modules of your system and their
functionality.

b) Define the connections among the modules.

c) Extract the requirements of each module: the functionality,
which inputs and outputs are needed, how data are received
and sent (continuous flow, one sample every several clock
cycles, etc),…

 As a result you will have a general view of the system,
the modules that constitute the system and the
requirements that the system and each module must
fulfill.

13

DESIGNING A HW SYSTEM (2)
 Step 2: Design the individual modules:

a) Decide which circuit you are going to use in order to meet the
expected requirements.

b) Apply possible simplifications of the circuit, e.g., to multiply by
4 just add two bits instead of using a multiplier.

c) Take into account possible overflow and truncation effects.

 Step 3: Describe the circuit in VHDL:

a) Follow the templates for the different circuits.

b) Add comments to parts of the code that may be difficult to
understand later, e.g.,

 z <= resize(a & "000“,11) + resize(a & '0‘,11) –- z = 10a

c) Check that the syntax is correct and the code is synthesizable.

14

DESIGNING A HW SYSTEM (3)
 Step 4: Verify the functionality:

a) Use simulations. Check not only the typical cases, but also
and specially extreme/limit/worse cases.

b) Configure the FPGA with the design and check if it performs
as expected.

c) You can use other devices on the development board for
verification purposes, such as the LEDs.

 If everything went well and the system works as
expected, congratulations!!

 Otherwise, you have to debug…

15

EXAMPLE: DOOR ENTRY SYSTEM
 Let´s continue with the example…

 Note that this is just one solution, but there are many
other alternatives

CODE
DETECTOR

STATE
MACHINE

B
 A

C
T

IV
E

N
E

W
 D

A
T

A

C
O

D
E

KEY

REGISTER
BANK

REG #

RECORD DATA

CHECK

OUTPUT
GENERATORDONE

BEEP OK

BEEP NOK

GREEN LED

RED LED

DOOR LOCK ON/OFF
C

O
D

E
 O

K

16

DETAIL OF A SUBMODULE
 The register bank is used to compare the code introduced by the

user and the code that opens the door.

R3
EN

DIGIT 3

R2
EN

DIGIT 2

R1
EN

DIGIT 1

R0
EN

DIGIT 0

=

=

=

=

=3

=2

=1

=0

CODE

RECORD DATA

REG #

CODE OK

17

DEBUGGING

 It does not work!!! What to do???

 DO NOT:
 Get blocked.

 Try one’s luck: Change parts of the code to see if hopefully it
works… you may be doing changes forever…

 Most of the problems in hardware design are easy to
fix, but they may be difficult to find! First find the
problem, then fix it.

18

HOW DID YOU SOLVE PROBLEMS?

This is what previous students did:
 “We solved them by a lot of trial and fail. It was often after you

solve a problem you realize what was wrong, and it was so simple.”

 “I had strange errors and I had to google to understand them.”

 “I got a tip from the supervisor that it was the synchronization that
was the problem. When I knew where the problem was, it was quite
easy to fix it.”

 “Sending certain values to each module to see if the module was
working.”

 “We carefully went through all the connections and how they were
supposed to interact.”

 “We just tried to isolate the problem as much as we could, and we
used LEDs to see what part of the code was a fault.”

19

DEBUGGING STRATEGIES
 To facilitate and avoid debugging:

- Do a good design of the circuit. A good design requires less
circuits and it is much easier to describe in VHDL.

- Write a clear VHDL code by using the templates and adding
comments. This makes the code much simple to debug.

 Once the circuit has been described in VHDL:

- First think: “Where can the problem be?” and “which can be the
reason for the problem?”

- Think of the system as a group of blocks and check the
functionality of each block independently.

- Check that the circuit that you have designed actually calculates
the function that you expect (also check overflow and timing).

- Simulations are an excellent tool to check if the behavior of the
circuit is the expected one.

20

MORE DEBUGGING STRATEGIES

 Check that you have described the circuit properly. Are all the
connections in your description the same as those in the circuit?

 It does not work as before! Check if you are using the same files.
Check if you have changed the initial conditions or if it is possible
that the initial conditions have changed. Load the previous version.

 It does not work at all! Are you resetting the system or part of it? Is
the clock connected? Have you compiled the last version of your
system in Quartus?

 Repeat the programming steps.

21

MORE DEBUGGING STRATEGIES
 Use components of the board, such as LEDs, to represent the

value of certain signals.

 Understand the expected behavior. For instance, if a signal is zero
during a clock cycle every second, you will not see it with a LED.

 The simulation and the code do not match! Have you zoomed
enough or too much? Are you only showing the last clock cycles in
the simulation where the signals do not change?

 There are many red signals in the simulation. As conflicts between
signals propagate, sort out the signals in ModelSim from the inputs
to the output and check which is the first signal that is corrupted.

22

SIMULATIONS

 In big systems, you will run the same simulation several
times. In this case:

- Create a good test bench and/or script for the simulation.

- Take your time to prepare the signals in ModelSim (add all the
signals that you may need, remove unnecessary ones, organize
them in the wave, add dividers, change colors, change radix, and
save the layout in a .do file, etc). Remember that you can save
the configuration of the WAVE in a .do file.

 This will save you a lot of time!!

23

CHECKLIST FOR LECTURE 8

 How to design a hardware system.

 Debugging strategies.

24

AT HOME

 Review the checklist for lecture 8 and check that you
understand all the concepts and you know how to use
them.

