

1

LINKÖPING UNIVERSITY

Linköping, 2021

TSIU03, SYSTEM DESIGN

LECTURE 3

Department of Electrical
Engineering

Kent Palmkvist
Kent.Palmkvist@liu.se

Slides by: Mario Garrido Gálvez (mario.garrido.galvez@liu.se)

2

TODAY

 Changing the word length.

 Circuits for mathematical operations and how to handle
them in VHDL: Adders, subtracters, multipliers, dividers.

 Description of Lab 2.

2021-09-01 23:15

3

CHANGING THE WORDLENGTH

 Given a binary number represented in 2’s complement or as
unsigned, it is possible to change the word length of the number
and still represent the same number.

 If we increase the number of bits, we will call it sign extension.

 If we reduce the number of bits, we will call it truncation.

4

SIGN EXTENSION

 Unsigned: the sign extension for unsigned consists of adding 0 to
the most significant part of the number:

 1001 9 (represented with 4 bits)

 00001001 9 (represented with 8 bits)

Signed: the sign extension for signed consists of copying the MSB
and adding it to the most significant part of the number.

 01001 9 (represented with 5 bits)

 00001001 9 (represented with 8 bits)

 1001 -7 (represented with 4 bits)

 11111001 -7 (represented with 8 bits)

z <= "000…000" & a;

z <= a(n-1)& a(n-1) & … & a(n-1) & a; (a has n bits)

2021-09-01 23:15

5

ADDING BITS TO THE LSB

 What happens if we add zeros to the least significant part of the
number?

 Unsigned: 1001 9

 10010

 100100

 Signed: 1001 -7 01001 9

 10010 010010

 Multiplication by powers of 2:

z <= a & "000…00";

6

TRUNCATION (REMOVING BITS)
 Unsigned Signed Operation

 Remove MSBs: z <= a(k-1 downto 0);

 1001 9 1001 -7

 001 1 001 1

 Remove LSBs: z <= a(n-1 downto k);

1001 9 1001 -7

 100 4 100 -4

 2/A k

mod(a,2k)

2021-09-01 23:15

7

RESIZE
S

IG
N

E
D

MSB LSB

LSB

MSB LSB

MSB LSB

0 0

MSB

U
N

S
IG

N
E

D

SIGN EXTENSION
??

z <= resize (a,numBits);

SIGN EXTENSION MODULO OPERATION

S
IG

N
E

D
U

N
S

IG
N

E
D

Not advisable to reduce
bits using resize

Useful for
sign

extension

8

ADDITION OF BINARY NUMBERS

 Addition of unsigned and 2’s complement binary numbers is done
in the same way as is done for decimal numbers.

 0010 2

 + 0011 3

 0101 5

 Which is the results of adding these two binary numbers?

 1010 10 (or -6 in 2’s complement)

 + 1001 9 (or -7 in 2’s complement)

 What happens with the wordlength? What happens if we want to
keep the wordlength?

2021-09-01 23:15

9

OVERFLOW

 When a number gets larger than the number of bits that we can
use to represent it, and some of the most significant bits are
trashed, we may get unexpected results. Therefore, be sure that
you use enough bits to represent any number that you could get.

 Example in 2´s complement:

 0110 6

 + 0011 3

 1001 -7

In order to represent 9, we need to add 1 bit:

 01001 9

10

WHAT DOES THIS CIRCUITS DO?

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity add1 is

 port (a,b: in unsigned (7 downto 0);

 z : out unsigned (7 downto 0));

end add1;

architecture rtl of add1 is

begin

 z <= a + b;

end rtl;

2021-09-01 23:15

11

ADDER
 An adder adds two binary numbers:

 z <= a + b;

 In VHDL, a, b and z must have the same word length. However,
this may cause overflow!!

 We can:

- Sign extension of a and b by one bit before the addition, and
define z as one bit longer than a and b.

- … and then truncate the LSB of z if we want to keep the WL.

- Make sure that the input values will never cause overflow.

z

12

SUBTRACTER

 A subtracter subtracts two binary numbers:

 z <= a - b;

 The symbol – is used to indicate which input has to be subtracted
from the other one.

