

TODAY

- Signal Processing.
- Variables.

<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

EXAMPLE

- Here we can see two signals in the time domain with different frequencies and different amplitudes. Which is the amplitude and the frequency of each of the signals?
- If both signals happen at the same time, the sample at that time will be equal to the sum of their values at that time.
- The binary number in our system at a certain clock cycle is just the value of the sample at that time.

5

DECIBELS

- Decibels are a logaritmic unit used to express the ratio of two values of a physical quantity. Sometimes one of the values is a reference value, such as for sounds.
- As it is a ratio between two values of the same physical quantity, decibels do not have any physical dimension.
- When the ratio is large, it allows for working with small numbers instead of large values.
- We generally use decibels to relate the power of two signals.
- A multiplication in linear units corresponds to an addition in decibels.

$$\Delta P(dB) = P_{o} - P_{I}(dB) = 10 \cdot \log_{10} \left(\frac{P_{o}}{P_{I}}\right) = 10 \cdot \log_{10} \left(\frac{V_{o}}{V_{I}}\right)^{2} = 20 \cdot \log_{10} \left(\frac{V_{o}}{V_{I}}\right)$$
$$\frac{V_{o}}{V_{I}} = 10^{\left(\frac{\Delta P(dB)}{20}\right)}$$

DECIBEL SCALE		
	120	Gunshot Matal concert
Thus should be a sign	130	let Plane take off
I nreshold of pain	120	Set Flane take on
	110	Industrial noise
	100	Subway train
	90	Bass drum
	80	Loud radio
Hairdryer, Noisy restaurant	70	
Busy street, Alarm clock	60	
Conversation	50	
Moderate snoring	40	
Whisper, Light snoring	30	
Quiet room	20	Source:
Breathing	10	http://byjus.com/physics/decibel/
Threshold of human hearing	0	7

VARIABLES Variables can only be used inside a process. They can have any data type (as is true for signals and constants). process (clk, rst) variable m: integer; -- declaration similar to signals begin if rst = '1' then m := ⊙; -- Initialization using := elsif rising_edge (clk) then -- To assign values, we use := m := a; . . . • IMP: signals are not updated during process execution (only at the end of the process), but variables are updated during process execution, i.e., they can store temporary values.

• Limited use in VHDL: If you want to create a connection in the circuit, use a **signal.**

8

SIGNALS v.s. VARIABLES

What do these two pieces of code do when they are included in a process with clk in the sensitivity list?

```
if rising_edge (clk) then if rising_edge (clk) then
 q <= q + 1;
 if enable = '0' then
   q <= q;
 end if;
end if;
```

```
q := q + 1;
  if enable = '0' then
    q := q;
  end if;
end if;
```

```
9
```

RESOURCES FOR THE PROJECT

Project folder:

- There is a private folder for each group. It is already created and every member of the group has access to it.

- Please, keep the files of the group in the folder (VHDL files as well as the project documents).

K:TSIU03\Groups\Group XX

Free Altera tools available online:

https://www.intel.com/content/www/us/en/programmable/downloads/downlo ad-center.html

Select version 13.0 service pack 1

- Free tools to simulate simple circuits: Atanua, CEDAR Logic.
- Free tool to draw circuits: Dia Diagram Editor.

CHECKLIST FOR LECTURE 9

- ADC, DAC, sampling, time and frequency, decibels.
- VHDL: variable, :=

11

AT HOME

- Review the checklist for lecture 9 and check that you understand all the concepts and you know how to use them.
- Go through the checklists of all the lectures to check that you understand all the concepts in the course.