
6 - Real-time operating system

TSEA81 - Computer Engineering and Real-time Systems

This document is released - 2013-12-16 - first version (new homepage)

Author - Ola Dahl

Lecture - 6 - Real-time operating system

This lecture note treats the structure, and parts of the implemen-
tation, of a small real-time operating system, using Simple_OS for
illustration of implementation aspects.

The notation [RT] refers to the book Realtidsprogrammering1. 1 https://www.studentlitteratur.se/

#31445

Task switch

There may be different reasons for a task switch to occur. A classifica-
tion can be done, into two categories, depending on if a task switch is
initiated from a task or from an interrupt handler.

A task switch initiated from a task occurs e.g. when a task shall
wait a specified time interval and performs a call to a function for
this purpose (e.g. si_wait_n_ms in Simple_OS), or when a task per-
forms a Wait-operation on a semaphore having the value zero.

A task switch initiated from an interrupt handler occurs e.g. when
a clock interrupt handler finds a task which has been waiting for a
specified time interval, and the time interval has expired. This task
is then made ready to run, and a task switch is initiated. Another
example could be an interrupt handler which communicates with an
external unit, e.g. a communication port, and which initiates a task
switch when data that are intended for a specific task have arrived.

A task switch is performed by saving the current values of proces-
sor registers and program counter on the stack of the running task,
and then restoring the corresponding values from the stack of the
task which shall resume its execution.

A task switch can be performed when the task to be resumed has
been selected. This is decided using the available method for task
scheduling, e.g. priority based scheduling. The task switch can be
thought of as being initiated by calling a function, denoted Schedule.
This function performs the actual scheduling, e.g. by selecting the
task with the highest priority among the tasks which are ready for
execution.

A routine which performs the actual task switch is then called.
This routine saves and restores information from the stacks of the
two tasks that are involved in the task switch. The routine is denoted
Context_Switch in Chapter 10 in [RT]. The Context_Switch routine uses

https://www.studentlitteratur.se/#31445
https://www.studentlitteratur.se/#31445


6 - real-time operating system 2

the instructions of the processor, and is therefore implemented in
assembly language, or using in-line assembly code.

A task switch initiated by a task can be described using graphical
notation, as in Chapter 10 in [RT]. A task switch initiated by an in-
terrupt handler will be described in more detail in Lecture Embedded
Systems.

An illustration of the situation before the task switch is intiated
is shown in Figure ??, where two tasks are shown, and one of these
tasks is executing.

Figure 1: Two tasks, stored in the list
of ready-to-run tasks. The task marked
Running is executing.

Assume that the task switch is initiated by a call to a function
resulting in the calling task waiting for a specified time, such as
si_wait_n_ms in Simple_OS. As a first step, the TCB of the calling
task, i.e. task currently running, is removed from the list of ready-to-
run tasks and placed in a list of tasks waiting for time to expire. This
situation is illustrated in Figure ??, where the two lists are denoted
ReadyList and TimeList, and where the runnning task is marked by the
word Running.

As a next step, the context of the running task is saved on the
stack of the running task. This means that a value of the program
counter, indicating the instruction from which the task shall resume
its execution later, shall be stored on the stack, and also that the
current values of the processor registers shall be stored on the stack.
An illustration of the situation after this has been done is shown in
Figure ??.

As can be seen in Figure ??, the stack pointer in the CPU refers to
the last stored element on the stack, while the stack pointer in the
TCB refers to another location. The reason for this is that the stack
pointer in the TCB has not yet been updated, and it still refers to the
position in memory where the context of the task was saved, either
during a previous task switch, or initially, when the task was created.

By setting the stack pointer in the TCB of the running task to refer



6 - real-time operating system 3

Figure 2: Two tasks, where the task
marked Running is executing. The
task control block of the executing task
has been moved from ReadyList to
TimeList, as a preparation for a task
switch.

Figure 3: Two tasks, where the task
marked Current is executing. Context
for the running task has been saved, on
the running task’s stack.



