II LINKOPING
() UNIVERSITY

TSEA44: Computer hardware - a system on a chip

¢ Hints for documentation
* DMA
* Lab3

¢ Testbenches

2019-12-03

2

v

TSEA44: Computer hardware - a system on a chip 2019-12-03

Practical issues

¢ tftp sometimes generate "not a typewriter” error
= File may still have been correctly transfered
= Verify size of transmitted and recieved file using
Is -l
¢ Download file from FPGA system using firefox
— Copy file to /mnt/htdocs/
= Modify path in url to download file
192.168.0.232/testfile

e,

TSEA44: Computer hardware - a system on a chip 2019-12-03
Lab reports

¢ Lab1: Section 3.7.2 is good reading

- Specifies what to include (code, diagrams, state
graphs)

— Specifies things to discuss in the report

= Do not forget to read the rest of the chapter!
¢ Same type of section found for the other lab tasks also
* Include all code you have written/modified

= Assume the reader have access to the original lab
setup

Il.u LINKOPING
UNIVERSITY

Creating schematics

¢ Alternatives

- Openoffice/libreoffice diagram tool (I use this for
slides)

= Inkscape (potentially very nice looking, very
cumbersome though)

- Dia (decent if you have RTL library for it)

— TikZ (if you really like latex)

= MS Paint (I'm only kidding)

- Hand drawn schematics from whiteboard/paper
* Quality problems...

- Visio (if you have a license for it)

5

e

TSEA44: Computer hardware - a system on a chip 2019-12-03

Packed arrays, how to use them
left to right, right first —

logic [11:0] tm1[0:7][0:7]; z

-

logic [0:7][0:7][11:0] tm2;

tm1[0][0] // DC component
tm2[0][0] // -"-

tm2[0] I I:|

tm2[0:71[0] // D

7

LINKOPING
v

TSEA44: Computer hardware - a system on a chip 2019-12-03
..
Array slicing

The size of the part select or slice must be
constant, but the position can be variable.

logic [31:0] b;
logic [7:0] al, a2;

8

al = b[x -: 8]; // OK fixed width
a2 = bly +:8]; // OK fixed width
d = b[x:y]; // not OK
hwyes

Lab 3-DMA

terminal

Use DMA to fill the DCT acc!

tftp jpegtest]
web page ism

LINKOPING
[[T

TSEA44: Computer hardware - a system on a chip 2019-12-03 10 TSEA44: Computer hardware - a system on a chip 2019-12-03 12

Proposed architecture State diagram e e] e e e

ey By The DMA accelerator has to
Wbm He i —— T release the bus regularly so
] that other components can
<:>' fr— access it. Do it for every line
" -— ame as except tha you read. When we finish the
wbs s WAITREADY t that d. Wh finish th.
— PR we go to the IDLE state when first block, we start the DCT
o done. C \' accelerator.
b ve
et | 1 " WAITREADY_LasT) (emasmus
st i —
* Design FSM _ (N
//' S. J The DMA module is
¢ Change here - . fetching an 8x8 block.
—~ N BLE P o CETBLOCK _ Once the block is fetched
R e . (C we go to the WAITREADY
Modify jpegfiles J R e the BeT
The DMA module is not \ | transform.
doing anything. /
(WAITREADY
In this state we wait until the — g
program tells us that it has 3
oot A read the result of the transform ™
| by writing to the control
register.
II LINKOPING II LINKOPING
o UNIVERSITY () UNIVERSITY
TSEA44: Computer hardware - a system on a chip 2019-1203 11 TSEA44: Computer hardware - a system on a chip 2019-1203 13

Address generation A measurement: make sim_jpeg

Copy 16 words Copy 32 words

* We want to transfer block by from SDRAM to DCT (DMA) from DCT tqg SDRAM

block (8x8)