 The same as an adder with respect to overflow.

b

z

2021-09-01 23:15

13

COMPARATOR

 With the circuits studied so far, how can I design a circuit that
compares two numbers in 2’s complement (8 bits) according to:

otherwise

baif
z

0

1

14

COMPARATOR IN VHDL

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity comp is

 port (a,b: in signed (7 downto 0);

 z : out std_logic);

end comp;

architecture arch of comp is

 signal p: signed (8 downto 0);

begin

 p <= resize(b,9) – resize(a,9);

 z <= p(8);

end arch;

2021-09-01 23:15

15

SPLIT / MERGE BITS
 If we want to split the bits of a signal or extract some bits from the

signal, we can represent it in a circuit in the following way:

z <= a(7 downto 2);

y <= a(1 downto 0);

 If we want to merge bits of different signals into the same signal, we
can represent it as:

z <= a & b;

 Splitting and merging bits does not require any hardware
component. They are done for free. Here we only show how to
represent them.

a

b

z
3

8
MSB

LSB

(7...0)
a

(7...2)

(1..0)

z

y

8
a

6

2

z

y

MSB

LSB

16

FROM LAST LECTURE
 By the way, which mathematical function does this line of code

implement? Can you draw a circuit that calculates this function?

z <= a when a > b else b;

2021-09-01 23:15

17

FROM LAST LECTURE
 By the way, which mathematical function does this line of code

implement? Can you draw a circuit that calculates this function?

z <= a when a >= b else b;

 Note how to represent the word length and the truncation in a
circuit.

),max(baz

b

a

n

n+1

n (LSB)

MSB

1

0

z

18

MULTIPLIER
 A multiplier multiplies two binary numbers:

 z <= a * b;

 The output z must have a word length equal to the sum of the
word lengths of a and b.

 Therefore, z may result in a very large number of bits.

 If z gets too large, the most typical approach is to truncate some
LSBs of z, and take into account that the representation of the
number is scaled.

b

z

2021-09-01 23:15

19

CONSTANT MULTIPLIER
 And if one of the inputs is constant?

 One option: just use the multiplier as normal.

 Other option with less resources (an addition is much cheaper than a
multiplication):

 Multiplication by 7:

 Which are the word lengths in the circuit?

 Multiplications by powers of 2 are for free in hardware!!

 Can we simplify the circuit even more?

b

z

z

<< 2

<< 1a

20

…YES!
 Constant multiplication by 0111 7 using only one adder:

 7 is equal to 8 - 1, isn’t it?

<< 3

a z

2021-09-01 23:15

21

DIVIDERS
 A divider divides two binary numbers:

 A divider is costly and requires a specific design.

 For constant division we can use a multiplier that multiplies by its
inverse:

 And if it is a division by a power of two, we can just remove the
least significant bits (truncation happens):

z <= a (WL -1 downto k);

b

z

a z1/K

>> ka z

22

WHICH IS THE DIFFERENCE?

library ieee;

use ieee.std_logic_1164.all;

entity and1 is

 port (a,b: in std_logic;

 z : out std_logic);

end and1;

architecture arch of and1 is

 signal p: std_logic;

begin

 p <= a AND b;

 z <= p;

end arch;

library ieee;

use ieee.std_logic_1164.all;

entity and2 is

 port (a,b: in std_logic;

 z : out std_logic);

end and2;

architecture arch of and2 is

 signal p: std_logic;

begin

 z <= p;

 p <= a AND b;

end arch;

2021-09-01 23:15

23

LAB 2: KEYBOARD

 Connect a Keyboard to the DE2 board.

 Detect codes of the keyboard (numbers pushed).

 Show the code that is received using LEDs.

 Show the number pushed in the 7-segment display.

 Create a test bench to test the circuit.

24

CHECKLIST FOR LECTURE 3

 Sign extension, truncation, overflow.

 Combinational circuits: adders, subtracters, multipliers,
constant multipliers, dividers.

 VHDL language: resize, +, *, -, the order of the
statements in VHDL does not matter.

2021-09-01 23:15

25

AT HOME

 Review the checklist for lecture 3 and check that you
understand all the concepts and you know how to use
them.

 Have a look at Lab 2

 Complete and submit answers to Assignment 1 if you
have not done that yet. Deadline 7/9 at 08.15 (before
lecture 5)

 Do the Assignment 2. It has to be submitted in Lisam
before end of 9/9.

2021-09-01 23:15