6 - real-time operating system 4

to the same location as the CPU stack pointer, now pointing to the
last stored element on the stack of the (still) running task, and after
that, locating the TCB of the task to be resumed, the context switch
can be performed. This is done by first setting the CPU stack pointer
to the same value as the stack pointer in the TCB of the task to be
resumed, giving a situation as shown in Figure ??, and then restoring
values from this stack. When, as a last step, the program counter is
restored, the task to be resumed restarts (or starts, if it is the first time
it executes) its execution, a situation which is illustrated in Figure ??.

Figure 4: Two tasks, where the task
marked Current is still executing. The
task switch has been prepared, by
setting the CPU stack pointer to refer
to the saved context of the task marked
Running, stored on the stack of the task
marked Running.

Task switch implementation

In Simple_OS, a task switch initiated by a task starts with the task
calling the function schedule. This function is implemented in sched-
ule.c, as

/* schedule: perform priority based scheduling */

void schedule(void)

{

/* task id for the running task */

int task_id_running;

/* task id for the task in ready list with

highest priority */

int task_id_highest_prio;



6 - real-time operating system 5

Figure 5: The task marked Running
is now executing. The execution was
started after the context of the task was
restored, by restoring also the saved
value of the program counter.

/* get task id for the running task */

task_id_running = task_get_task_id_running();

/* get task id for task in ready list with

highest priority */

task_id_highest_prio =

ready_list_get_task_id_highest_prio();

/* check if a task switch shall be performed */

if (task_id_highest_prio != task_id_running)

{

/* perform task switch */

task_switch(task_id_running, task_id_highest_prio);

}

else

{

return; /* no task switch */

}

}

The function schedule performs priority based scheduling, and is
described in Section 15.2.3 in [RT].

The task switch, when running Simple_OS inside Linux or Win-
dows, as is done in the Assignments in the course, is implemented
as

void task_switch(int task_id_old, int task_id_new)

{



6 - real-time operating system 6

/* a pointer to the old stack pointer */

mem_address *old_stack_pointer;

/* the new stack pointer */

mem_address new_stack_pointer;

/* pointers to TCB for the two tasks */

task_control_block *old_tcb_ref;

task_control_block *new_tcb_ref;

/* get references to the TCBs */

old_tcb_ref = tcb_storage_get_tcb_ref(task_id_old);

new_tcb_ref = tcb_storage_get_tcb_ref(task_id_new);

/* set pointer to old stack pointer */

old_stack_pointer = &old_tcb_ref->stack_pointer;

/* set new stack pointer */

new_stack_pointer = new_tcb_ref->stack_pointer;

/* set Task_Id_Running to task id of new task */

Task_Id_Running = task_id_new;

/* do the task switch on the host */

context_switch(old_stack_pointer, new_stack_pointer);

Here we note that context_switch is implemented in assembly.
A task switch on a target, where Simple_OS runs as the operating

system, as will be done in Lab 1 - Lift in an Embedded System, involves
additional mechanisms, such as the use of software interrupt instead
of a function call for starting a task switch initiated by a task, and
also using architecture dependent mechanisms for handling context
switches initiated by an interrupt handler. These mechanisms are
described in more detail in Lecture Embedded Systems.

Clock interrupts

A clock interrupt is a periodic interrupt, which is used in a real-time
kernel for the purpose of time handling. A typical task for the inter-
rupt handler which is activated when a clock interrupt occurs, is to
traverse the list of tasks waiting a specified time interval, decrement
the TCB field which indicates the remaining waiting time, while at
the same time checking which of these fields that are decremented to
the value zero.

The tasks with TCBs where the time field is decremented to zero
shall finish their waiting, and are therefore made ready for execution.



6 - real-time operating system 7

A task switch is then initiated. When priority based scheduling is
used, this means that if any of the tasks which were made ready for
execution have a higher priority than the currently running task, i.e.
the task which was interrupted by the clock interrupt, a task switch
actually occurs.