¢ Address generator must
know format (width, height)
of image

Hi HHHHHH‘HHJJHHHHHUHH\
—_— 1

(AL LU LU LU UL I ‘\

testbild.raw

LINKOPING

LINKOPING
UNIVERSITY

UNIVERSITY

TSEA44: Computer hardware - a system on a chip 2019-12-03 14

A closer look at the DMA

Release bus for
mO0, m1l, m2
= If CPU is waiting it will
get the bus

SDRAM

uClinux
(kernel + filesystem)
webserver
ttp

testbild.raw

II LINKOPING
o UNIVERSITY

TSEA44: Computer hardware - a system on a chip 2019-12-03 15

DCT => Memory (Software)

Ele Edt View Insert Format Took Window

ﬁﬁé@g”%guH twwﬂu R B o
DY E T
4 1

Cursor 4 |E38544421 ps

o] T i |

[718253665 ps 10 715251213 ps [Now: 1'ms Defte: 4 P

LINKOPING
e,

TSEA44: Computer hardware - a system on a chip

A hint

DMA, | DCTQ

DMAml DCTQy.;

2019-12-03 16

read,; Huffmany

‘ DMA,

DCTQ,

DMA,,,| DCTQy.,

read# Huffmany,,

DMA,,,| DCTQy,

read,

Huffmany

read, |

Huffmany,,

How long time do these blocks take?

LINKOPING
UNIVERSITY

TSEA44: Computer hardware - a system on a chip

Burst Read

2019-12-03 17

CLK_I
CTLO
BTE_O
= | ADR_O
5| DAT_O
7¢ DAT.1 XXXKEXXXKIXEX vw v _wn T(wn TXXX
2| WELO X ! ! : : /XX
= | SEL_O XXZXX T T T T :XXX
CYC_O :/ : : : : :_
STB_O 1/ [1 [| N
. :
ACK_I I 1/ | 1 | N
cti
M bte S
v

TSEA44: Computer hardware - a system on a chip 2019-12-03 18

TSEA44: Computer hardware - a system on a chip 2019-12-03 20
Burst cycle types Changes in the slave
| Signal group | Value ‘ Description
cti 000 Classic cycle
001 Constant address burst cycle
010 Incrementing burst cycle

011-110 | Reserved
111 End of burst

- local address counter
bte 00 Linear burst
01 4-beat wrap burst
10 8-beat wrap burst wh_adr(3:2]
11 16-beat wrap burst
wb_adr(31:4]
whb_dat_o[31:0]
II LINKOPING II LINKOPING
o' UNIVERSITY () UNIVERSITY
TSEA44: Computer hardware - a system on a chip 2019-12-03 19 TSEA44: Computer hardware - a system on a chip 2019-12-03 21
Burst access Why not write DMA? (acc -> memory)

* Note: Only the SRAM memory controller i the Leela

void encode_image(void)
memory controller has burst support

int i;

int MCU_count = width*height/DCTSIZE2;
short MCU_block[DCTSIZE2];

= Itis a graphics controller not used in our lab setup

for(i = 0; i < MCU_count; i++)

forward_DCT(MCU_block);
encode_mcu_huff(MCU_block);

}
K /
1) 1/Ois on 0x90, 0x91, ..., 0x99

other addr to PKMC
2) Noncacheable data mem addr >= 0x8000_0000,
SDRAM 0x0, SRAM 0x2000_0000 or 0xc000_0000
2) MCU_block must be in noncacheable area
3) Skip MCU_block, let encode_mcu_huff read from acc

II LINKOPING II LINKOPING
@& UNIVERSITY @& UNIVERSITY

TSEA44: Computer hardware - a system on a chip 2019-12-03 22

Testbenches

Bergeron,janick:

Spear,Chris: Writing testbenches

System Verilog
for verification.

Springer Springer

LOOK INSIDE!

SystemVerilog

for Verification Testbench

~|IDUT[

CHRIS SPERR

[KT
Testbenches
‘f"/"’,,/’,/f”“‘\\\\~\\\\\\\\\\>
Like an FSM Like High-Level Software
(same as DUT) (very different from DUT)
» complicated to design * easy to design
* hard to test timing * easy to test timing

* hard to test flow * easy to test flow

LINKOPING
Il.u UNIVERSITY

using System Verilog.

