
1

LINKÖPING UNIVERSITY

Linköping, 2021

TSIU03, SYSTEM DESIGN

LECTURE 4

Department of Electrical
Engineering

Kent Palmkvist
Kent.Palmkvist@liu.se

Slides by: Mario Garrido Gálvez (mario.garrido.galvez@liu.se)

2

TODAY

 Structure of a hardware system: combinational logic and
sequential logic, clock,…

 Sequential logic: clock, clock cycle, clock frequency,
reset, enable, initialization, register, shift register,
counter, accumulator, timing diagram.

 VHDL description for sequential logic.

 Simulations and test bench.

3

STRUCTURE OF A HW SYSTEM

 Combinational logic: Its output only depends on the current input.

 Sequential logic: Its output depends on present and previous
values. They are memory elements.

 At each clock event, the output of the sequential logic is updated.
This makes the combinational logic have new inputs, and the
combinational logic makes the calculations for the new inputs.

clk

Input Output

Combinational
Logic

Combinational
LogicSequential

Logic
Sequential

Logic
Sequential

Logic

4

CLOCK

 The clock of a digital system is a periodical signal that changes alternatively
between one and zero. The time in a digital system in measured in clock
cycles.

 The clock period (TCLK) is the time in seconds between two consecutive clock
cycles. The clock frequency (fCLK) is the inverse of the clock period and
indicates the number of clock cycles per second, measured in Hz. Higher clock
frequency means faster processing.

 All the digital system must be synchronized with the clock and updates every
clock cycle. The sequential logic is activated only in the rising edge
(alternatively the falling edge) of the clock.

CLK
CLK T
f

1


CLK

TCLK

Rising edge Falling edge

Clock cycles

time (s)

5

(DIGITAL) MUSIC

 The clock is like a conductor in an ochestra. There is only one and
assures that everything is synchronized. With two conductors the
orchestra cannot be synchronized. Only one clock signal in the
system!!

 The conductor defines the tempo of the music. In a digital system, this
tempo is given by the clock frequency (or the clock period).

 And the instruments? -> Sequential logic. The clock is only connected to
the sequential logic and only connected as a clock, not as a normal input.

6

REGISTER

 n: discrete time unit.

 The register delays the input
one clock cycle.

 Can be used to store data.

 If the input and output have
one bit it is called D flip-flop.

a

clk

z

   1 nanz

architecture rtl of reg is

…

begin

…

process (clk)

begin

 if rising_edge (clk) then

 z <= a;

 end if;

end process;

…

 What is the difference with respect to a wire in the VHDL code?

 Ref: [A4.1.1]

7

WHAT DOES THIS CIRCUIT DO?

z

<< 4

<< 1a

clk

8

WHAT IS THE DIFFERENCE?

 Which is the difference between these two circuits?

 Can we use any of these circuits to multiply by 19?

 Which mathematical function is calculated by each of them?

z

<< 4

<< 1a

clk

z

<< 4

<< 1a

9

TIMING DIAGRAM
 A timing diagram is used to show the evolution of the signals in time.

CLK

a

b

c

d

z

3 5 0 -2 1

3 5 0 -2

9 15 0

48 80 0

95 057

z

<< 4

<< 1a

clk

b

c

d

10

REGISTER WITH RESET & ENABLE

process (clk, reset)

begin

 if reset = '1' then

 z <= (others => '0');

 elsif rising_edge (clk) then

 if enable = '1' then

 z <= a;

 end if;

 end if;

end process;

 Reset: sets the signals to their initial value.

 Enable: enables the computations of the circuit.

11

PROCESS

process (<sensitivity_list>) –- triggers for the process

<variable_declaration> -- only if the process has variables

begin

 if reset = '1' then -- asynchronous reset (also: ='0')

 <initialization> -- initialize signals and variables

 elsif rising_edge (clk) then

 if enable = '1' then -- only if the enable is included

 <statements> -- behavior of the circuit

 end if;

 end if;

end process;

12

WHAT DOES THIS CIRCUIT DO?

process (clk, reset)

begin

 if reset = '1' then

 z <= (others => '0');

 elsif rising_edge (clk) then

 if s = '1' then

 z <= a;

 else

 z <= b;

 end if;

 end if;

end process;

 Can you draw the circuit?

 Can you describe the circuit in a
different way?

13

OTHER OPTION

process (clk, reset)

begin

 if reset = '1' then

 z <= (others => '0');

 elsif rising_edge (clk) then

 z <= p;

 end if;

end process;

p <= a when s = '1' else b;

 In this case, in the description we separate the combinational and
the sequential parts of the circuit:

14

WHAT DOES THIS CIRCUIT DO?

clk

z'1'
bb

 What happens with the overflow?

15

COUNTER & ACCUMULATOR

COUNTER

clk

z'1'

clk

za

 Be very careful with the overflow.