When using Simple_OS together with Linux or Windows, which is
the way Simple_OS is used in the assignments in this course, a clock
interrupt is simulated using mechanisms available in Linux or Win-
dows. When using Linux, a mechanism referred to as signals is used,
and when using Windows, a mechanism referred to as multimedia
interrupts is used.

When using Simple_OS as an independent real-time operating
system, in an embedded system or on a PC, a real, periodic, interrupt
is used. The frequency of the interrupt is set during start-up.

In Simple_OS, a clock interrupt leads to a call of the function
tick_handler_function in the file tick_handler.c. This function traverses
the list of tasks waiting for specified time intervals and decrements,
in each TCB, the field where the remaining waiting time is stored.
The tasks where this field is decremented to zero are then made
ready for execution, by placing the tasks in the list of ready-to-run
tasks. A task switch is then intiated, by a call to the schedule function.

Clock interrupts, and related aspects of time handling, e.g. func-
tions for waiting a specified time interval or until a specified time
instant, are described in Sections 15.3.1 and 15.4 in [RT].

Semaphores

A general implementation of semaphores can be done by first defin-
ing a data structure representing a semaphore. A data structure of
this kind is referred to as a Semaphore Control Block, which is abbre-
viated SCB. The data structure contains two fields. One of the fields
represents the value of the semaphore, and the other field is a list of
TCBs for the tasks waiting on the semahore.

Three semaphore operations are needed: one operation for initiali-
sation, a Wait-operation and a Signal-operation.

Section 10.6 in [RT] describes a general semaphore implementa-
tion. The semaphore data structure is described, and general descrip-
tions of the operations are given.

There are situations where the actual semaphore implementation
affects the execution of a real-time program. A situation of this kind
occurs when a task with high priority repeatedly tries to reserve a
shared resource which is protected by a semaphore, and where a task
with low priority becomes waiting for the semaphore during a time
interval when the task with high priority has reservered the resource.



6 - real-time operating system 8

Section 10.6.1 in [RT] describes how the execution in this situation is
affected by the actual semaphore implementation.

One should note that the implementations described in Section
10.6.1 affect a specific situation, and that they do not affect other
properties of the semaphores, e.g. that they can be used to ensure
mutual exclusion.

An example of literature where different types of semaphores are
discussed is the article The Well-Tempered Semaphore: Theme With
Variations2, by Kenneth A. Reek. 2 http://www.cs.rit.edu/~kar/papers/

wts/paper.pdfIn Simple_OS, semaphores are implemented using an SCB defined
in si_semaphore.h, as

typedef struct

{

/* the list of waiting processes */

int wait_list[WAIT_LIST_SIZE];

/* semaphore value */

int counter;

} si_semaphore;

An operation for initialisation is defined by the function si_sem_init,
implemented as

/* si_sem_init: intialisation of semaphore sem */

void si_sem_init(si_semaphore *sem, int init_val)

{

wait_list_reset(sem->wait_list, WAIT_LIST_SIZE);

sem->counter = init_val;

}

The function si_sem_wait implements a Wait-operation, as

/* si_sem_wait: wait operation on semaphore sem */

void si_sem_wait(si_semaphore *sem)

{

/* task id */

int task_id;

/* disable interrupts */

DISABLE_INTERRUPTS;

/* check counter */

if (sem->counter > 0)

{

/* decrement */

sem->counter--;

}

else

http://www.cs.rit.edu/~kar/papers/wts/paper.pdf
http://www.cs.rit.edu/~kar/papers/wts/paper.pdf


6 - real-time operating system 9

{

/* get task_id of running task */

task_id = task_get_task_id_running();

/* remove it from ready list */

ready_list_remove(task_id);

/* insert it into the semaphore waiting list */

wait_list_insert(

sem->wait_list, WAIT_LIST_SIZE, task_id);

/* call schedule */

schedule();

}

/* enable interrupts */

ENABLE_INTERRUPTS;

}

and the function si_sem_signal implements a Signal-operation, as

/* si_sem_signal: signal operation on semaphore sem */

void si_sem_signal(si_semaphore *sem)

{

/* task id */

int task_id;