TSEA44: Computer hardware - a system on a chip 2019-12-03

An example: A TB for your design

-

~

Hi-level
tester

Wishbone clk [Driver] [Mem]
BFM st

JPEG AX slave master
e,
TSEA44: Computer hardware - a system on a chip 2019-12-03

Testbench: top level

module jpeg_top_th();
logic clk = 1'bo;
logic rst = 1'b1;
wishbone wbh(clk,rst), wbm(clk,rst);

initial begin
#75 rst = 1'bo;
end

always #20 clk = ~clk;

// Instantiate the tester
tester testero();

// Instantiate the drivers
wishbone_tasks who(.*);

// Instantiate the DUT

jpeg_top dut(.*);

mem memoO(.*);
endmodule // jpeg_top_tb

25

LINKOPING
II.“ UNIVERSITY

TSEA44: Computer hardware - a system on a chip 2019-12-03 26 TSEA44: Computer hardware - a system on a chip 2019-12-03 28

Testbench: Hi-level tester DMA? Easy!

// Init DMA-engine

program tester(); jpeg_top_tb.wbe.m_write(32'h96001800, 32'h0);
int result = 0; jpeg_top_tb.wbe.m_write(32'h96001804, ?);
int d = 32'h01020304; jpeg_top_tb.wbo.m_write(32'h96001808, ?);
R jpeg_top_tb.wbe.m_write(32'h9600180c, ?);
initial begin jpeg_top_tb.wbo.m_write(32'h96001810, ?); // start DMA engine
for (int i=e; i<16; i++) begin i
jpeg_top_tb.wbo.n_write(32'h96000000 + 4*i, d); // fill inmem for (int blocky=8; blocky<'HEIGHT; blocky++) begin
d += 32'h04040404; for (int blockx=0; blockx< WIDTH; blockx++) begin
end ! // wait for DCTDMA to fill the DCT accelerator
result = 0; . L
jpeg_top_tb.wbe.m_write(32'h96001000, 32'h01000000); // start ax while (?) // wait for block to finish

. jpeg_top_tb.wb@.m_read(32'h96001810, result);
while (result != 32'h80000000)

jpeg_top_tb.wbe.m_read(32'h96001000, result); // wait for ax $display("blocky=%5d blockx=%5d", blocky, blockx);
o for (int j=0; j<8; j++) begin
for (int j=0; j<8; j++) begin N DA N
for (int i=e; i<4; i++) begin // print outmem for (int i=e; i<4; i++) begin

jpeg_top_tb.wbe.n_read(32'h96000800 + 4*i + j*16,result); g?egf:°'(‘ith5;;’g°'"'—rea"(liz'“96‘1‘;"8% + 4%+ j*16, result);
e a(q n A write(1,"™ ", result >>> ;
::::ﬁ:g:gg ;ﬁz:ﬁ:: ig;'»ns)- sfurite(1,"%5d ", (result << 16) >>>16);

end
end sfwrite(1,"\n");
sfurite(1,"\n"); end
end . R
end jpeg_top_tbh.wbo.m write(?); // start next block
end

endprogram // tester end
I LINKOPING LINKOPING

UNIVERSITY UNIVERSITY
TSEA44: Computer hardware - a system on a chip 2019-12-03 27 TSEA44: Computer hardware - a system on a chip 2019-12-03 29

] RRRERARRRRRARARRA AR KRR RA AR AR
task m_read(input [31:0] adr,

Testbench: mem wishbone_tasks.sv e ot togie [a1fe) aata;
@(posedge wh.clk);
wb.adr <= adr;

) wh.stb <= 1'b1;
May/may not consume time wbowe <= 1'b0

May/may not be synthable wb.cyc <= 1'b1;
Do not contain always/initial wh.sel <= 4'hf;
Do not return values. Pass via output]

module mem(wishbone.slave wbm);
logic [7:0] rom[0:2047];
logic [1:0] state;
logic [8:0] adr;
integer blockx, blocky, x, y, i;

initial begin
// A test image, same as dma_dct_hw.c
for (blocky=0; blocky< HEIGHT; blocky++)
for (block ; blockx< WIDTH; blockx++)
for (i=1, y=0; y<8; y++)

