

1

LINKÖPING UNIVERSITY

Linköping, 2021

TSIU03, SYSTEM DESIGN

LECTURE 6

Department of Electrical
Engineering

Kent Palmkvist
Kent.Palmkvist@liu.se

Slides by: Mario Garrido Gálvez (mario.garrido.galvez@liu.se)

2

 State Machines.

 Pipelining.

 Latency.

 Hierarchy.

TODAY

2021-09-08 01:19

4

FINITE-STATE MACHINES

clk

next
state
logic

current state

output
logic

outputs

inputs

sequential logic combinational logic
next state

- Moore: The output is obtained from the current state => it only changes when the clock changes.
- Mealy: The output is obtained from the current state and from the inputs=> it may change at any time
due to a change in the inputs.

5

FINITE-STATE MACHINES

 A “finite-state machine” or just “state machine” is a circuit that
evolves through different states.

 It can only be at one state at a time.

 Every clock cycle the state is updated. The transitions among states
and the output values depend on the current state and on the input
values.

 It combines sequential and combinational logic. The sequential logic
consists in one or several registers that store the current state. The
combinational logic is used to calculate the next state and the
outputs.

 Ref: [A4.3.1]

 Example: Given a sequence of bits, how can we detect all the
instances of the pattern 101? [R12.2]

2021-09-08 01:19

6

HOW TO DESIGN A STATE MACHINE

1) Define the states of the state machine:

 Moore: One state for each combination of internal variables.

 Mealy: One state for each combination of internal variables and input
values.

2) Draw the state diagram.

3) Draw the transition table. The transition table is a truth table with the
input signals and current states as inputs. From them we calculate the
values for the next state and for the output signals.

4) Obtain the logic function of each of the variables that define the next
state as a function of the inputs and current state. Obtain the logic
function of each output as a function of the current state (and also the
inputs in case of Mealy).

5) Implement the circuit.

7

EXAMPLE: DETECT “101”

 Design a circuit that detects a sequence “101”.

 Example from [R12.2].

2021-09-08 01:19

8

STATE MACHINES IN VHDL

architecture arch of pattern_detector is

 type stateFSM is (start, found1, found0, detect);

 signal state, next_state: stateFSM;

begin

-- sequential part: updates the stage at each clock cycle.

process (reset, clk)

begin

 if reset = '1' then

 state <= start;

 elsif rising_edge (clk) then

 state <= next_state;

 end if;

end process;

9

-- combinational part: calculates the next state and the output.

process (state,data_in)

begin

 case state is

 when start =>

 found <= '0';

 if data_in = '1' then

 next_state <= found1;

 else

 next_state <= start;

 end if;

 when found1 =>

 found <= '0';

 if data_in = '1' then

 next_state <= found1;

 else

 next_state <= found0;

 end if;

when found0 =>

 found <= '0';

 if data_in = '1' then

 next_state <= detect;

 else

 next_state <= start;

 end if;

 when detect =>

 found <= '1';

 if data_in = '1' then

 next_state <= found1;

 else

 next_state <= found0;

 end if;

 end case;

 end process;

end arch;

2021-09-08 01:19

10

STATE MACHINES IN VHDL

 To make the state machine understandable, separate it into a
combinational process and a sequential one.

 Define explicitly all the cases that may cause a transition. If a
certain combination of input values is not explicitly defined but
actually happens at the input, the state machine may jump to an
unexpected state.

 At each state, define the output value of every output signal. If the
output value of a certain output signal is not defined, the output
signal will keep the value that it had.

11

DELAY & CRITICAL PATH

 Propagation delay: time that a combinational circuit takes to
calculate the output since the time in which the inputs are stable.

 Glitch: undesired transition in a signal that occurs before the
signal settles to its intended value.

 Critical path: path with the highest propagation delay.

a
z

a
_

t
t

NOT
AND

tAND

t NOT

tNOT

a

a

a·a
_

_

2021-09-08 01:19

12

PIPELINING

 Pipelining is a technique that consists of inserting
additional registers in one or several parallel paths of the
circuit.

 The main uses of pipelining are:

- Equalize the delay of different paths to assure that data arrive at
the same clock cycle.

- Increase the clock frequency by reducing the critical path.

 Example: Design a circuit to calculate:

 








 

1][

0][2

sifnb

sifna
z

13

PIPELINING: EXAMPLE

 Does this circuit calculate the function? Why?