/* disable interrupts */

DISABLE_INTERRUPTS;

/* check if tasks are waiting */

if (!wait_list_is_empty(

sem->wait_list, WAIT_LIST_SIZE))

{

/* get task_id with highest priority */

task_id = wait_list_remove_highest_prio(

sem->wait_list, WAIT_LIST_SIZE);

/* make this task ready to run */

ready_list_insert(task_id);

/* call schedule */

schedule();

}

else

{

/* increment counter */

sem->counter++;

}

/* enable interrupts */

ENABLE_INTERRUPTS;



6 - real-time operating system 10

}

Semaphores with time-out

Sometimes it is desirable to limit the maximal waiting time when a
task waits on a semaphore. One reason could be that the task which
performs the Wait-operation is not allowed to wait more than a spec-
ified amount of time, e.g. due to safety requirements. A limitation
of the waiting time can be achieved, using semaphores with time-out,
where the maximum waiting time can be given as an extra parame-
ter in the function implementing the Wait-operation. The parameter
denotes the maximum waiting time expressed e.g. in milliseconds.

A general implementation of semaphores with time-out is de-
scribed in Section 10.6.2 in [RT].

Condition variables

A general implementation of condition variables can be performed,
starting with a data structure for representation of a condition vari-
able. The data structure, which is referred to as Event Control Block
(abbreviated ECB), contains two fields.

One field is a reference to the semaphore which is associated with
the condition variable, and the other field is a list of TCBs for tasks
waiting on the condition variable.

Three operations are needed for a condition variable: one opera-
tion for initialisation, an Await-operation and a Cause-operation.

Section 10.7 in [RT] describes a general implementation of condi-
tion variables. The data structure for condition variables is described,
and general descriptions for the operations are given.

Condition variables are implemented in Simple_OS, in the files
si_condvar.h and si_condvar.c.

Message passing

Functionality for message passing is implemented in Simple_OS.
There are functions for sending and receiving messages. A message
is sent by calling the function si_message_send. The task identity of the
receiving task is given as a parameter to si_message_send.

A message is sent as an array of bytes, which is copied from the
sending task to the receiving task. The message is stored in a message
buffer, which is associated with the receiving task. When a receiving
task calls si_message_receive, it copies a message from its message
buffer to an array which is given as a parameter to si_message_receive.



6 - real-time operating system 11

If the message buffer for a task is empty when the task calls
si_message_receive, the task blocks.

If the message buffer for a receiving task is full when a sending
task calls si_message_receive with the task id of the receiving task as
parameter, the sending task blocks.

The functions si_message_send and si_message_receive are imple-
mented in the source file si_message.c. The message buffer functional-
ity is implemented in tcb_message.c. The data structure for a message
buffer can be seen in the file tcb_message.h.

Assignment 5 - Modification of a Real-time Kernel

In Assignment 5 (2013 version), the source code of a real-time kernel
is modified. The modification is done by adding functionality for fair
scheduling to Simple_OS.

Case study: Three different semaphore examples

Example 1:

P1 (highest priority) P2

wait 10ms si_sem_wait(&M1);

si_sem_wait(&M1); do_work(); // Takes about 50 ms to run

do_work(); si_sem_signal(&M1);

si_sem_signal(&M1); wait 1000 ms

Example 2:

P1 (highest priority) P2

si_sem_wait(&M1); si_sem_wait(&M1);

wait 10ms do_work();

do_work(); si_sem_signal(&M1);

si_sem_signal(&M1); wait 1000 ms

do_work();

si_sem_wait(&M1);

do_work();

si_sem_signal(&M1);

wait 1000 ms

Example 3:

P1 (highest priority): P2:



6 - real-time operating system 12

si_sem_wait(&M1) si_sem_wait(&M2);

wait 10 ms; wait 10 ms;

si_sem_wait(&M2) si_sem_wait(&M1);

do_work() do_work();

si_sem_signal(&M2); si_sem_signal(&M1);

si_sem_signal(&M1); si_sem_signal(&M2);