@(posedge wb.clk);
1;
module wishbone_tasks(wishbone.master wb);

; ' ;
int result = 0; while (!oldack) begin

@(posedge wb.clk);

for (x=0; x<8; x++) reg oldack; #1;
rom[blockx*8+x+(blocky*8+y)* PITCH] = i++; // these are not wishbone cycles reg [31:0] olddat; end
end always ff @(posedge wb.clk) begin wb.sth <= 1'be;
assign wbm.err = 1'b0; oldack <= wh.ack; wb.we <= 1'b0;

; 1'bo; olddat <= wh.dat_i; wh.cyc <= 1'be;
end wb.sel <= 4'he;

assign wbhm.rty

always_ff @(posedge wbm.clk)

if (wbm.rst) . b K (1 adr— da;a = olddat;
state <= 2'he; assign wbm.ack = state[1]; m en
1 <- m_read b endtask // m_read
else always ff @(posedge wbm.clk) data
case (state) adr <= wbm.adr[8:0];] RRREERAEERRA KRR A A REEKREEEKRAK

2'he: if (wbm.sth) state <= 2'h1;
2'h1: state <= 2'h2;
2'h2: state <= 2'he;

endcase

II LINKOPING
o UNIVERSITY

task m_write(input [31:0] adr,
input [31:0] dat);
// similar to m_read
endtask // m_write

assign wbm.dat_i = {rom[adr], rom[adr+1],
rom[adr+2], rom[adr+3]};

endmodule // mem

LINKOPING endmodule // wishbone_tasks
UNIVERSITY 29

TSEA44: Computer hardware - a system on a chip

Race conditions

2019-12-03 30

always_ff @(posedge clk) begin
b

Threads executing
in parallel
in
no particular order

end

<= a;

always_ff @(posedge clk) begin

c <= b;
end
> A cycles
| b*=a | b = b+ |
| ct=b | c=c* |

II LINKOPING
o UNIVERSITY

TSEA44: Computer hardware - a system on a chip

Race conditions

always_ff @(posedge clk) begin
count = count + 1;
end

always_ff @(posedge clk) begin

$write(”count=%d\n”, count);
end

> A cycles

count = count +1

| print count |

2019-12-03 31

always_ff @(posedge clk) begin
count <= count + 1;
end

always_ff @(posedge clk) begin

$write(”count=%d\n”, count);
end

> A cycles

count* = count +1 | count = count*

| print count |

II LINKOPING
o UNIVERSITY

TSEA44: Computer hardware - a system on a chip

Hm...
| Read ack
1
; stb+ =0
SLJ 1
H I—
ack i
Read ack 1
iackt=0

Nonblocking assignment (<=)

=> no race condition
Blocking assignment (=)
=> race condition

stb=0

2019-12-03 32

TB| initial begin
@(posedge clk);
sth <= 1;

@(posedge clk);

while (ack == 0)
@(posedge clk);

sth <= 0;
end

N

ackl sth
DUT v

ack =0

always_ff @(posedge clk)

case (ack)
0: if (stb)
ack <= 1;
1: ack <= 0;
endcase;

TSEA44: Computer hardware - a system on a chip

program block

LINKOPING
UNIVERSITY

Purpose: Identifies verification code

¢ A program is different from a module

= Only initial blocks allowed

— Executes last

2019-12-03 33

- (module -> clocking/assertions -> program)

= No race situation in previous example!