REG

1

0

z

s

b

a

 








 

1][

0][2

sifnb

sifna
z

2021-09-08 01:19

14

PIPELINING: EQUALIZE DELAYS

 Here pipelined is used to equalize the delays of all the paths. Now
the signals are synchronized when they arrive to the multiplexer.

 Note that pipelining must be applied to all the paths, including the
control signal!!

 If the critical path is defined by the multiplier and the adder, how can
we now reduce and, thus, increase the clock frequency?

REG

1

0

z

b

a

REG

s REG

15

PIPELINING: REDUCE CRITICAL PATH
 Here pipelining has been used to reduce the critical path and, thus,

increase the clock frequency.

 The critical path is reduced by introducing a register between the
multiplier and the adder. Now the critical path will be the longest
among the delays of the adder and the multiplier, but not the sum of
both.

 The maximum clock frequency of a system is the inverse of the delay
in the critical path (the longest delay between any two registers).

REG

1

0

z

b

a

REG

REG

REG

REGs REG

2021-09-08 01:19

16

LATENCY: INPUT TO OUTPUT DELAY
 Latency: How long time (in seconds or in clock cycles) will it take for

an input value to affect the output value?

 Adding a register is in the path adds delay (one more clock cycle)

 Example have two clock cycle latency (a specific input value will
affect the output two clock cycles after entering).

 Latency different from throughput (new inputs per second)

 Latency different from time between input values (clock frequency)

REG

1

0

z

b

a

REG

REG

REG

REGs REG

17

HIERARCHY

 A hardware system can be described as a set of modules that are
interconnected.

COUNTER

MEM. INTERFACE

VGA CONTROLLER

VGA

SRAM MEMORY

FPGA

2021-09-08 01:19

18

HIERARCHY

 Each module can be divided in submodules that are interconnected.
This creates a hierarchy in the design.

hcnt

vcnt

COUNTER

ADDRESS
GENERATOR

MEM. INTERFACE

PIXEL
EXTRACTOR

VGA CONTROLLER

SIGNAL
SYNC.

SYNC

PIXEL
REG

BLANK VGA

TOP

SRAM MEMORY

FPGA

19

HIERARCHY IN VHDL
 In VHDL we can include other .vhd files as submodules in the

design.

 Declaration:

 The submodules are declared inside the architecture in the
declaration part (before begin).

 We use the reserved word component to declare submodules.

 The declaration shows the entity of the submodule.

 Instantiation:

 The instantiation of the submodules is done inside the
architecture after begin.

 We use port map for the instantiation.

 The instantiation shows where the ports of the component are
connected.

2021-09-08 01:19

20

HIERARCHY IN VHDL: EXAMPLE
architecture arch of top is

 signal x, y, xy : signed;

 ...

 component multiplier -- Declaration

 port (a, b: in signed (7 downto 0);

 z: out signed(7 downto 0);

 end component;

begin

 mult1: multiplier -- Instantiation

 port map(a => x, -- The line ends with comma.

 b => y,

 z => xy);

end arch;

21

MULTIPLE INSTANCES
 We can define multiple instances of the same component.

 Example: If we want to design a filter that includes 2 multipliers, we
can declare the component once and then create 2 instances of it:

 mult1: multiplier -- Instantiation 1

 port map(a => x1, b => y1, z => xy1);

 mult2: multiplier -- Instantiation 2

 port map(a => x2, b => y2, z => xy2);

 Note that each multiplier is connected to different signals.

 Ports of different instances can be interconnected by connecting
them to the same signal.

 We always have to respect the input/output nature of the ports.

2021-09-08 01:19

22

DIRECT INSTANTIATION
 We can also instantiate the submodules directly without declaring

them.

 Instantiation using indirect instantiation (as shown before), when
we have already declared the component:

 mult1: multiplier

 port map(a => x1, b => y1, z => xy1);

 Instantiation using direct instantiation, without having declared the
component:

 mult1: entity work.multiplier

 port map(a => x1, b => y1, z => xy1);

 Note that we have to specify the library (in this case “work”) where
the component is included.

24

CHECKLIST FOR LECTURE 6

 State machines: design, description in VHDL.

 Propagation delay, glitch, critical path, pipelining.

 Hierarchy: representation as blocks, direct and indirect
instantiation.

2021-09-08 01:19

25

AT HOME

 Review the checklist for lecture 6 and check that you
understand all the concepts and you know how to use
them.

 Prepare Lab 3.

 Work on handin

2021-09-08 01:19

