

TSEA44: Computer
hardware – a
system on a chip
Lecture 5: Lab2 intro, Pitfalls when
coding, debugging

Agenda

● Lab2 introduction
● Pitfalls when writing code
● Debugging

2019-11-20 2TSEA44: Computer hardware – a system on a chip

Lab 2 – A JPEG accelerator

1. Design HW

2. Change existing software jpegfiles under uCLinux

a) insert your accelerator

b) insert your DMA

c) insert your instruction

2019-11-20 3TSEA44: Computer hardware – a system on a chip

Our FPGA computer with accelerator

2019-11-20 4TSEA44: Computer hardware – a system on a chip

Boot-
ROM
RAM

PKMC
uCLinux
testbild.raw

WB

UART

ICNPC

PC

IR

RF

DC

WBI

WBI

LSU

OR1200

tx

rx

FFs on
outputs

FFs on
outputs

ALU

DCTQ
DMA

bit

testbild.jpg

s6

m6

m6

m0

m1

Raw image format in memory

2019-11-20 5TSEA44: Computer hardware – a system on a chip

0x00ff00ff

8 bit pixels [0,255]
4 pixels/word

Somewhere 128
must be subtracted
from each pixel!

… …

Proposed architecture

2019-11-20 6TSEA44: Computer hardware – a system on a chip

Testcases available
● Lab page of the

course webpages

● Includes code for
quantization

2019-11-20 7TSEA44: Computer hardware – a system on a chip

DCT module
● Given to you

– 1D DCT

● 8 in ports (12 bits), 8 out ports (16 bits)

● Fix point arithmetic

● Straightforward implementation of Loeffler's algorithm

2019-11-20 8TSEA44: Computer hardware – a system on a chip

Proposed architecture

2019-11-20 9TSEA44: Computer hardware – a system on a chip

Transpose Memory

● Rearrange rows to
columns

– Use distributed RAM

● Synchronous write

● Asynchronous read

2019-11-20 10TSEA44: Computer hardware – a system on a chip

write rows 0 -> 7

read columns 0 ->7

t_wr

t_rd

12

Proposed architecture

2019-11-20 11TSEA44: Computer hardware – a system on a chip

Proposed architecture

2019-11-20 12TSEA44: Computer hardware – a system on a chip

Proposed architecture

2019-11-20 13TSEA44: Computer hardware – a system on a chip

Some ideas

2019-11-20 14TSEA44: Computer hardware – a system on a chip

You can read 8 pixels per clock,
If you use both ports

You can rebuild the BRAM
to a FIFO

data_out

Write counterRead counter

data_in

empty

full

read

write

Some notes on the WB I/F
● Be careful with wb.ack

2019-11-20 15TSEA44: Computer hardware – a system on a chip

clk

stb

ack

ack

Test benches – 2 alternatives

1) Simulate the whole computer – make sim

2019-11-20 16TSEA44: Computer hardware – a system on a chip

CPU

WB

Boot
ROM

New
Accclk

rst

Par
Port

Insert some code
In the beginning of
the monitor mon2.c

There are some
alternatives to
uncomment

Tip: You can write to
parport to make it
easier to find things in
ModelSim

Test benches – 2 alternatives

2) Simulate the accelerator – make sim_jpeg

2019-11-20 17TSEA44: Computer hardware – a system on a chip

New
Acc

wb_tasks
m_read
m_write

tests
1) Write a block to acc
2) Start acc
3) Wait for acc to finish
4) Read block from acc
5) print it out

rst

clk

wb_tasks.sv
module wishbone_tasks(wishbone.master wb);
 int result = 0;
 reg oldack;
 reg [31:0] olddat;

 always @(posedge wb.clk) begin
 oldack <= wb.ack;
 olddat <= wb.dat_i;
 end

 task m_read(input [31:0] adr, output logic [31:0] data);
 begin
 @(posedge wb.clk);
 wb.adr <= adr;
 wb.stb <= 1'b1;
 wb.we <= 1'b0;
 wb.cyc <= 1'b1;
 wb.sel <= 4'hf;

 @(posedge wb.clk);
 #1;
 while (!oldack) begin
 @(posedge wb.clk);
 #1;
 end

2019-11-20 18TSEA44: Computer hardware – a system on a chip

 wb.stb <= 1'b0;
 wb.we <= 1'b0;
 wb.cyc <= 1'b0;
 wb.sel <= 4'h0;

 data = olddat;
 end
 endtask // m_read
 ...
endmodule // wishbone_tasks

Potential pitfalls when creating a design
● What can go wrong?