The Program block functions pretty much like a C program

Testbenches are more like software than hardware

LINKOPING
UNIVERSITY

TSEA44: Computer hardware - a system on a chip 2019-12-03 34 TSEA44: Computer hardware - a system on a chip 2019-12-03 36

Hm"'TB (program) DUT (module) Clocking block

gigozfdg? clk); module th();
it | stb | aiways ff @(posedge clk) iog}c clk = 1:205
@(posedge clk); casg (?;k) b K interface wishbone(input clk,rst); ogic rst = 1'b1;
. HE A st ack <= 1; i . . 3
:;’ile (oldack == 0) begin 1: ack(<= 31; vire stb,ack; // instantiate a WB
@(posedge clk); oldack—) ack | endcase; clocking cb @(posedge clk); wishbone wb(clk, rst);
#; k- k input ack; initial begin
end output stb; #75 rst = 1'b0:
sth <= 0; endclocking // cb 4
#:'I' #1 modport th (clocking cb,

input clk, rst); always #20 clk = ~clk;
endinterface // wishbone {/ Instantlate*t?e put
jpeg_top dut(.*);
// Instantiate the tester
tester tester0(.*);
mem mem@(.*);
endmodule // jpeg_top_tbh

1
1
|
1
1
1
1
1
1
1
1
1
1
! end
1
1
1
1
1
1
1
1
1
'
1
1
1
1

ack |

II LINKOPING II LINKOPING
o UNIVERSITY () UNIVERSITY

-
oldack |7-_
L

TSEA44: Computer hardware - a system on a chip 2019-12-03 35 TSEA44: Computer hardware - a system on a chip 2019-12-03 37

Clocking block Clocking block

SystemVerilog adds the clocking block that identifies clock signals, and capture the timing and program tester(wishbone.tb wb);
synchronization requirements of the blocks being modeled. module jpeg_top(wishbone wb);
reg state;
A clocking block assembles signals that are synchronous to a particular clock, and makes their
timing explicit. initial begin assign wh.ack = state;
. for (int i=@; i<3; i++) begin
The clocking block is a key element in cycle-based methodology, which enables users to write wh.ch.sth <= @; always_ff @(posedge wb.clk)
testbenches at a higher level of abstraction. Rather than focusing on signals and transitions in ##1; if (wb.rst)
time, the test can be defined in terms of cycles and transactions. wh.ch.sth <= 1; state <= 1'b0;
while (wb.cb.ack==0) else if(state)
Possible to simulate setup and hold time ##1; state <= 1'bo;
end else if (wb.stb)
) end state <= 1'b1;
signal sampled hire . S‘i"al driven here endprogram // tester st b endmodule // jpeg_top
pn >
clock ‘ ‘ i i ‘ ‘
e <
Ce ack
input skew > outplt skew
LINKOPING LINKOPING
UNIVERSITY UNIVERSITY

TSEA44: Computer hardware - a system on a chip 2019-12-03 38

A complex testbench
(from Spear: SV for verification)

(S e ~
| >core- Checker | |
board Compute DCT+
(: Functional
Driver : Monitor | - Unctona
W8 cycle Assertion ey coverage
. ‘I NN N
-
7 —
o,
TSEA44: Computer hardware - a system on a chip 2019-12-03 39

Object Oriented Programming

* SVincludes OOP

* Classes can be defined
= Inside a program
— Inside a module

- Stand alone

LINKOPING
Il.u UNIVERSITY

TSEA44: Computer hardware - a system on a chip

OOP

program class_t;

class packet;
// members in class
integer size;
integer payload [];
integer i;
// Constructor
function new (integer size);
begin
this.size = size;
payload = new[size];
for (i=0; i < this.size; i ++)
payload[i] = $random();
end
endfunction
// Task in class (object method)
task print ();
begin
$write("Payload : ");
for (i=0; i < size; i ++)
$write("%x ",payload[i]);
swrite("\n");
end
endtask

2019-12-03 40

// Function in class (object method)
function integer get_size();
begin
get_size = this.size;
end
endfunction
endclass

packet pkt;

initial begin
pkt = new(5);
pkt.print();
$display ("size of packet %ed",
pkt.get_size());
end

endprogram

II LINKOPING
o UNIVERSITY

TSEA44: Computer hardware - a system on a chip

What is an assertion?