 If not controlled, the counter is periodical.

 Which is the difference of VHDL code of these circuits with respect
to the VHDL code of a register?

 Ref: [A4.2].

ACCUMULATOR

  nnz     
n

nanz

16

HOW CAN WE INITIALIZE…?

signal a, b, y, z: std_logic;

…

begin

…

process (clk)

begin

if rising_edge (clk) then

z <= a AND b;

 end if;

end process;

y <= a OR b;

 How can we initialize the signals y and z?

17

SIGNAL INITIALIZATION

 We can only initialize the values of signals that store
information.

 Some registers need to be initialized. Otherwise, the
initial value may be generated arbitrarily, which may
lead to unexpected behaviors.

 Other registers do not need to be initialized. They will be
updated once the circuit starts to compute data.

 Initialization is done by using the reset signal.

 Signals that do not store information can not be
initialized!

18

SHIFT REGISTER

 Register in which the bits shift position.

 Can be used as a delay of L clock cycles.

process (clk)

begin

if rising_edge (clk) then

 z <= sr (L-2);

 sr (L-2 downto 1) <= sr (L-3 downto 0);

 sr (0) <= a;

 end if;

end process;

 How can we shift the bits in the other direction?

 Ref: [A4.1.1]

19

SIMULATIONS

 We use ModelSim.

 Commands / tricks that you should know so far from the labs: zoom
in the simulation, use cursors and measure the time, add dividers,
change the order and the color of the signals, combine signals,
change signal representation (radix).

 The simulation shows exactly what you will see when you load your
system to the board. If the circuit in the simulation does not
calculate the expected function, you know that it will NOT work on
the board.

 We configure the simulation using:

 VHDL test benches.

 Scripts.

 Runing commands manually in ModelSim.

20

TEST BENCH
 A test bench is a VHDL file that generates stimuli for a circuit and

receives the outputs of the circuit with the purpose of testing its
behavior.

 It is created as a top of the file that we want to test.

 As the test bench is only used for simulation purposes and is never
configured on the FPGA, it can contain non-synthesizable VHDL.

 It allows for generating any type of test vectors, e.g., create an input
test signal that is a sinusoid.

 It can also import test data from a file and write the outputs of the
system to another file. In this way we can generate test vectors with
another program such as Matlab, run the simulations in ModelSim and,
then, anaylze the results with Matlab again. For input/output values
from/to a file, we need to use the package textio:

 library std;

 use std.textio.all;

21

TEST BENCH EXAMPLE
...

 constant clk_period : time := 10 ns; -- Clock period.

begin

 rstn <= '1', '0' after 10 ns, '1' after 25 ns; -- Reset.

 -- Generation of the clock.

 clk_process :process

 begin

 clk <= '0';

 wait for clk_period/2;

 clk <= '1';

 wait for clk_period/2;

 end process;

 -- Instantiation of the component to simulate.

 ctrBlock: entity work.controlBlock

 port map(rstn => rstn, clk => clk, counter => counter);

...

22

SCRIPTS FOR MODELSIM
 All these commands can be done manually in ModelSim. The script

just runs them automatically:
vlib work Creates a design library.

vcom *.vhd Compile all the .vhd files.

vsim work.Sound Simulate the file Sound.

add wave sim:/Sound/* Adds signals to the wave.

 Initial values for the inputs of the simulated file:

force -freeze sim:/sound/clk 1 0, 0 {10 ns} -r 20ns

force -freeze sim:/sound/rstn 0 0, 1 {30 ns}

force -freeze sim:/sound/adcdat 0 0

run 1ms Run the simulation for a certain time.

wave zoom full Adjust the zoom of the wave.

 Note that we always choose which commands we run manually
and which ones with a script.

23

VHDL TEST BENCH + SCRIPTS

 The best way to do prepare a simulation is to combine
the advantages of a test bench in VHDL and the use of
scripts.

 VHDL test bench:
 Better for generation of input signals (clock, inputs, etc.). For

instance, we can generate a sinusoid in the test bench to test
our circuit. Imagine how it would be to do it with a script…

 Script (.do file):
 Good for specific ModelSim commands (vlib, vcom, run,…).

Also possible to run them manually.

 Very useful to save the wave format. File -> Save Format. This
saves a .do file with the entire layout of the simulation, so that
you do not have to create it again.

24

CHECKLIST FOR LECTURE 4

 Sequential logic: clock, clock cycle, clock frequency,
clock period, reset, enable, initialization, register, shift
register, counter, accumulator, timing diagram.

 VHDL: process, clock signal, reset signal, enable signal,
initialization, sensitivity list, rising_edge, if statement.

 Simulations: VHDL test bench, script, simulation tricks.

25

AT HOME

 Review the checklist for lecture 4 and check that you
understand all the concepts and you know how to use
them.