– Design mistakes

– Synthesis errors

– Runtime errors

● Crossing clock domains

– Handshaking

– Asynchronous FIFOs

2019-11-20 19TSEA44: Computer hardware – a system on a chip

A design bug
● Symptom: The boot sequence of uClinux hangs after a

second when the Icache is on.
● Uclinux boots ok with Icache of
● No problems detected in the monitor when the icache is

on

2019-11-20 20TSEA44: Computer hardware – a system on a chip

First try
● Modify the testbench so uClinux is present in SDRAM

models
● Add interesting signals to the wave window
● Run the simulation over night

2019-11-20 21TSEA44: Computer hardware – a system on a chip

Oops...
● In the morning the simulation was not running any longer
● The log files had filled up all free space on the fileserver...

– ... which promptly crashed, causing all sorts of
merriment

2019-11-20 22TSEA44: Computer hardware – a system on a chip

Handling long simulation runtimes
● Use checkpointing to reduce/eliminate the need for

logging
– Add no signals to wave window (and log for that

matter)

– Modify UART so printouts are displayed in the
transcript window (using $display())

– run 100 ms; checkpoint 100ms.chk

– run 100 ms; checkpoint 200ms.chk

– run 100 ms; checkpoint 300ms.chk

– ...

2019-11-20 23TSEA44: Computer hardware – a system on a chip

Handling long simulation runtime, cont.
● Now you can pinpoint the time interval where the crash

happened
– Restore the checkpoint in Modelsim that occured

closest before the actual crash

– vsim -restore 600ms.chk

– Debug as usual (by adding signals to wave
window/etc)

2019-11-20 24TSEA44: Computer hardware – a system on a chip

So what was the bug?
● Cacheline filled up incorrectly (AAAA AAAA CCCC DDDD

instead of AAAA BBBB CCCC DDDD)

2019-11-20 25TSEA44: Computer hardware – a system on a chip

What if you cannot find a bug during
simulation?

● Very likely you have some undefined behavior in your
design
– Race condition in RTL code (blocking vs non-blocking

assignment)
– Incorrect use of ”don't cares”
– You are not crossing clock domains correctly
– etc.

● Not so likely:
– You have triggered a bug in the CAD tools

2019-11-20 26TSEA44: Computer hardware – a system on a chip

Clock domain crossing
● Why do we need synchronous designs?

– Race conditions
– Metastability

● Crossing clock domains
– (Avoid if possible)
– Using handshakes
– Using asynchronous FIFOs
– Your own solution

● (Only if you like debugging systems where bugs cannot be
deterministically reproduced...)

● Do not forget that the reset signal has to be passed to
each clock domain!

2019-11-20 27TSEA44: Computer hardware – a system on a chip

Troubleshooting
● Post Place-and-Route (PAR) simulation

– Generate a new netlist using netgen
– Simulation done with LUTs and FF

2019-11-20 28TSEA44: Computer hardware – a system on a chip

32-bit add/sub example:
Output s takes 15ns to stabilize after sub 0->1

Available for lab0!
make sim_lab0_sdf
See lab webpage

Testbenches that work with PAR netlists
● Avoid violating setup and hold times of flipflops

– Delay test values

● Test results at the end of the clock cycle
– Test values at

the clock cycle
transition, before
updates moved
on from input
flipflops

2019-11-20 29TSEA44: Computer hardware – a system on a chip

initial begin // Test adder
 @(posedge clk);

 #4; // delay after clockedge
 a <= 5;
 b <= 3;
 @(posedge clk);
 if (result != 8) begin

 $display(”Adder fail”);
 $stop;
 end
end

Simulation ok, but still not working?
● Add measurement logic to the FPGA Design

– Use switches and LEDs

● Chipscope/Signaltap

– Add logic analyzer function to the FPGA design

– Store samples in blockRAM or similar

– Communicate with PC over JTAG

● Warning!

– Many people think signaltap/chipscope replace
simulation. It does not! Better to spend time writing
better testbench

2019-11-20 30TSEA44: Computer hardware – a system on a chip

www.liu.se