2019-12-03 41

* A concise description of [un]desired behavior

0o 1 2

3

req J_\

ack [17]

I

Example intended behavior

“After the request signal is asserted, the

acknowledge signal must come 1 to 3 cycles later”

Tom Fitzpatrick, SystemVerilog for VHDL
Users, DATE'04

LINKOPING
II.“ UNIVERSITY

TSEA44: Computer hardware - a system on a chip 2019-12-03 42

Assertions

: property req ack;
SVA Assertion @(posedge clk) req ##[1:3] $rose(ack):
endproperty

as_req ack: assert property (req ack);

sample_inputs : process (clk)
begin VHDL

1€ rising edge(clk) then

+ watural;

walt until rising_edge (CLK) ;
exit when (STROBE REQ = '0') and (REQ = '1%);
and 1oop;
c¥crE cnT i= 0

Example intended behavior

walt until rising_edge (CLK) ;
CYCLE_CNT := CYCLE_CNT + 1;
exit when ((STROBE_ACK = '0') and (ACK = "1')) or (CYCLE CNT = 3);
and 1oop;
1f ((STROBE ACK = '0') and (ACK = '1')) then
report "Agsertion success" saverity Note;

report failure® severity mrror;

HDL Assertion | e process protecot;

Tom Fitzpatrick, SystemVerilog for VHDL Users, DATE'04

Il.u LINKOPING
UNIVERSITY

TSEA44: Computer hardware - a system on a chip 2019-12-03 43

Assertions

¢ Assertions are built of
1. Boolean expressions
2. Sequences
3. Properties

4. Assertion directives

II LINKOPING
o UNIVERSITY

TSEA44: Computer hardware - a system on a chip 2019-12-03

Sequential regular expressions

¢ Describing a sequence of events

* Sequences of Boolean expressions can be described with
a specified time step in-between

¢ ##N delay operator

* [*N] repetition operator [z |

(EXEEEEEXIT!

24

sequence s1;
@(posedge clk) a ##1 b ##4 c ##[1:5] z;
endsequence

LINKOPING
II." UNIVERSITY

TSEA44: Computer hardware - a system on a chip 2019-12-03

Properties

¢ Declare property by name
* Formal parameters to enable property reuse

* Top level operators
not desired/undesired
disable iff reset
|->, |=>implication

property pi1;

disable iff (rst)
x |-> s1;

endproperty

II LINKOPING
@& UNIVERSITY

clk

TSEA44: Computer hardware - a system on a chip 2019-12-03

Assertion Directives

¢ assert - checks that the property is never violated
¢ cover - tracks all occurrences of property

al: assert p1 else $display("grr”);

property s2a;
@(posedge clk) disable iff (rst)
$rose(stb) |-> ##[0:16] $rose(ack);
endproperty

a_s2a:assert property (s2a) else
$display (" (%0t)(%m) Delayed ack on addr %h",
$time, adr);

II LINKOPING
o UNIVERSITY

TSEA44: Computer hardware - a system on a chip 2019-12-03

Coverage

* Code coverage (code profiling)
- reflects how thorough the HDL code was exercised
* Functional Coverage (histogram binning)

- perceives the design from a user's or a system
point of view

- Have you covered all of your typical scenarios?

- Error cases? Corner cases? Protocols?

* Functional coverage also allows relationships,

- "OK, I've covered every state in my state machine,
but did | ever have an interrupt at the same time?
When the input buffer was full, did | have all types
of packets injected? Did | ever inject two errorneous
packets in a row?”

LINKOPING
Il.u UNIVERSITY

TSEA44: Computer hardware - a system on a chip

Coverage

// DUT With Coverage
module simple_coverage();

logic [7:0] addr;
logic [7:0] data;

logic par;
logic rw;
logic en;

// Coverage Group
covergroup memory @ (posedge en);
address : coverpoint addr {

bins low = {0,50};
bins med = {51,150};
bins high = {151,255};

parity : coverpoint par {
bins even = {0};
bins odd = {1};
read_write : coverpoint rw {
bins read = {0};
bins write = {1};

endgroup

2019-12-03 48
memory mem = new();

