
  

 

TSEA44: Computer 
hardware – a 
system on a chip
Lecture 5: Lab2 intro, Pitfalls when 
coding, debugging

Agenda

● Lab2 introduction
● Pitfalls when writing code
● Debugging
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Lab 2 – A JPEG accelerator

1. Design HW

2. Change existing software jpegfiles under uCLinux

a) insert your accelerator

b) insert your DMA

c) insert your instruction
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Our FPGA computer with accelerator
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Raw image format in memory
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0x00ff00ff

8 bit pixels  [0,255]
4 pixels/word

Somewhere 128
must be subtracted 
from each pixel!

… …

Proposed architecture
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Testcases available
● Lab page of the

course webpages

● Includes code for
quantization
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DCT module
● Given to you

– 1D DCT

● 8 in ports (12 bits), 8 out ports (16 bits)

● Fix point arithmetic

● Straightforward implementation of Loeffler's algorithm 
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Proposed architecture
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Transpose Memory

● Rearrange rows to 
columns

– Use distributed RAM

● Synchronous write

● Asynchronous read
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write rows 0 -> 7

read columns 0 ->7

t_wr

t_rd

12

Proposed architecture
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Proposed architecture
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Proposed architecture
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Some ideas
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You can read 8 pixels per clock,
If you use both ports

You can rebuild the BRAM
to a FIFO 

data_out

Write counterRead counter

data_in

empty

full

read
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Some notes on the WB I/F
● Be careful with wb.ack
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clk

stb

ack

ack

Test benches – 2 alternatives

1) Simulate the whole computer – make sim
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CPU
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Boot
ROM

New
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Port

Insert some code
In the beginning of 
the monitor mon2.c

There are some 
alternatives to 
uncomment

Tip: You can write to 
parport to make it
easier to find things in
ModelSim



  

 

Test benches – 2 alternatives

2) Simulate the accelerator – make sim_jpeg
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New
Acc

wb_tasks
m_read
m_write

tests
1) Write a block to acc
2) Start acc
3) Wait for acc to finish
4) Read block from acc
5) print it out 

rst

clk

wb_tasks.sv
module wishbone_tasks(wishbone.master wb);
   int result = 0;
   reg oldack;
   reg [31:0] olddat;

   always @(posedge wb.clk) begin
      oldack <= wb.ack;
      olddat <= wb.dat_i;
   end
   
   task m_read(input [31:0] adr, output logic [31:0] data);
      begin
      @(posedge wb.clk);
      wb.adr <= adr;
      wb.stb <= 1'b1;
      wb.we  <= 1'b0;
      wb.cyc <= 1'b1;
      wb.sel <= 4'hf;
 
      @(posedge wb.clk);
      #1; 
      while (!oldack) begin
        @(posedge wb.clk);
              #1;
      end
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      wb.stb <= 1'b0;
      wb.we  <= 1'b0;
      wb.cyc <= 1'b0;
      wb.sel <= 4'h0;
 
      data = olddat;
      end
   endtask // m_read
   ...
endmodule // wishbone_tasks

Potential pitfalls when creating a design
● What can go wrong?

– Design mistakes

– Synthesis errors

– Runtime errors

● Crossing clock domains

– Handshaking

– Asynchronous FIFOs
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A design bug
● Symptom: The boot sequence of uClinux hangs after a 

second when the Icache is on.
● Uclinux boots ok with Icache of
● No problems detected in the monitor when the icache is 

on

2019-11-20 20TSEA44: Computer hardware – a system on a chip



  

 

First try
● Modify the testbench so uClinux is present in SDRAM 

models
● Add interesting signals to the wave window
● Run the simulation over night
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Oops...
● In the morning the simulation was not running any longer
● The log files had filled up all free space on the fileserver...

– ... which promptly crashed, causing all sorts of 
merriment
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Handling long simulation runtimes
● Use checkpointing to reduce/eliminate the need for 

logging
– Add no signals to wave window (and log for that 

matter)

– Modify UART so printouts are displayed in the 
transcript window (using $display())

– run 100 ms; checkpoint 100ms.chk

– run 100 ms; checkpoint 200ms.chk

– run 100 ms; checkpoint 300ms.chk

– ...
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Handling long simulation runtime, cont.
● Now you can pinpoint the time interval where the crash 

happened
– Restore the checkpoint in Modelsim that occured 

closest before the actual crash

– vsim -restore 600ms.chk

– Debug as usual (by adding signals to wave 
window/etc)
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So what was the bug?
● Cacheline filled up incorrectly (AAAA AAAA CCCC DDDD 

instead of AAAA BBBB CCCC DDDD)
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What if you cannot find a bug during 
simulation?

● Very likely you have some undefined behavior in your 
design
– Race condition in RTL code (blocking vs non-blocking 

assignment)
– Incorrect use of ”don't cares”
– You are not crossing clock domains correctly 
– etc.

● Not so likely:
– You have triggered a bug in the CAD tools
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Clock domain crossing
● Why do we need synchronous designs?

– Race conditions
– Metastability

● Crossing clock domains
– (Avoid if possible)
– Using handshakes
– Using asynchronous FIFOs
– Your own solution

● (Only if you like debugging systems where bugs cannot be 
deterministically reproduced...)

● Do not forget that the reset signal has to be passed to 
each clock domain!
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Troubleshooting
● Post Place-and-Route (PAR) simulation

– Generate a new netlist using netgen
– Simulation done with LUTs and FF
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32-bit add/sub example:
Output s takes 15ns to stabilize after sub 0->1

Available for lab0!
make sim_lab0_sdf
See lab webpage



  

 

Testbenches that work with PAR netlists
● Avoid violating setup and hold times of flipflops

– Delay test values 

● Test results at the end of the clock cycle
– Test values at 

the clock cycle 
transition, before 
updates moved 
on from input
flipflops 
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initial begin // Test adder
  @(posedge clk);

     #4; // delay after clockedge
  a <= 5;
  b <= 3;
  @(posedge clk);
  if (result != 8) begin

        $display(”Adder fail”);
        $stop;
    end
end

Simulation ok, but still not working?
● Add measurement logic to the FPGA Design

– Use switches and LEDs

● Chipscope/Signaltap

– Add logic analyzer function to the FPGA design

– Store samples in blockRAM or similar

– Communicate with PC over JTAG

● Warning!

– Many people think signaltap/chipscope replace 
simulation. It does not! Better to spend time writing 
better testbench
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