// Task to drive values
task drive (input [7:0] a, input [7:0] d,

input r);
#5 en <= 1;
addr a;
w r;
data d;
par = Ad;

$display ("@%2tns Address :%d data %x,
rw %x, parity %x",
$time,a,d,r, Ad);

#5 en <= @;

w <=

data <=

par <=

addr <=

rw <=
endtask

ooeoe

// Testvector generation
initial begin
en = 0;
repeat (10) begin
drive ($random,$random,$random);
end
#10 $finish;
end

endmodule

II LINKOPING
o UNIVERSITY

TSEA44: Computer hardware - a system on a chip

2019-12-03 49

: 36 data 81, rw 1, parity 0
99 data 0d, rw 1, parity 1
5ns Address :101 data 12, rw 1, parity 0
5ns Address : 13 data 76, rw 1, parity 1
5ns Address :237 data 8c, rw 1, parity 1

VERGROUE QOVERAGES, ru 0, parlty 0 ModelSim says.

#

g TF
cCovergroupss 1143 data 2, rw 0, parity Mgd'ic Goal/ Status

At Least

TYPE /simple_coverage/memory
Coverpoint memory::address
covered/total bins:
bin low
bin med
bin high
Coverpoint memory::parity
covered/total bins:
bin even
bin odd
Coverpoint memory::read_write
covered/total bins:
bin read
bin write

TOTAL COVERGROUP COVERAGE: 44.4% COVERGROUP TYPES: 1

44.4% 100 Uncovered
33.3% 100 Uncovered
3

1
9 1 Covered
0 1 ZERO
0 1 ZERO
50.0% 100 Uncovered >
1 2 Report
9 1 Covered
0 1 ZERO generator:
50.0% 100 Uncovered
1 2
9 1 Covered
0 1ZERO
—

LINKOPING
Il.u UNIVERSITY

TSEA44: Computer hardware - a system on a chip 2019-12-03 50

Cross coverage

enum { red, green, blue } color; Sample event

bit [3:0] pixel adr;

covergroup gl @ (posedgiy
c¢: coverpoint color; : :
a: coverpoint pixel adr; <« | 16 bins for pixel

AxC: cross color, pixel adr;4¢— 48 (=16 * 3)
endgroup; cross products

3 bins for color

Tom Fitzpatrick, SystemVerilog for VHDL
Users, DATE'04

II LINKOPING
o UNIVERSITY

TSEA44: Computer hardware - a system on a chip 2019-12-03 51

SV enhanced scheduling

imeslot n |<— timeslot n+1

Active
(design)

Observed
assertions
Reactive
testbench

|
!
I
I
I
|
I
I
I
I
I
I
I
I
I
I

LINKOPING
Il.u UNIVERSITY

TSEA44: Computer hardware - a system on a chip 2019-12-03

Constrained randomization

program rc;

class Bus;
rand bit[31:0] addr;
rand bit[31:0] data;
constraint word_align {addr[1:0] == 2'b0;
addr[31:24] == 8'h99;}
endclass // Bus

initial begin
Bus bus = new;
repeat (50) begin
if (bus.randomize() == 1
$display ("addr = 0x%h data = 0x%h\n",
bus.addr, bus.data);
else
$display ("Randomization failed.\n");
end
end
endprogram // rc

II LINKOPING
o UNIVERSITY

TSEA44: Computer hardware - a system on a chip 2019-12-03

Parallel threads

fork fork fork
I:IIJT
join join_any join_none

LINKOPING
Il.u UNIVERSITY

TSEA44: Computer hardware - a system on a chip 2019-12-03 54
An example-sKetch

* WB arbitration test

= Instantiate 4 wishbone_tasks

program tester2();
initial begin

fork
begin // 2
for (int i; i<100; i++)
jpeg_top_tb.wh2.m write(32'h100, 32'h0);
end

begin // 6
for (int i; i<100; i++)
Jjpeg_top_tb.wh6.m write(32'h20000000, result);
end

join

end
endprogram

II LINKOPING
UNIVERSITY

www.liu.se

LINKOPING
UNIVERSITY

